• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número5"

Copied!
10
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Report

on

the

Malungo

expedition

to

the

Erepecuru

river,

Oriximiná,

Brazil.

Part

I:

is

there

a

difference

between

black

and

white

breu

?

Eduardo

Rodrigues

da

Silva

a

,

Danilo

Ribeiro

de

Oliveira

a

,

Maria

de

Fátima

Figueiredo

Melo

b

,

Humberto

Ribeiro

Bizzo

c

,

Suzana

Guimarães

Leitão

a,∗

aFaculdadedeFarmácia,CentrodeCiênciasdaSaúde,UniversidadeFederaldoRiodeJaneiro,RiodeJaneiro,RJ,Brazil

bInstitutodePesquisasdaAmazonia,Manaus,AM,Brazil

cEmbrapaAgroindústriadeAlimentos,RiodeJaneiro,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26November2015 Accepted5May2016 Availableonline14June2016

Keywords:

Burseraceae

Protium Breu

Quilombola Essentialoil

a

b

s

t

r

a

c

t

SpeciesbelongingtoBurseraceaeproduceanoleoresinknowninthenorthofBrazilasbreu.Theycomprise anessentialoilwithacomplexcomposition,andareusedinAmazoniaforsmokingtheenvironment, tocaulkboatsandformedicinalpurposes.Dependingonitsorganolepticcharacteristicsandonthe

breu-producingspecies,theyarecalledwhiteorblackbreu.Inthiswork,weprovidedataaboutthe

breu-producingspeciesoccurringinthequilombolaregionoftheErepecururiver,thechemical com-position,andwhetheritispossibletodifferentiatethembasedontheirchemicalcompositionand/or botanicalidentification.Aerialsamplesfrombreutreesandoleoresinswerecollectedfrom10different individualsat6differentsitesontheErepecururiverundertheguidanceofthequilombolas.Essential oilswereextractedbyhydrodistillationandcharacterizedbyGC–MS.Fromtheanalysis,126different substanceswereidentified,withalargequantitativeandqualitativevariation.Tobetterunderstandthe chemicalvariationswithinthesamplesandtosortthevariationintothecategoriesofwhiteorblackbreu

asidentifiedbythequilombola,wesortedtheoilsamplesintofivedifferentsetsaccordingtotheirmajor compounds(A:␦-3-carene;B:p-cymene;C:␥-cadinene/p-cymene;D:limonene,␤-phellandrene/␣ -terpineol;E:␣-pinene/limonene).Essentialoilsfromsamplesofwhitebreuhadthehighestconcentration of␣-pinene,whileasimilarityinchemicalcompositioncouldnotbeestablishedfortheblackbreu sam-ples(setsA,BandC).Furthermore,achemicalsimilaritybetweenablackbreu(Protiumheptaphyllum

(Aubl.)Marchand)andawhitebreu(Protiumdecandrum(Aubl.)Marchand)samplewasevidenced.In conclusion,itisdifficulttoestablishdefinitionsforwhiteandblackbreubasedonchemical,botanical orregionalnames.Thisdesignationismoreculturalandregionalthanscientificandisbasedonthe oleoresinproductionvolume,itscoloraspectandscent.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

InDecember2007,ourresearchgroupattheFederal Univer-sityofRiodeJaneiroobtainedthefirstapprovalinBraziltoaccess traditionalknowledgeforbioprospectingpurposesinquilombola communitiesofOriximiná,ParáState,Brazil(Oliveiraetal.,2010). Sincethen,wehavebeendocumentingthevastknowledgeofthe

quilombolapeoplefromthisregion(Oliveira,2009;Oliveiraetal.,

2011,2012,2015;Pec¸anhaetal.,2013).Bydefinition,“remnantsof quilombos”or“quilombola”communitiesareethnicgroupswith aspecifichistoricalbackground,specificterritorialrelations,and apresumptionofblackancestry,thatarerelatedtoresistanceto

Correspondingauthor.

E-mail:sgleitao@pharma.ufrj.br(S.G.Leitão).

oppressionsufferedhistorically(Oliveiraetal.,2012).Inthelate 18thandearly19thcenturies,theslavesthatwereusedoncocoa, coffee,andcottonplantationsasalaborforcefledtoremoteareas, especiallytoregionsoflakesandwaterfallsthatweredifficultto access.Manyexpeditionsweresenttodestroythequilombosand recapturetheslaves,butsomeofthemmanagedtoescapeby jour-neyinguptheTrombetasriveralong tworoutes:onealong the courseoftheriverErepecurú(alsoknownasCumináorParudo Oeste)andtheothertowardthenavigablestretchesoftheHigh Trombetas,afterpassingoverwaterfalls(Andrade,1995;Acevedo andCastro,1998).Manyofthesecommunitiesarestillinfull con-tactwiththenaturalbiodiversityofregionsfarfromtheurbanarea ofOriximiná.Theirclosecontactwithnatureovercenturies,the knowledgeformedfromanIndian–Black–Portuguesecomplex,and theirgeographicisolation,havebroughttothemembersofthese communitiesavastknowledgeofmedicinalplants.

http://dx.doi.org/10.1016/j.bjp.2016.05.003

(2)

Amongthemanyplantsandplantproductsusedasremedies bythisethnicgroup,wewereparticularlyinterestedinthebreu oleoresins.InBrazil,thetermbreuisusedtodesignatearesinous exudate,alsoknownaselemi,producedbyProtiumspecies(Siani etal.,1999a).ProtiumisthemaingenusoftheBurseraceaefamily, whichincludeseighteengenerawithapproximately700species, andisoneofthemostwidespreadinSouthAmerica(Sianietal., 1999a;Weeksetal.,2005).Speciesbelongingtothisfamily pro-ducefluidsecretions(oleoresins)frombagsandcanalslocatedin thebarkormoredeeply inthewood(Costa,1994).These oleo-resinsarevery aromatic,witheconomic,culturalandmedicinal value,andcanbeblackened,whitishorevencolorless(Ribeiroand Daly,1999;Langenhein,2003).Avolatileoilcanbeobtainedfrom thisexudatebyhydrodistillation.Ifrecentlyproduced,the oleo-resinappearsclearandplastic,butwithoxidationandvolatilization ofsomecomponentsitbecomes hard,resinous,darkandbrittle (Costa,1994).DependingonthespeciesofProtiumfromwhichitis extractedanditsorganolepticcharacteristics,Amazonianelemiis commonlyknownasblackorwhitebreu(DaSilvaetal.,2013).They presentacomplexqualitativeandquantitativechemical composi-tionvaryingbetweentheplantspeciesoforiginandthedifferent environmentsinwhichtheygrow.Mono-andsesquiterpenesare themain volatilecompounds which comprisethe essential oil, whiletriterpenesarethemajorcomponentsoftheresin(Carvalho etal.,2010;Hernández-Vázquezetal.,2010;Silva etal.,2009). Amongthesecomponents,somevolatileshaveantimicrobialand antioxidant(Bandeiraet al., 2006), analgesic(Rao et al., 2007), anti-inflammatoryandantitumor(Sianietal.,1999a)activities.In addition,someoftheresintriterpenespresentanxiolyticand seda-tive(Aragãoetal.,2006),anti-inflammatory(Medeirosetal.,2007) andanalgesic(Pintoetal.,2008)activities.

AccordingtoOliveira(2009),whitebreu,and lessfrequently blackbreu,oleoresinshavebeenusedbythequilombolaof Orix-imináforthetreatmentofheadachesbyburningitandinhaling thesmokederivedfromitscombustion,amongotheruses.Inthese communities,breuoleoresinisusedeitheraloneorincombination

withcumaruseeds(Dipteryxodorata(Aubl.)Wild.)andwith

cof-feepowderorcoffeegrains.Dependingonthevisualappearance ofthetreefromwhichtheseoleoresinsarecollectedandontheir organolepticcharacteristics,suchascolorandodor,themembers ofthelocalcommunitiesclassifythebreutreesaswhiteorblack.

InMarch2012,weembarkedonanexpeditiontothequilombola territoriesintheErepecururiverinasearchfordifferentbreutrees andoleoresins,aswellastotrytodeterminewhatthequilombolas understandaswhitebreu,blackbreu,andotherbreu denomina-tions.Intheliterature,ithasbeenstatedthatthecriteriaforthe distinctionbetweenthedifferenttypesofbreuoleoresinsarebased onlyontheirsmell,without anyidentificationofbotanical dif-ferencesamongthespecies(Ramosetal.,2000).However,some speciesaredirectlyrelatedtothetypeofbreuoleoresins.Examples includeProtium heptaphyllum(Aubl.)Marchand,which iscalled atruewhitebreutree(Silvaetal.,1977;Rodrigues,1989;Siani etal.,1999b;Revilla, 2002;Da Matta,2003; Silva,2006b;Berg,

2010);ProtiumspruceanumBenth.,alsoknownasawhitebreutree

(Brandão,2011);Protiuminsigne(Triana&Planch.)Engl.,knownas

thebreusucurubatree(Silvaetal.,1977;Revilla,2002);and

Tetra-gastrispanamensis(Engl.)Kuntze,calledtheblackbreutree(Silva

etal.,1977)orthewhitebreutree(Limaetal.,2001).Our jour-neytotheErepecururiverwasnamedthe“MalungoExpedition” afterthebantu(anAfricandialect)termMalunguormalungo,which means,amongothermeanings,“companion”,“brother”,“fromthe sameregion”,or“companioninsuffering”.Inthekikongolanguage, itmeanscanoe(Slenes,1992).We feltthatthis wastheperfect namefortheexpeditionbecauseoftheancestryofour quilom-bolacompanions,ofallthesufferingthatwasimpliedintotaking atripintotheAmazonianforestandlast,butnotleast,because

wewere travelingin canoesalong theriver. Thisregionofthe Erepecururiver,calledthe“AltoErepecuru”(HighErepecuru),has beenthesiteofmanypreviousexpeditionsbyforeignandBrazilian explorers,includingMme.Coudreau,betweenApriland Septem-ber1900(Coudreau,1901),GeneralCândidoRondonandGastão Cruls,betweenSeptember1928andJanuary1929(Cruls,1973), andFerreirad’Almeida,betweenJulyandNovember1936(Ferreira d’Almeida,1937).Mme.CoudreauwasthewidowofHenriAnatole Coudreau,aFrenchgeographerwhowashiredbytheGovernor oftheStateofParátomaptheAmazon’stributariesinthe19th century.In1899hediedinherarmsfrommalarialfeveronhis expeditiontotheTrombetasriver,butMme.Coudreaucontinued theexplorationworkbegun byherhusbandfor thenextseven years.Inalltheseexplorer’sdiariesthereismentionofbreutree areas,but thereis noregisterof themedicinaluses/indications ofthebreuoleoresinsoradescriptionofthescientificnamesof thespecies,exceptforthecitationofP.heptaphyllumbyFerreira d’Almeida(1937).Morerecently,AcevedoandCastro(1998)noted theimportanceofthebreuoleoresincommercetothequilombola ofOriximiná,evidenceoftheimportanceofthisproductforthese people.

Inthisstudy,wecontributetotheknowledgeoftheseoleoresins byprovidingdataaboutthebreutreesoccurringinthisregion,the chemicalcompositionoftheiroleoresins,andwhetheritispossible todifferentiatewhitebreufromblackbreuoleoresinbasedonits chemicalcompositionand/orbotanicalidentificationofthetreeof origin.

Experimental

Characterizationofthesearcharea

The municipality of Oriximiná,located in the State of Pará, northern Brazil, is bordered by Suriname, Guyana and French Guianatothenorth,thecitiesofFaro,Juruti,andÓbidostothe southandeast,andtheStatesofAmazonasandRoraimatothe west.Ithasanareaof107,603km2andisthesecondlargest munic-ipalityintheBrazilian territory.Thereare33knownquilombola communities in Oriximiná that are divided into eight territo-ries(Água Fria,BoaVista,Trombetas,Erepecuru,AltoTrombetas, Jamari/ÚltimoQuilombo,Moura,andAriramba)that encompass morethan600,000ha(Oliveiraetal.,2015).Thequilombolasare representedbytheirassociation,calledthe“Associac¸ãode Comu-nidadesRemanescentesdeQuilombosdoMunicípiodeOriximiná” orARQMO(RemainingoftheQuilomboCommunitiesAssociation fromOriximináCity).We havebeenworkingwiththis groupof

quilombolasince2007whenweobtainedthefirstauthorizationfor

accesstothetraditionalknowledgeassociatedwithbioprospecting fromtheDirectingCouncilofGeneticHeritage(ConselhodeGestão doPatrimônioGenético–CGEN)inBrazil,throughResolutionno. 213(06.12.2007)publishedintheFederalOfficialGazetteofBrazil on27December2007.

TheMalungoexpedition,collectionsitesandethnobotanicaldata

collection

(3)

BPPIR

BBB

Roraima Guiana

Suriname French Guiana

Amapa

Atlantic Ocean

Atlantic Ocean

BELEM ORIXIMINÁ

MANAUS

Amazonas River

Amazonas

Colômbia

Pará Peru

Bolivia

Paraguai

Argentina

Brasil ORIXIMINÁ ÓBIDOS

Pará SANTARÉM BPIR2

BPIR1 BPIM

BPTF1BPTF2

ORIXIMINA

Collection Sites

Cities States of Brazil Rivers

Font: IBGE

N

S E W

0 5 10 20 30 40 Km

Erepecur

u Riv

er

BBIG BPIR3

Fig.1. MaprepresentingthequilombolaareaoftheAltoErepecurú(HighErepecuru)region,ParáState,Brazil,withcollectionsites:BBIM–blackbreuMelIsland;BBPIR– blackbreuCachoeiradaPirara;BBIR1–blackbreuIlhadoRecanto1;BBIR2–blackbreuIlhadoRecanto2;BBIR3–blackbreuIlhadoRecanto3;BBTF1–blackbreuTerra Firme1;BBTF2–blackbreuTerraFirme2;WBB1–whitebreuBeliscão1;WBB2–whitebreuBeliscão2;WBIG–whitebreuIgarapéGrande.

boatsbecauseofrocksandrapids.Thequilombolacollectingareas forBrazilnutsandbreuoleoresinarelocatedinthisregion.Weused participantobservationandwalk-in-the-woodswiththeselocal expertsandstoppedforcampingandcollectingbreutreesandbreu oleoresinsamplesinthesitesindicatedbythequilombolaguides. Thecollectionsiteswereselectedbasedonthequilombola knowl-edgeofblackandwhitebreutreesoccurrenceandaredescribed inFigs.1and2:IgarapéGrande(sampleWBIG,S00◦ 50,442′/W 56◦ 09,297);TerraFirme(aterrafirmelandsiteonthebeachin front of thePraiaGrande, samplesBBTF1,S00◦ 50,971′/W 56◦ 11,548′andBBTF2,S00◦50,978′/W56◦11,538′);Beliscão(samples WBB1andWBB2,noGPSsignal,collectionpointestimated);Ilhado Recanto(samplesBBIR1,S00◦41,729′/W56◦13,287′,BBIR2,S00◦ 41,705′/W56◦13,286′andBBIR3,S00◦41,618′/W56◦13,328′),Ilha doMel(sampleBBIM,noGPSsignal,collectionpointestimated)and CachoeiradaPirarara(sampleBBPIR,S00◦41,570′/W56◦13,518′).

Samplecollectionandidentification

Breuoleoresins(Fig.3)andaerialsamples(brancheswithleaves, withorwithoutfruits)fromdifferentindividualtreeswere col-lectedbetweenthe2ndandthe12thofMarch2012.Oleoresins weredriedinthesunfor30minbeforebeingindividuallywrapped in aluminumfoil. Aerialsampleswerewrapped in a sheetand soaked with alcohol 92◦ GL and then pressed to generate the voucherspecimens.Specieswereidentifiedbyoneofus(MFFM) andthevouchersweredepositedattheINPAHerbarium,Manaus. ThevouchernumbersaregiveninTable1.

Oleoresinsmoisturecontentanalysisandessentialoilextraction

Moisturecontentanalysiswasperformedintriplicateforeach samplecollected.A500mlroundbottomedflaskconnectedtoa Dean-Starktrapcontaining5gofoleoresinand200mloftoluene washeatedtoboilingfor2h,thenthevolumeofwaterwasnoted andthepercentage(w/w)ofmoistureinthesamplewascalculated (AOCS,1994).Oleoresinssampleswerefragmentedandsubmitted tohydrodistillationforfourhoursusingaClevengertypeapparatus. Essentialoilswereseparatedfromthehydrolatebydecantation, driedoveranhydroussodiumsulfateandstoredunderrefrigeration insealedamberflasks.

Characterizationandquantificationofessentialoils

Characterization of each essential oil was performed by gas chromatography coupledwithmass spectrometry (GC–MS) using an Agilent 6890 gas chromatograph coupled to an Agi-lent 5973N mass spectrometer. Separation was accomplished with a HP-5 fused silica capillary column (30m×0.25mm i.d.,

(4)

Fig.2.MapsextractedfromMme.Coudreau’sVoyageauCuminá(Coudreau,1901),showingcollectionsites.Thenamesofthevisitedplacesarestillthesame.

3.15scan/s.Theionsourcetemperaturewas230◦C,massanalyzer 150◦Candtransferline260◦C.

Linearretentionindiceswerecalculatedbyinjectionofaseries ofn-alkanes(C7–C26)(DoolandKratz,1963)usingdesamecolumn andconditionasaboveforGCanalyses.Identificationofpeakswas performedbycomparisonofmassspectrawithanelectroniclibrary database(Wiley,2000)andcomparingtheircalculatedlinear reten-tionindiceswithliteraturedata(Adams,2007).

Essentialoils relative compositionswereobtained usinggas chromatographycoupledwithflameionizationdetection(GC-FID). Analyses were performed using an Agilent 7890A gas chro-matographand separationwasaccomplishedwithaHP-5fused silicacapillarycolumn(30m×0.32mmi.d.,0.25␮mphase

thick-ness).Theinjectionprocedureand conditions wasthesame as described above, except the carrier gas, which was hydrogen, 1.5ml/min.

Aimingtheseparationofco-elutedpeaksandamoreaccurate identificationofsomemajorcomponents,theessentialoilsamples andtheauthenticstandards␦-3-carene,p-cymeneandlimonene wereanalyzedbyGC–MSusinganINNOWAXpolyethylene gly-colpolarcolumn(25m×0.2mmi.d.).Theinjectionprocedureand

conditionswerethesameasdescribedaboveandthecarriergas washeliumataflowof1ml/min.

Essentialoilphysicochemicalcharacterization

TheopticalrotationwasdeterminedusingaPerkingElmer341 digitalpolarimeter.Analyzeswereperformedina thermostated 10mmcellat20◦Candwithmonochromaticlightat589nm.After eachmeasurementthecellwaswashedwithacetoneanddried. RefractiveindexwasmeasuredusingaCarlZeiss120540 refrac-tometerat20◦C.Bothassayswereperformedintriplicate.

Resultsanddiscussion

Collectionsitesandidentificationofcollectedspecies

Thebreuoleoresincollectionsitesaredepictedinmapsshown inFigures1and2.Figure2isareproductionofpartsofthemaps producedbyMme.Coudreau(1901)referringtothesiteswhere sampleswerecollected.Theyarereproducedhere(nocopyrights) becausetheyreliablyshowthenamesoftheplaceswheretheplants werecollected,whicharethesametoday(PraiaGrande,IlhadoMel, CachoeiradoMel,CachoeiradaPirarara,Beliscão).

Figure3describestheaspectsoftheoleoresinsatthemoment theywerecollected.Thedifferentiationbetweenwhiteandblack breuoleoresininthetreestemisverydifficultbecausebothtypes

Table1

Samplecodes,breutreesdesignation(whiteorblack)givenbythequilombola,vouchernumbers,andidentifiedspeciesforeachcollectedsample.

Sample Vouchernumbers Popularname Identifiedspecies

BBIM 265857 Blackbreuorbreuzinho Protiumheptaphyllum(Aubl.)Marchand

BBPIR 265850 Blackbreu Protiumdecandrum(Aubl.)Marchand

BBIR1 265852 Blackbreu Protiumheptaphyllum(Aubl.)Marchand

BBIR2 265851 Blackbreu Protiumheptaphyllum(Aubl.)Marchand

BBIR3 265855 Blackbreu Protiumheptaphyllum(Aubl.)Marchand

WBB1 265856 Whitebreu Protiumdecandrum(Aubl.)Marchand

BBTF1 265859 Blackbreuorsucuruba Protiumcf.opacumSwart

BBTF2 265858 Blackbreuorsucuruba ProtiumaltsoniiSandwith

WBB2 265954 Whitebreu ProtiumoccultumD.C.Daly

WBIG 265853 Whitebreu ProtiumstrumosumDaly

(5)

Fig.3. GeneralaspectofthedifferentBreusamplesinthetrees:(A)BBIM–blackbreuMelIsland;(B)BBPIR–blackbreuCachoeiradaPirara;(C)BBIR1–blackbreuIlhado Recanto1;(D)BBIR2–blackbreuIlhadoRecanto2;(E)BBIR3–blackbreuIlhadoRecanto3;(F)WBB1–whitebreuBeliscão1;(G)BBTF1–blackbreuTerraFirme1;(H) BBTF2–blackbreuTerraFirme2;(I)WBB2–whitebreuBeliscão2;(J)WBIG–whitebreuIgarapéGrande.

havevery similarcoloring,withwhitish and/ordarkenedparts. Otherorganolepticcharacteristicsoftheoleoresin,suchastexture andfragrance,donotguaranteethedistinctionbetweenblackand whitebreuoleoresins.Bothcanvarywiththeexposuretime on

(6)

theliteratureasawhitebreuoleoresin-producingspecies(Silva etal.,1977;Sianietal.,1999b),whilstinthepresentworkitwas characterizedbythequilombolapeopleasablackbreu oleoresin-producingtree.

Table1displaysthebreutreedesignations(whiteorblack)given

bythequilombolasandthecorrespondingscientificnamesofeach

collectedsample.AllidentifiedspeciesbelongtothegenusProtium. Accordingtothe quilombolareports, white breuoleoresin is more fragrant,is produced in less quantity, and is usedin the treatmentofsomediseases,suchasheadaches,whileblackbreu oleoresinismostlyusedtorepaircanoesandtosmokethe envi-ronment.Inadditiontothesedifferences,theblackbreutreeswere furtherdifferentiatedbythequilombolaintobreuzinho–shorttrees withaslenderstalk;andbreusucuruba–talltreeswithathickstalk locatedawayfromtherivermargins.Accordingtothequilombolas, whitebreu-producingtreesarealsotallandfoundawayfromthe river,buthavethinnerstalks.

Characteristicsofessentialoilsandchemicalcomposition

Theessentialoilshadthecharacteristicfragranceofbreu ole-oresin.Theyappearedclearandcolorlessatthebeginningofthe extraction,turningtoaslightlyyellowishtingeattheend,except fortheessentialoilfromthesampleBBIR2,whichbecamegreenish, probablyduetothepresenceofachamazuleneprecursor.

Themoisturecontentineacholeoresinsampleandtheir essen-tialoilyields(drybasis)areshowninTable2

.TheWBIGoleoresinshowedthebestyield(5.4%,w/w),while thelowestyieldwasforWBB2(0.8%,w/w).Theseresults demon-stratethattheamountofessentialoilisnotonlyrelatedtothetype ofbreuoleoresin–whiteorblack–butalsotoenvironmental con-ditionssuchastemperatureandhumidity,aswellastoexposure timeinthestemandchemical composition,whichwilldirectly influencethedegreeofvolatilizationandoxidation(Costa,1994; Ramosetal.,2000;Silva,2006a).

Theprimarycompoundswithrelative%peakareaabove0.02 identifiedinthe10 essentialoilsobtainedfromeachbreu oleo-resinsampleareshowninTable2.Atotalof126substanceswere identified,showingthecomplexityoftheirchemicalcomposition, aswellasthelargequantitativeandqualitativevariationintheir components.Alltheessentialoilshadahighpercentageof identi-fiedcomponents,withtheexceptionofthesampleBBIR3(62.8%of identifiedcomponents).

Afterevaluationofthemassspectraandretentionindexesof ␦-3-carene,p-cymeneandlimoneneelutedinanHP-5(apolar) col-umn,doubtsabouttheirpresenceand/orco-elutionwereraised. Therefore,essentialoilsandauthenticstandardswereanalyzedby GC–MSwithapolyethyleneglycolpolarcolumntoresolvethe co-elutedcompounds.Peaksof␦-3-carene,limoneneandp-cymene inthepolarcolumnshowedretentiontimesandretentionindices closetothosereportedforthiscolumn(Davies,1990).Inthistype ofcolumn,asmallchangeinprogrammingcanprofoundlyaffect theretentionindex,leadingtovariationssometimescloseto50 units(Davies,1990).Inthepolarcolumn,the␦-3-careneand iso-sylvestrenepeaks wereseparated,as wellasthelimonene and ␤-phellandrenemixture,presentinallessentialoils.Inaddition, thepolarcolumnanalysishelpedtoconfirmthepresenceofother majorcompounds suchasp-cymene, ␣-pinene and ␥-cadinene (Supplementarymaterial).

Despite the complexity and large variation between the chemical compositionof the differentbreuessential oils, many substancesare commontoallthesamplesand appearin vary-ing concentrations. The monoterpene hydrocarbons ␣-pinene, limonene,␤-phellandrene,p-cymeneandthemonoterpene alco-hol␣-terpineolaretheonlycomponentspresentinallsamples. Otherverycommonmonoterpenesinclude␣-thujene,camphene,

␣-phellandrene, ␦-3-carene, ␣-terpinene and terpinolene. Oxy-genatedmonoterpenesandsesquiterpenesarealsopresentinthe essential oils,but witha moreheterogeneous distribution.The chemicalcompositionofallessentialoilsiscompatiblewith lit-erature data describing the composition of essential oils from oleoresinsofdifferentspeciesofProtium(Ramosetal.,2000;Siani etal.,2004;Silva,2006a;Tafurt-GarcíaandMu˜noz-Acevedo,2012; DaSilvaetal.,2013).

Inanattempttobetterunderstandthechemicalvariationwithin theessentialoilcompositionsandtosortthisparameterbythe definitionsofwhiteorblackbreuoleoresinsusingthequilombola system,wesortedtheoilsamplesintofivedifferentsets,A–E.

SetAcontainedfoursamplesofessentialoilsfromblackbreu oleoresins–BBIM,BBPIR,BBIR1 andBBIR2 –originatingfromP.

heptaphyllumandProtiumdecandrum.Inthisset,␦-3-careneand

iso-sylvestrenewerethemajorcomponents,inmixturesvarying from40.9%to79.5%(Table2).Calculatingtheproportionsbetween thesetwocomponentsineachoftheessentialoilsafter chromato-graphicanalysiswithapolarcolumnrevealedthat␦-3-carenewas alwaysthemajorcomponent.Thisisanewobservation;other

stud-iesofP.heptaphyllumandvarietiesdonotreportthismonoterpene

asthemajorcompoundintheiressentialoils(Marquesetal.,2010; Tafurt-GarcíaandMu˜noz-Acevedo,2012).Furthermore,according toCarvalhoetal.(2010),theP.decandrumresinessentialoil con-tainsahigherconcentrationofsesquiterpenehydrocarbonsand

trans-␣-bergamoteneasthemajorcomponents.Aswellas

con-taining␦-3-careneandiso-sylvestreneasthemajorcompoundsin common,theseessentialoilsshowedaverysimilarcomposition, withapercentageofmonoterpenesabove88%(Table2).

The essential oils of BBIR3 and WBB1 contained p-cymene as their major component and a chemical composition rich in monoterpenehydrocarbons(Table2);therefore,theywereplaced insetB.p-Cymeneisthemonoterpenemostcommonlydescribed asthemajorcompoundinessentialoilsfromProtiumoleoresins (Ramosetal.,2000;Sianietal.,2004;Silva,2006a;Tafurt-García andMu˜noz-Acevedo,2012;DaSilvaetal.,2013).Itisinteresting thatsampleBBIR3correspondstotheoilobtainedfromthe oleo-resinofablackbreutree,P.heptaphyllum,whileWBB1corresponds tothatobtainedfromawhitebreutreesample,P.decandrum.In addition,itisimportanttonotethatoleoresinsobtainedfromtrees ofthesamespecies (P.decandrum)canhave differentchemical compositionsandbeclassifiedasblack(BBPIR)orwhite(WBB1) breu.

The samples collected from the banks of the river, BBTF1

(Protium opacum)andBBTF2 (Protiumaltsonii)showedasimilar

chemicalcomposition,althoughtheycamefromtreesbelonging todifferentspecies,showingtheinfluenceofenvironmentinthe compositionofoleoresins. Althoughnothavingthesamemajor component–␥-cadinene(14.4%)inBBTF1andp-cymene(16.4%) inBBTF2–bothoilswereplacedinsetCbecausetheyaretheonly oneswithmoresesquiterpenesthanmonoterpenes.Inaddition, bothshowedahighconcentrationof␥-cadinene(14.4%inBBTF1 and9.5%inBBTF2),agreeingwithdatafrompreviousstudies(Da Silvaetal.,2013).TheBBTF2compositionaldatadifferfromthose presentedbyRamosetal.(2000)fortheP.altsoniioleoresin essen-tialoil,inwhichthemonoterpenehydrocarbonconcentrationis higherandthemajorcomponentsare␣-pinene,p-menth-3-ene andp-cymene.Curiously,bothbreutreeswereclassifiedasblack breuor“breusucuruba”bythequilombolas.Coincidentally,these weretheonlytreeswithcompletelyblackoleoresinsatthetimeof collection.

Essential oil from oleoresins of WBB2, identified as

Pro-tiumoccultum(Daly),containedthemonoterpenehydrocarbons

(7)

Table2

BreuOleoresinmoisturecontentandessentialoilsyields,physicochemicalproperties,chemicalcompositionsandtheircorrespondinggroupingintosetsA–Baccordingto theirmajorcomponents.

BBIM BBPIR BBIR1 BBIR2 BBIR3 WBB1 BBTF1 BBTF2 WBB2 WBIG

Moisture% 4 6 7 14 6 10 9 2 9 12

Yield%(w/w) 1.2 3.86 1.79 2.47 2.9 2.85 1.02 2.59 0.79 5.36

Refractiveindexa 1.4733 1.4693 1.4720 1.4693 1.4703 1.4730 1.4937 1.4830 1.4730 1.4673

Opticalrotation(◦)a 0.059 +3.485 0.282 +1.507 +3.664 +2.321 0.668 +0.733 2.179 +2.510

Essentialoilgroupingaccording tomajorcompounds

A B C D E

S.N. Substance IRlit** IR*** Percentage(%)

1 ␣-thujene 930 927 – 1.2 – 0.4 0.3 – 0.1 0.2 – 0.9

2 ␣-pinene 939 934 2.0 4.9 2.2 1.7 1.2 19.0 0.2 0.9 8.0 57.7

3 camphene 954 949 – 2.2 0.4 – – 0.3 – 0.3 – 1.2

4 verbenene 967 969 1.5 – 0.8 0.4 – – – – – –

5 sabinene 975 973 – – – – – 0.2 – – – –

6 trans-p-menthane 979 975 – – – – – – 0.1 – 1.0 –

7 ␤-pinene 979 980 – 2.3 0.5 – – 3.6 – – – 9.3

8 2-menthene 980 0.6 – – 0.6 – – 0.5 0.8 – –

9 3-p-menthene 987 984 – – – – – – 0.7 1.1 – 0.9

10 mircene 990 990 0.5 1.7 0.3 0.6 – – – – – –

11 camphane – 1001 – – – 0.7 0.7 – – – – –

12 bornane – 1001 – – – – – 3.0 – – – –

13 1,3,8-p-menthatriene – 1008 – – – – 0.5 – – – – –

14 ␣-phellandrene 1002 1005 0.9 – 2.1 12.9 – 21.0 4.0 – – –

15 mix(␦-3-careneandiso-sylvestrene) 1011 1011 69.0 40.9 79.5 56.4 14.7 0.8 – 1.2 0.5 –

16 ␣-terpinene 1017 1017 – – – 1.6 – 5.5 2.7 – – 0.6

17 p-cymene 1024 1026 6.4 13.4 3.5 14.0 33.0 32.4 6.6 16.3 10.4 9.2

18 1-p-menthene 1026 1022 – – – – – 0.7 – 0.2 0.8 –

19 mix(limoneneand␤-phellandrene) 1029 1028 5.7 20.3 3.2 6.8 – 12.0 4.3 – 41.1 10.8

20 1,8-cineole 1031 1031 – – 1.5 – – – – – – –

21 ␥-terpinene 1059 1059 – 1.6 – – – 0.5 0.2 – – 3.4

22 m-cyminene 1085 1085 – – – – 0.2 – – – – –

23 terpinolene 1088 1088 1.1 1.4 0.7 0.7 – – 1.0 – 0.7 0.5

24 p-cymenene 1091 1092 – – – – 0.6 – – 0.1 – –

25 linalool 1096 1102 – 0.4 – – – – – – – –

26 cis-p-menth-2en-1-ol 1121 1123 – – – – 0.2 – – 0.1 – –

27 cyclooctanone – 1129 – – – – 0.5 – – 0.5 – –

28 cis-limoneneoxide 1136 1137 – – – – 0.4 – – – – –

29 trans-dihydro-␤-terpineol 1138 1137 – – – – – – 0.1 – – –

30 camphor 1146 1146 – 0.5 0.8 – – 0.5 – – – 1.4

31 trans-dihydro-␣-terpineol 1147 1147 – – – – 1.0 – 2.3 2.4 3.3 –

32 cis-dihydro-␤-terpineol 1160 1158 – – – – – – 0.04 – – –

33 cis-dihydro-␣-terpineol 1164 1162 – – – – – – 0.1 0.2 – –

34 p-mentha-1,5-dien-8-ol 1170 1167 2.4 0.4 1.4 – – – – – – –

35 borneol 1169 1174 – – – – 0.2 – – 0.2 – –

36 terpinen-4-ol 1177 1178 – 0.2 – – – – 0.1 0.2 – 0.2

37 p-cymen-8-ol 1179 1182 2.7 0.4 – – – – – – – –

38 criptone 1185 1189 – – – – – – – 1.1 – –

39 ␣-terpineol 1188 1191 3.3 0.7 1.6 0.7 2.3 0.5 0.7 0.5 30.9 2.2

40 phellandreneepoxide – 1205 – 0.4 – – – – – 0.2 – –

41 ␥-terpineol 1199 1199 – – – – – – 0.1 – 2.1 –

42 verbenone 1206 1209 0.6 0.1 0.2 – 0.6 – – – – –

43 (E)-ocimenone 1238 1239 – – – – 0.4 – – – – –

44 cuminal 1241 1241 – – – – 0.6 – – 0.3 – –

45 carvotanacetone 1247 1250 – – – – 0.3 – – – – –

46 piperitone 1252 1255 – 0.4 – – – – – – – –

47 trans-ascaridolglycol 1269 1273 – – – – 0.7 – – 0.2 – –

48 carvacrol 1299 1305 – 0.1 – – – – – – – –

49 p-vinyl-guaiacol 1309 1312 – 0.2 – – – – – – – –

50 ␦-elemene 1338 1339 – – – – – – 0.1 – – –

51 ␣-cubebene 1351 1351 – 0.1 – – 0.5 – 3.1 3.9 – –

52 cyclosativene 1371 1370 – – – – – – 1.5 1.3 – –

53 ␣-ylangene 1375 1373 – 0.2 – – – – 0.4 0.2 – –

54 ␣-copaene 1376 1377 – – – – 0.6 – 0.8 1.1 – –

55 ␤-cubebene 1388 1391 0.5 0.1 – – – – 0.5 0.5 – –

56 iso-longifolene 1390 1389 – – – – – – 0.3 0.3 – –

57 ␤-elemene 1390 1393 – 0.1 – – – – – 0.3 – –

58 cyperene 1398 1398 – – – – – – 0.6 2.3 – –

59 ␣-cedrene 1411 1414 – – – – – – 1.7 1.6 – –

60 ␣-cis-bergamotene 1412 1416 – – – – – – – – – 0.5

61 ␤-caryophyllene 1419 1423 – – – – – – 2.7 – – –

62 ␤-cedrene 1420 1420 – 0.3 – – – – – 2.7 – –

63 cis-thujopsene 1431 1433 – – – – – – 0.7 0.5 – –

64 trans-6-hydroxy-p-menth-1-en-3-one – 1435 – – – – – – – 0.2 – –

65 ␤-copaene 1432 1430 – 0.1 – – – – – – – –

66 trans-␣-bergamotene 1434 1437 – 0.1 – – – – 3.2 2.6 – –

(8)

Table2(Continued)

S.N. Substance IRlit** IR*** Percentage(%)

68 ␣-guaiene 1439 1444 – – – – 0.3 – 1.6 – – –

69 aromadendrene 1441 1448 – – – – – – 2.0 – – –

70 ␤-barbatene 1442 1445 – – – – – – – 2.3 – –

71 6,9-guaiadiene 1444 1444 – 0.3 – 0.5 – – – – – –

72 cis-muurola-3,5-diene 1450 1450 – 0.1 – – – – – – – –

73 ␣-neo-clovene 1454 1455 – – – – – – 5.3 – – –

74 ␣-humulene 1454 1454 – 0.03 – – – – – – – –

75 khusimene 1455 1454 – – – – – – – 2.9 – –

76 sesquisabinene 1459 1461 – – – – – – 1.0 1.0 – –

77 allo-aromadendrene 1460 1461 – 0.03 – – – – – – – –

78 cis-cadina-1(6),4-diene 1463 1465 – – – – – – 1.8 0.2 – –

79 ␣-acoradiene 1466 1469 – – – – – – – 0.5 – –

80 ␣-neocallitropsene 1476 1481 – – – – – – 7.3 – – –

81 ␥-gurjunene 1477 1480 – – – – – – – 5.2 – –

82 ␥-muurolene 1479 1478 – 0.1 – – 0.2 – 0.8 – – –

83 ␣-curcumene 1480 1486 – – – – – – – 0.6 – –

84 germacreneD 1481 1482 – 0.8 – – – – – – – –

85 ␣-amorphene 1484 1490 – 0.1 – – – – – – – –

86 trans-muurola-4(14),5-diene 1490 1483 – – – – – – – 0.2 – –

87 cis-␤-guaiene 1493 1496 – – – – – – 2.3 – – –

88 epi-cubebol 1494 1497 – – – – – – – 0.2 – –

89 valencene 1496 1503 – – – – – – 1.7 – – –

90 ␣-selinene 1498 1501 – – – – – – – 0.3 – –

91 trans-␤-guaiene 1502 1513 – – – – – – 4.9 – – –

92 cuparene 1504 1509 – – – – – – – 1.8 – –

93 ␦-amorphene 1512 1508 – 0.3 – – – – – – – –

94 ␥-cadinene 1513 1515 0.5 0.1 – – 0.1 – 14.4 9.5 – –

95 trans-calamenene 1522 1525 – – – – 0.4 – – – – –

96 ␦-cadinene 1523 1525 – 0.1 – – – – 4.4 4.3 – –

97 kessane 1530 1533 – – – – – – – 0.4 – –

98 (E)-␥-bisabolene 1531 1533 – – – – – – – – – 1.1

99 trans-cadina-1,4-diene 1534 1541 – – – – – – 3.6 – – –

100 ␣-cadinene 1538 1541 – – – – – 0.9 0.5 – –

101 ␣-calacorene 1545 1546 – 0.04 – – – – 0.9 0.7 – –

102 timohydroquinone 1555 1565 – – – – 0.1 – – – – –

103 germacreneB 1561 1569 – – – – – – 0.6 – – –

104 ␤-calacorene 1565 1567 – – – – – – – 0.4 – –

105 caryophylleneoxide 1583 1585 – – – – 0.2 – 0.4 3.3 – –

106 salvial-4(14)-en-1-one 1594 1595 – 0.03 – – 0.1 – – – – –

107 rosifoliol 1600 1598 – – – – – – 0.2 – – –

108 5-epi-7-epi-␣-eudesmol 1607 1611 – – – – – – 0.1 – – –

109 humuleneepoxideII 1608 1613 – – – – – – – 0.7 – –

110 junenol 1619 1620 – 0.1 – – 0.6 – – – – –

111 1,10-di-epi-cubenol 1619 1620 – – – – – – 3.5 2.4 – –

112 dillapiol 1620 1627 – 0.1 – – – – – – – –

113 1-epi-cubenol 1628 1632 – – – – – – 0.1 – – –

114 epi-␣-cadinol 1640 1642 1.2 0.1 – – 0.1 – 0.3 0.2 – –

115 cis-calamenen-10-ol 1661 1663 – – – – – – – 0.4 – –

116 trans-calamenen-10-ol 1669 1672 – – – – – – – 0.3 – –

117 bulnesol 1671 1671 – – – – – – 0.2 – – –

118 cadalene 1676 1677 – – – – – – 0.1 0.4 – –

119 ␣-bisabolol 1685 1686 – – – – – – 0.2 – – –

120 5-neo-cedranol 1685 1687 – – – – – – – 0.2 – –

121 eudesma-4(15),7-dien-1␤-ol 1688 1689 – – – – 0.1 – – – – –

122 cis-14-nor-muurol-5-en-4-one 1689 1691 – – – – – – – 0.5 – –

123 davanolacetate 1689 1695 – – – – – – – 0.2 – –

124 10-nor-calamenen-10-one 1702 1705 – – – – – – – 0.3 – –

Totalidentifiedcomponents(%) – – 99.0 97.0 98.7 98.0 61.9 100 98.0 84.5 98.8 99.9

Monoterpeneshydrocarbons – – 87.7 89.9 93.2 96.8 51.2 99.0 20.4 21.1 62.5 94.5

Oxigenatedmonoterpenes – – 9.0 3.8 5.5 0.7 7.2 1.0 3.4 6.0 36.3 3.8

Sesquiterpeneshydrocarbons – – 1.0 3.0 – 0.5 2.3 – 69.1 48.1 – 1.6

Oxygenatedsesquiterpenes – – 1.2 0.3 – – 1.2 – 5.1 9.3 – –

ComponentslistedinorderofelutionoftheHP-5column.

IRlit**,retentionindicesobtainedintheliterature;IR***linearretentionindicescalculatedfromahomologousseriesofn-alkanesC7–C26. PercentageobtainedbynormalizingtheFIDpeaksarea.

BBIM,blackbreuIlhadoMel;BBPIR,blackbreuCachoeiradaPirara;BBIR1,blackbreuIlhadoRecanto1;BBIR2,blackbreuIlhadoRecanto2;BBIR3,blackbreuIlha doRecanto3;WBB1,whitebreuBeliscão1;BBTF1,blackbreuTerraFirme1;BBTF2,blackbreuTerraFirme2;WBB2,whitebreuBeliscão2;WBIG,whitebreuIgarapé Grande.

aMeasuredat20C.

terpenes(36.3%)(Table2).WenamedthissampleassetD.Again, accordingtochromatographicanalysiswithapolarcolumn,there wasahigherproportionoflimonenecomparedto␤-phellandrene. Limonenehasalready been identified as themajor component

(23.2%)inessentialoilsofBurseraceaeoleoresins,suchasin

Burs-eragraveolensKunth.(Mu˜noz-Acevedoetal.,2013),similartoour

(9)

whileconcentrationsof␤-phellandrenecloseto40%werefound inoleoresinsamplesfromProtiumnitidifolium(Ramosetal.,2000). However,nodataforthechemicalcharacterizationoftheoleoresin essentialoilfromP.occultumwerefoundintheliterature.

Theoleoresinfromsample WBIG,identifiedasP.strumosum (Daly),providedanessentialoilrichinmonoterpenehydrocarbons (94.5%)containing␣-pinene(57.7%)andlimonene(10.8%)asthe majorcomponents(Table2).Therefore,thissamplewasclassified assetE.Someotherbreuessentialoilsalsocontained␣-pineneas themajorcompound(Ramosetal.,2000;Silva,2006a).Incontrast, asampleoftheessentialoilfromanoleoresinofP.strumosum stud-iedbyRamosetal.(2000)revealedp-cymene(27.4%),terpinolene (22.4%)and␤-phellandrene(17.4%)asthemajorcomponents,and only1.9%of␣-pinene,whichisverydifferentfromourresults.The presenceoflimoneneintherangeof10%andahighconcentration of␣-pinenewasreportedbyTafurt-Garcíaand Mu˜noz-Acevedo (2012)fortheessentialoiloftheoleoresinfromP.heptaphyllum (Aubl.)March.

Itisimportanttonotethatthetreeswithessentialoilswiththe highestconcentrationsof␣-pinene–WBB1,P.decandrum;WBB2,

P.occultum; andWBIG,P.strumosum– wereidentifiedbylocal

quilombolasaswhitebreutrees.Thewhitebreuoleoresinismainly usedbythemasamedicineforheadaches.Itispossiblethat␣ -pinene,amonoterpenewithanti-inflammatory(Sáetal.,2013)and antinociceptive(Quintãoetal.,2010)activities,isinvolved with thistherapeuticaction.However,thisistheonlychemical simi-larityfoundinthesamplesclassifiedbythequilombolaaswhite breuoleoresin.Theirmajorcompounds,aswellastheirmono-and sesquiterpenecomposition(oxygenatedornot),arequitedifferent. Suchchemicallackofuniformityalsooccursbetweensamples des-ignatedbythequilombolasasblackbreuoleoresins.Furthermore, asimilaritybetweenthechemicalcompositionoftheessentialoil fromablackbreuoleoresinsample(BBIR3)andawhitebreu oleo-resinsample(WBB1)wasevidenced,suchthattheywereclassified inthesameset(B).Theseresultsdemonstratethattheanalysis ofthechemicalcompositionalonedoesnotdifferentiatebetween whiteandblackbreutreesoroleoresins.

Inaddition,environmentalfactorssuchassoil,moistureand temperaturecanalsoinfluencethetypeofoleoresinproducedby thetree (Sianiet al., 1999b, 2004; Marqueset al., 2010; Silva, 2006a).Theamountofoleoresinproducedisrelatedtothedegree ofinjuryinthestemofthetree.Whenexposedtonaturalelements, thisoleoresinmaysufferlossesoftheessentialoilcomponentsby volatilization,becomingharderandmorebrittle.Similarly,the oxi-dationofsomeofitscomponentscangenerateproducts,which,in combinationwithenvironmentaldirt,leavethisoleoresindarker insomeparts.Thesenaturalorganolepticchangescanleadto con-fusioninthedifferentiationbetweenwhiteandblackoleoresins, whichexplainsinpartthecontroversialdesignations.

Essentialoilphysicochemicalcharacterization

Refractiveindicesandopticalrotationvaluesforeachessential oilarepresentedinTable2.Therefractiveindexvaluesrangedfrom 1.4673(WBIG)to1.4937(BBTF1).Thisresultisinagreementwith thoseintheliteraturefortheessentialoilsfromProtiumoleoresins (Ramosetal.,2000;Silva,2006a;DaSilvaetal.,2013).Likewise, thevaluesforopticalrotation,whichvariedfrom−0.668◦(BBTF1) to+3.664◦(BBIR3),arealsoconsistentwiththeliteraturedata(Da Silvaetal.,2013).

Therefractiveindexofbreuessentialoilsishigh,alwayshigher thantheindex forwater (1.3330),and withintherangeof 1.4, varyingattheseconddecimalplace.Thisisaconstantforthese essentialoils;avariationatthefirstdecimalplacemayrepresent analterationinortamperingwiththeessentialoil.Thevariation foundintherefractiveindicesisassociatedwiththequalitativeand

quantitativechemicalcompositionofessentialoilsbecauseeachof thecomponentsindividuallyinfluencesthespeedandtheangleat whichthelightisrefracted.Inthesameway,thesecomponents influencethedirectionand thedegreeofdeviationthattheray ofpolarizedlightundergoeswhilecrossingtheessentialoil,thus changingtheopticalrotation.Nonetheless,comparedtostudiesof commercialsamples(DaSilvaetal.,2013),thesevalueswerenot verydifferentinthetwoparameters.

Conclusions

Thepresentstudydemonstratedthatthereisawidevarietyof speciesandsubspeciesthatproducebreuoleoresinintheErepecuru riverareaoftheAmazonregion,ofthegenusProtium,Burseraceae. Inaddition,alargevariabilityinthechemicalcompositionofthe extractedessentialoilswasfound.Thisstudyisastartingpointfor afuturestandardizationofbreuoleoresinsasarawmaterialand alsoclarifiesthedifferencesbetweenwhatisdefinedaswhiteand blackbreu(treesandoleoresins),ifthereareany.Weconcluded thatitisdifficulttoestablisharelationshipbetween“whitebreu” and“blackbreu”basedonchemical,botanicalorregionalnames. Severalresultsshouldbehighlighted:first,P.heptaphyllumMarch, whichischaracterizedasawhitebreutreeintheliterature,was characterizedbythequilombolaasablackbreutreeandpresented adifferentchemicalcomposition;second,twodifferentspecimens

ofP.decandrumMarchcollectedatdifferentsiteswere

character-izedbythequilombola,bothasblack(BBPIR)andwhite(WBB1)breu

trees;third,thereisalargediscrepancyinthechemical composi-tionofthesameoleoresinsamplesdesignatedbythequilombolaas blackbreu;andfinally,thereareorganolepticsimilaritiesbetween oleoresinsamplesbelongingtothetwodifferenttypesofbreu.Thus, theresultsindicatethattheblackorwhitedesignationismore cul-turalandregionalthanscientific.Apparently,forthequilombola, thisdifferenceislinkedtotheproductionvolume,coloraspectand scentoftheoleoresin,whileforscientists,thisdifferencehasnot yetbeendeterminedandsubstantiated.Oleoresinagingby expo-suretotheenvironment,withsubsequentvolatilizationofsome componentsandoxidationofothers,canberelatedtooleoresin organolepticchanges.Thus,withtime,theybecomedimmerand friable,althoughtheyarewhiteandtenderatthetimeofleakage. Thismayalsoinfluencethebreuoleoresindifferentiationbythe localcommunityandresearchers.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat

nopatientdataappearinthisarticle.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authors’contributions

(10)

equallytothewritingofthismanuscript.Allauthorsparticipated inthediscussionoftheideas/conclusionspresentedhere.

Acknowledgments

ThisworkwassupportedbyCNPq,FAPERJ,CAPES,andUFRJ. CarlosBêtaandMiraCarvalho,directorsofUnidadeAvanc¸adaJosé Veríssimo,oftheUniversidadeFederalFluminense,locatedin Orix-iminá,contributedwithinfrastructureusedforthisproject.Weare especiallythankfultothequilombolaswhoprovidedhousingfor theresearchersinvolvedinthisstudy.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2016.05.003.

References

Acevedo,R.,Castro,E.,1998.NegrosdoTrombetas.Guardiãesdasmataserios,2nd ed.CEJUP,Belém.

Adams,R.P.,2007.IdentificationofEssentialOilComponentsbyGas Chromatogra-phy/MassSpectrometry,4thed.AlluredPub.Corp.,Illinois.

Andrade,L.M.M.,1995.OsQuilombosdaBaciadoRioTrombetas:BreveHistórico. RevistadeAntropologia38(1),79–99.

AOCS,1994.OfficialMethodDa2b-42;OfficialMethodsandRecommendedPractices oftheAmericanOilChemistsSociety,4thed.AmericanOilChemistsSociety, Champaign.

Aragão,G.F.,Carneiro,L.M.,Junior,A.P.,Vieira,L.C.,Bandeira,P.N.,Lemos,T.L.,Viana, G.S.,2006.Apossiblemechanismforanxiolyticandantidepressanteffectsof alpha-andbeta-amyrinfromProtiumheptaphyllum(Aubl)March.Pharmacol. Biochem.Behav.85,827–834.

Bandeira,P.N.,Fonseca,A.M.,Costa,S.M.O.,Lins,M.U.D.S.,Pessoa,O.D.L.,Monte, F.J.Q.,Nogueira,N.A.P.,Lemos,T.L.G.,2006.Antimicrobialandantioxidant activ-itiesoftheessentialoilofresinofProtiumheptaphyllum.Nat.Prod.Commun.1, 117–120.

Berg,V.,2010.PlantasmedicinaisnaAmazônia:contribuic¸ãoaoseuconhecimento sistemático,3rded.ProlEditoraGráfica,Belém.

Brandão,H.L.M.,2011.Propagac¸ãoinvitrodeandiroba(CarapaguianensisAublet), brebranco(ProtiumspruceanumBenth.),copaíba(CopaiferamultijugaHayne) epau-rosa(AnibarosaeodoraDucke).Thesis,FederalUniversityofAmazonas, Manaus,Amazonas.

Carvalho,L.E.,Pinto,D.S.,Magalhães,L.A.M.,Lima,M.P.,Marques,M.O.M.,Facanali, R.,2010.ChemicalconstituentsofessentialoilofProtiumdecandrum (Burser-aceae)fromWesternAmazon.J.Essent.OilBear.Pl.13,181–184.

Costa,A.,1994.FármacosResinosos.In:Farmacognosia,5thed.CalousteGulbenkian Fundation,Lisbon,pp.773–842.

Coudreau, O., 1901. Voyage au Cuminá, 20 avril1900 a 7 septembre 1900. LahureEditeur-Imprimeur, Paris https://archive.org/details/voyageaucumin 1901coud(accessed06.08.15).

Cruls,G.,1973.AAmazoniaqueeuvi,Colec¸ãoSagarana.JoseOlympioEditora,Rio deJaneiro.

DaMatta,A.A.,2003.Floramédicabrasiliense,3rded.EditoraValereGovernodo EstadodoAmazonas,Manaus.

DaSilva,E.R.,Oliveira,D.R.,Leitão,S.G.,Assis,I.M.,Veiga-Junior,V.F.,Lourenc¸o,M.C., Alviano,D.S.,Alviano,C.S.,Bizzo,H.R.,2013.EssentialoilsofProtiumspp. Sam-plesfromAmazoniampopularmarkets:chemicalcomposition,phycochemical parametersandantimicrobialactivity.J.Essent.OilRes.25(3),171–178.

Davies,N.W.,1990.Gaschromatographicretentionindicesofmonoterpenesand sesquiterpenesonmetalsiliconeandCarbowax20Mphases.J.Chromatogr. 503,1–24.

Dool,H.D.,Kratz,P.D.J.A.,1963.Generalizationoftheretentionindexsystem includ-inglineartemperatureprogrammedgas–liquidpartitionchromatography.J. Chromatogr.11,463–471.

Ferreirad’Almeida,R.,1937.ExcursãocientíficaaosriosCumináeTrombetas.Mem. I.OswaldoCruz32,235–298.

Hernández-Vázquez,L.,Mangas,S.,Palazón,J.,Navarro-Oca˜na,A.,2010.Valuable medicinalplantsandresins:commercialphytochemicalswithbioactive prop-erties.Ind.CropsProd.31,476–480.

Langenhein,J.H.,2003.Resin-producingplants.In:PlantsResins:Chemistry, Evolu-tion,EcologyandEthnobotany.TimberPress,Portland,Oregon,pp.51–105.

Lima,J.A.S.,GazelFilho,A.B.,Meneguelli,N.A.,2001.Padrõesdedistribuic¸ãoespacial, característicasecológicasesiviculturaisdebreubranco(Tetragastrispanamensis

(Engl.)O.Ktze.),breupreto(Protiumsp.)ebreusucuruba(Trattinickiarhoifolia

Willd.)emumaflorestaprimáriadeterrafirmedoAmapá.EmbrapaSolos -CircularTécnica8,1–4.

Marques,D.D.,Sartori,R.A.,Lemos,T.L.G.,Machado,L.L.,Souza,J.S.N.,Monte,F.J.Q., 2010.ChemicalcompositionoftheessentialoilfromtwosubspeciesofProtium

heptaphyllum.ActaAmazon40,227–230.

Medeiros,R.,Otuki,M.F.,Avellar,M.C.,Calixto,J.B.,2007.Mechanismsunderlying theinhibitoryactionsofthepentacyclictriterpene␣-amyrininthemouseskin inflammationinducedbyphorbolester12-O-tetradecanoylphorbol-13-acetate. Eur.J.Pharmacol.559,227–235.

Mu˜noz-Acevedo,A., Serrano-Uribe, A.,Parra-Navas, X.J.,Olivares-Escobar, L.A., Ni˜no-Porras,M.E.,2013.Análisismultivariableyvariabilidadquímicadelós metabolitosvolátilespresentesemlaspartesaéreaselaresinadeBursera grave-olens(Kunth)Triana&Planch.DeSoledad(Atlántico,Colombia).Bol.Latinoam. Caribe12,322–337.

Oliveira,D.R.,DoctoralThesis2009.Bioprospecc¸ãodeEspéciesVegetaisdo Con-hecimentoTradicionalAssociadoaoPatrimônioGenéticoem Comunidades QuilombolasdeOriximiná-PA.NúcleodePesquisadeProdutosNaturais,Federal UniversityofRiodeJaneiro,RiodeJaneiro,RiodeJaneiro.

Oliveira,D.R.,Leitão,S.G.,O’Dwyer,E.C.,Leitão,G.G.,ARQMO,2010.Authorization ofthetraditionalknowledgeassociatedaccessforbioprospectingpurposes:the caseofUFRJandtheAssociationoftheOriximináQuilombolaCommunities– ARQMO.Rev.Fitos.5,59–76.

Oliveira, D.R., Leitão, G.G., Coelho,T.S., Silva, P.E.A., Lourenc¸o, M.C.S., Leitão, S.G.,2011.Ethnopharmacologicalversusrandomplantselectionmethodsfor theevaluationoftheantimycobacterialactivity.Rev.Bras. Farmacogn.21, 793–806.

Oliveira,D.R.,Leitão,G.G.,Castro,N.G.,Vieira,M.N.,ARQMO,Leitão,S.G.,2012. Eth-nomedicalknowledgeamongthequilombolasfromtheAmazonRegionofBrazil withaspecialfocusonplantsusedasnervoussystemtonics.In:Rai,M., Ras-trelli,L.,Marinof,M.,Martinez,J.L.,Cordell,G.(Eds.),MedicinalPlants:Diversity andDrugs,vol.1,1sted.CRCPress/Taylor&FrancisGroup,Enfield,New Hamp-shire/USA,pp.142–178.

Oliveira,D.R.,Kretti,A.U.,Aguiar,A.C.,Leitão,G.G.,Vieira,M.N.,Martins,K.S.,Leitão, S.G.,2015.Ethnopharmacologicalevaluationofmedicinalplantsusedagainst malariabyQuilombolaCommunitiesfromOriximiná,Brazil.J.Ethnopharmacol. 173,424–434.

Pec¸anha,L.M.T.,Fernandez,P.D.,Simen,T.J.,Oliveira,D.R.,Finotelli,P.V.,Pereira, M.V.A.,Barboza,F.F.,Carvalhal,S.,Pierucci,A.P.T.,Leitão,G.G.,Piccinelli,A.L., Rastrelli,L.,Leitão,S.G.,2013.Immunobiologicandantiinflammatoryproperties ofabarkextractfromampelozizyphusamazonicusducke.J.Biomed.Biotechnol. 2013,1–11.

Pinto,S.A.H.,Pinto,L.M.S.,Guedes,M.A.,Cunha,G.M.A.,Chaves,M.H.,Santos,F.A., Rao,V.S.,2008.Antinoceptiveeffectoftriterpenoidalpha,beta-amyrininratson orofacialpaininducedbyformalinandcapsaicin.Phytomedicine15,630–634.

Quintão,N.L.,daSilva,G.L.,Antonialli,C.S.,Rocha,L.W.,CechinelFilho,V.,Cicció,J.F., 2010.Chemicalcompositionandevaluationoftheanti-hipernociceptiveeffect oftheessentialoilextractedfromtheleavesofUgnimyricoidesoninflammatory andneuropaticmodelsofpaininmice.Plant.Med.76,1411–1418.

Ramos,M.F.S.,Siani,A.C.,Tappin,M.R.R.,Guimarães,A.C.,Ribeiro,J.E.L.S.,2000.

EssentialoilsfromoleoresinsofProtiumspp.oftheAmazonregion.Flav.Fragr. J.150,383–387.

Rao,V.S.,Maia,J.L.,Oliveira,F.A.,Lemos,T.L.G.,Chaves,M.H.,Santos,F.A.,2007.

CompositionandantinociceptiveactivityoftheessentialoilfromProtium

hep-taphyllumresin.Nat.Prod.Commun.2,1199–1202.

Revilla,J.,2002.PlantasúteisdaBaciaAmazônica–VolumeII–DeNaZ. Sebrae-AM/INPA,Manaus.

Ribeiro,J.E.L.S.,Daly,J.D.,1999.Burseraceae.In:Ribeiro,J.E.L.S.,etal.(Eds.),Florada ReservaDucke.Guiadeidentificac¸ãodasplantasvascularesdeumaflorestade terra-firmenaAmazôniaCentral.INPA,Manaus,pp.534–543.

Rodrigues,R.M.,1989.AfloradaAmazônia.CEJUP,Belém.

Sá,R.C.,Andrade,L.N.,Sousa,D.P.,2013.Areviewofanti-inflammatoryactivityof monoterpenes.Molecules18,1227–1254.

Siani,A.C.,Ramos,M.F.S.,Menezes-de-LimaJr.,O.,Ribeiro-dos-Santos,R., Fernandez-Ferreira,E.,Soares,R.O.A.,Rosas,E.C.,Susunaga,G.S.,Guimarães,A.C.,Zoghbi, M.G.B.,Henriques,M.G.M.O.,1999a.Evaluationofanti-inflammatory-related activityofessentialoilsfromtheleavesandresinofspeciesofProtium.J. Ethnopharmacol.66,57–69.

Siani,A.C.,Ramos,M.F.S.,Guimarães,A.C.,Susunaga,G.S.,Zoghbi,M.G.B.,1999b.

VolatileconstituentsfromoleoresinofProtiumheptaphyllum(Aubl.)March.J. Essent.OilRes.11,72–74.

Siani,A.C.,Garrido,I.S.,Monteiro,S.S.,Carvalho,E.S.,Ramos,M.F.S.,2004.Protium icicaribaasasourceofvolatileessences.Biochem.Ecol.32,477–489.

Silva,M.F.,Lisbôa,P.L.B.,Lisbôa,R.C.L.,1977.Nomesvulgaresdeplantasamazônicas. INPA,Belém.

Silva,E.A.S.,Dissertation2006a.EstudodosÓleosEssenciaisExtraídosdeResinasde EspéciesdeProtiumspp.SãoCarlosChemicalInstitute,UniversityofSãoPaulo, SãoCarlos,SãoPaulo.

Silva,S.,2006b.ÁrvoresdaAmazônia.EmpresadasArtes,SãoPaulo.

Silva,J.R.A.,Zoghbi,M.G.B.,Pinto,A.C.,Godoy,R.L.O.,Amaral,A.C.F.,2009.Analysisof thehexaneextractsfromsevenoleoresinsofProtiumspecies.J.Essent.OilRes. 21,305–308.

Tafurt-García,G.,Mu˜noz-Acevedo,A.,2012.Metabolitosvolátilespresentesem

Pro-tiumheptaphyllum(Aubl.)March.coletadoemTame(Arauca-Colombia).Bol.

Latinoam.3(Caribe11),223–232.

Slenes,R.W.A.,1992.Malungu,NgomaVem!:ÁfricaCobertaeDescobertaNoBrasil. Rev.USP12,48–67.

Weeks,A.,Daly,D.C.,Simpson,B.B.,2005.Thephylogenetichistoryand biogeogra-phyofthefrankincenseandmyrrhfamily(Burseraceae)basedonnuclearand chloroplastsequencedata.Mol.PhylogeneticsEvol.35,85–101.

Imagem

Fig. 1. Map representing the quilombola area of the Alto Erepecurú (High Erepecuru) region, Pará State, Brazil, with collection sites: BBIM – black breu Mel Island; BBPIR – black breu Cachoeira da Pirara; BBIR 1 – black breu Ilha do Recanto 1; BBIR 2 – bla
Fig. 2. Maps extracted from Mme. Coudreau’s Voyage au Cuminá (Coudreau, 1901), showing collection sites
Fig. 3. General aspect of the different Breu samples in the trees: (A) BBIM – black breu Mel Island; (B) BBPIR – black breu Cachoeira da Pirara; (C) BBIR 1 – black breu Ilha do Recanto 1; (D) BBIR 2 – black breu Ilha do Recanto 2; (E) BBIR 3 – black breu I

Referências

Documentos relacionados

O pouco sucesso, ou mesmo o insucesso do jovem, dispara um sinal de alerta no grupo de docentes que, por múltiplas razões, identificam e encaminham o jovem para os

observed a marked decrease on platelet levels after surgery which persisted until the 3 rd postoperative day 142. starting to increase afterwards, albeit not reaching the

Na Indústria foram observadas, além de outras práticas, todas as etapas do beneficiamento do filé de peixe congelado, partindo da recepção do produto até o

Outro exemplo é a chamada Propriedade de Specth. Sabemos que toda álgebra associativa sobre um corpo de característica zero satisfaz esta propriedade, isto é, todas as

As part of an ongoing inventory of the Amazon aromatic plants this paper reports the essential oil composition of one sample of Conobea scoparioides , as well as the antioxidant

aduncum from woodlands of the Southeast and Northern Brazil, this study aims to investigate the chemical composition of essential oil obtained from this species that occurs

In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and

First record of the chemical composition of essential oil of Piper bellidifolium , Piper durilignum , Piper acutilimbum and Piper consanguineum from in the Brazilian