• Nenhum resultado encontrado

Oviposition of Aedes aegypti Linnaeus, 1762 and Aedes albopictus Skuse, 1894 (Diptera: Culicidae) under laboratory and field conditions using ovitraps associated to different control agents, Manaus, Amazonas, Brazil

N/A
N/A
Protected

Academic year: 2021

Share "Oviposition of Aedes aegypti Linnaeus, 1762 and Aedes albopictus Skuse, 1894 (Diptera: Culicidae) under laboratory and field conditions using ovitraps associated to different control agents, Manaus, Amazonas, Brazil"

Copied!
7
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Medical

and

Veterinary

Entomology

Oviposition

of

Aedes

aegypti

Linnaeus,

1762

and

Aedes

albopictus

Skuse,

1894

(Diptera:

Culicidae)

under

laboratory

and

field

conditions

using

ovitraps

associated

to

different

control

agents,

Manaus,

Amazonas,

Brazil

William

Ribeiro

da

Silva

a

,

Joelma

Soares-da-Silva

b

,

Francisco

Augusto

da

Silva

Ferreira

a

,

Iléa

Brandão

Rodrigues

a

,

Wanderli

Pedro

Tadei

a

,

João

Antonio

Cyrino

Zequi

c,∗

aInstitutoNacionaldePesquisasdaAmazônia,ProgramadePós-Graduac¸ãoemEntomologia,LaboratóriodeControleBiológicoeBiotecnologiadaMaláriaeDengue,Manaus,AM,

Brazil

bUniversidadeFederaldoMaranhão,CursodeCiênciasNaturais,CampusVII,Maranhão,MA,Brazil

cUniversidadeEstadualdeLondrina,DepartamentodeBiologiaAnimaleVegetal,LaboratóriodeEntomologiaMédica,Londrina,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26April2018 Accepted10August2018 Availableonline25August2018 AssociateEditor:AnaCampos Keywords: Chikungunya Control Dengue Insecticides Zika

a

b

s

t

r

a

c

t

TheaimofthisstudywastoanalyzetheeffectivenessofdifferentcontrolagentsofAedesaegyptiand

Aedesalbopictusassociatedwithovitrapsunderlaboratoryandfieldconditions.Fivetreatmentswere

used:grassinfusion+Bacillusthuringiensisisraelensis(gI+Bti),grassinfusion+Saccharopolysporaspinosa

(gI+Ss),grassinfusion+Pyriproxyfen(gI+P),distilledwater+Toxorhynchiteshaemorrhoidalis(dW+Th),

andgrassinfusion(gI)(control).Thehighestmeannumberofeggsofbothspecieswereobtainedwith

grassinfusioninthelaboratory.Amongcontrolagents,thelowestmeanofA.aegyptieggsoccurredwith

gI+SsandthelowestmeanofA.albopictuseggsoccurredwithdW+Th.Therewasnodifferencebetween

treatmentsinA.aegypti(P=0.4320)andA.albopictus(P=0.7179).Inthefield,thehighestmeannumber

ofeggsforbothspecieswereobtainedwithgI+Ss,andthelowestvalueswereobtainedwithgI+P

(P=0.0124).Thetreatmentscanbeappliedtoboththesurveillanceandthecontrol,butovitrapswith

biologicallarvicideBtiweremoreeffectiveandsaferconsideringthenumberofeggslaidandselectivity

ofpathogensformosquitoes.

©2018SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Aedes(Stegomyia)aegyptiLinnaeus,1762andAedes(Stegomyia) albopictusSkuse, 1894(Diptera: Culicidae)are particularly sus-ceptibletoseveralarbovirusesthat arethreats topublichealth inseveralregionsoftheworld(Alahmed,2012;Forattini,2002; Rossatietal.,2015).Bothspecieshavewideepidemiological impor-tance in the Americas due to implications in the transmission ofmanyarbovirusresponsibleforhighhospitalizationratesand deaths. They are distributed throughout several regions in the continent(PAHO,2018).Thesemosquito-bornepathogensaffect economiesduetoanimpairedworkforceandtheneedtotreatsick people(Calvoetal.,2016;Gubler,2005;Vega-Rúaetal.,2014).

∗ Correspondingauthor.

E-mail:joaozequi@gmail.com(J.A.Zequi).

DerivedfromAfricawheretherearewildandurbanpopulations, A.aegyptiiscurrentlywidespreadandisfoundinallstatesandthe FederalDistrictofBrazil(CarvalhoandMoreira,2017).Thisspecies isthemainvectorofDengue,Chikungunya,Zika,andUrbanYellow FevervirusesintheAmericas.Thisanthropophileisadaptedfor urbanenvironments,whereitinhabitslaundrytanks,containers, barrels,bottles,potsofplantsandothercontainers(Pinheiroand Tadei,2002;Soares-da-Silvaetal.,2012).

These oviposition sites are different from those used by A. albopictus,whichinhabitssiteswithnativeorsecondary vegeta-tionnear humanpopulations (Martinset al., 2013; Silvaet al., 2006).Consideringitsepidemiologicalrole,thisspecieshas poten-tialfortransmittingUrbanYellowFeverandVenezuelanEquine Encephalitisviruses;laboratoryassayshavecheckedthisspecies susceptibilitytomorethan20arbovirusesincludingtheDengue virus (the primary vector in Asia) and the Chikungunya virus (Gubleretal.,2001;Moore andMitchell,1997;Vega-Rúaetal., 2014).ThefirstrecordofthisspeciesinBrazilwasin1986inthe

https://doi.org/10.1016/j.rbe.2018.08.001

0085-5626/©2018SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

stateofRiodeJaneiro;afewyearslaterithadalreadyspreadtoall statesoftheSoutheasternregion.Itiscurrentlydistributed nation-wide(Martinsetal.,2013;Santos,2003).

Vectorcontrolpracticesthatarelessdamagingtothe environ-mentandareeffectiveformosquitolarvaehaveincreasedoverthe lastyears.Theseincludenaturalpredators,bacteria,growth regu-lators,andmorerecently,fungiandplantextracts(Darbroetal., 2011; Ferreiraet al., 2015;Lopes, 1999;Medeiros etal., 2013; Soares-da-Silva et al., 2015; Soares-da-Silva et al., 2017; Zequi etal., 2015).New attempts atmosquito controlhave advanced tosuppresspopulationsofmedicalimportanceincludingtheuse of transgenic mosquitoes (Beech et al., 2009; Carvalho et al., 2015)andthesymbioticbacteriumWolbachia,whichinhibitsthe developmentofDenguevirusinsidetheinsectthusblockingits transmission(Dutraetal.,2016).

Vectorspeciesmonitoringisessential.Studyingmosquito dis-tributionisessentialtoidentifycriticallarvalreproductionandegg layingsites.Theuseofovitrapsbeganin1965.Ovipositiontrapsfor A.aegyptipopulationswereshowntobeeffectiveforlarvalresearch andstudiesonvectorfrequency(FayandEliason,1966;Regisetal., 2008).

Ovitrapsprovideusefuldataonthespatio-temporal distribu-tionofmosquitoesbecausethismonitoringallowsonetocheckthe presenceanddensityofthevectoratalocalscale(Fisheretal.,2017; Nunesetal.,2011).Inaddition,ovitrapsmightbeemployedfor vec-torcontrolbecausetheyremoveeggsfromtheenvironment;they areasensitiveandlow-costtooltoaidinepidemiologicalstudies (Depolietal.,2016;Gomes,2002).

Dataobtainedwiththistoolcanmonitortheimpactofcontrol measuressuchastheuseofinsecticides.Theycanalsohelp moni-tortheeffectivenessofvectorreductionprogramsinurbanareas. Although ovitrapsare effective, they are a short-term method, replacementisrequiredwithinapproximately5–7dayssothat lar-valhatchingdoesnotoccurandtrapsdonotbecomeoviposition sites(Alarcónetal.,2014;Gomes,1998;Gomes,2002;Regisetal., 2008).

The association of ovitraps and larval control agents could improve field traps and preventpotential larval hatching. This wouldensurethesafetyofthesetraps(Depolietal.,2016;Regis etal.,2013).However,itisnecessarytoanalyzethebestcontrol agentassociatedwithovitrapsbecausetheselectionofapotential ovipositionsiteinvolvesvisual,olfactory,andtactileresponses.In thisrespect,grassinfusionisanimportantattractantforlayingeggs (Reiteretal.,1991)asisthepresenceofaconspecificlarvaehas beenreported(Nunesetal.,2011;Santanaetal.,2006).

ManausisanAmazoncitywithclimaticconditionsthatfavorA. aegyptiandA.albopictusyear-round.Ithasabundantrainandhigh temperaturesaswellasadiversityofnaturalandartificiallarval habitat.Therefore,integratingamonitoringmodelthatcombines ovitrapswithcontrolagentsmightbeaneffectivealternativefor surveillanceandcontrolofmosquitoesthatarevectorsofhuman pathogens.Thus,theaimofthisstudywastoanalyzethe effec-tivenessofdifferentcontrolagentsassociatedwithovitrapsforA. aegyptiandA.albopictusunderlaboratoryandfieldconditions.

Materialsandmethods

ObtainingAedesaegyptiandAedesalbopictusmosquitoes

Toobtainfemales,A.aegyptiandA.albopictuspopulationswere keptandstabilizedinaninsectaryoftheLaboratoryofBiological ControlandBiotechnologyof Malaria andDengue(LCBBMD) of the National Institute of Amazonian Research (INPA), Manaus, Amazonas,Brazil.Theinsectarystartedobtainingeggsusing ovipo-sitiontraps,alsoknownasovitraps.Ovitrapsareblackandround

plasticpotsmeasuring9x11cmwithacapacityof500mL.Inside theovitraps,thereisafive-mmthickDuratreepaddle,Eucatex® brand,15cmlongbythreecmwide.Thisisplacedverticallywith therough surfaceof thematerial facingoutwardsto providea substrateforovipositionandeggadherence.Themainattractant offemalesinthetrapswasagrassinfusionwithtotalavolumeof 300mLat1.2%ofColoniãograss(MegathyrsusmaximusJacq) fer-mentedforsevendaysatameanroomtemperatureof32◦C(range of38◦Cand20◦C)accordingtoKoeppen’sclassification(1948).

Twenty ovitrapswere mounted and distributed in theINPA Campus.Afteroneweek,ovitrapswerecollectedand the Dura-treepaddlescontainingtheeggsweresubmergedindistilledwater forlarvalhatching.Thelarvaewerefedwithcatfood(Whiskas®) mincedinfineparticles.Thewaterinthecontainerswaschanged everytwodaystopreventfeedfermentation—thiscandamagegas exchangeduringtheimmaturestages.Afteremergence,theadults werecapturedwithaCastrograbber,andthespeciesidentitywas confirmedusingexternalmorphologicalcharacteristicsofadults, especiallyinthethoraxusingstereoscopicmicroscope,wherethey wereidentifiedwiththehelpofamosquitoidentificationguide (ConsoliandLourenc¸o-de-Oliveira,1994;Forattini,2002;WRBU, 2018).

Theadultsweresubsequentlymaintainedinacageformating andmaintenanceofadultindividuals.Cottonwrappedingauzeand soakedinsugaredwaterat12%wasaddedasasourceof carbohy-drates,andfemaleswerefedabloodmealtwiceaweekusingan adequatelyanesthetizedhamster(Mesocricetusauratus)following theprocedureapprovedbytheINPAEthicalCommitteefortheUse ofAnimals(CEUA:02/2014–“Breedingofvectorsunderlaboratory conditions”).

ObtaininglarvaeofToxorhynchiteshaemorrhoidalisFabricius, 1787

Toxorhynchiteshaemorrhoidalisisanaturalpredatorofculicids andotherinsects.ToobtainimmatureT.haemorrhoidalis,eightcut tires(25×15×11cm),containingwellwaterandasmallamountof litterweredistributedthroughouttheINPACampusandmonitored daily.Wealsoactivelysearchedforimmaturestagesinthenatural larvalhabitat.ThelarvaewerekeptintheinsectaryoftheLCBBMD andfedonthethirdandfourthinstarlarvaeofAedesspp.;56third instarlarvaeofT.haemorrhoidaliswereused.

Substratesusedintheexperiment

Table1liststheassociationsusedintheovipositionprocessof A.aegyptiandA.albopictusunderlaboratoryandfieldconditions.

Controlagentsweredilutedusingfalcontubesanddissolved with a Vortex agitatorand a BRANSONIC® ultrasonic until the desiredconcentrationswerereachedbasedonthemanufacturers’ recommendations(Table1).

Laboratoryexperiments

FromastabilizedA.aegyptiandA.albopictusinsectary,25 fertil-izedfemalesfromgenerationF1werepreviouslyselectedfromeach

speciesforeachexperiment.Fivedaysafterthebloodmeal,females wereplacedinanaluminum-screenedcage(55×47×47cm).Five 160mLwhiteplasticcupswereplacedinside—oneforeach treat-mentontaining50mLofeachtreatmentandapaperfilterasthe oviposition substrate (Table 1). Subsequently, a container with 12%sugar inwater wasadded asasourceofcarbohydratesfor females.

Containerswereplacedinthefourcornersofthecageandone inthecenter.Thecontainerpositionswerechangedclockwisedaily forfourdaystodiscardanyexternalinfluenceonoviposition;three

(3)

Table1

TreatmentsusedinovipositionexperimentswithAedesaegyptiandAedesalbopictusunderlaboratoryandfieldconditionsintheperiodrangingfromMarchtoJuly,2015, Manaus–Amazonas–Brazil.

Treatments Controlagents Concentration Batch/validity

Grassinfusion+Vectobac®WG Bacillusthuringiensisisraelensis(gI+Bti)* 0.004g/L 237-445-PGJan/2016

Grassinfusion+NatularTMDT Saccharopolysporaspinosa(gI+Ss)* 0.007g/L 1309190010Oct/2015

Grassinfusion+Sumilar® Pyriproxyfen(gI+P)* 0.01g/L 4303F425Jan/2016

Distilledwater+T.haemorrhoidalis T.haemorrhoidalis (dW+Th)*

Grassinfusion Control(gI)* 1.2%

Legend:*Entomopathogenicbacterium:Bacillusthuringiensisisraelensis;*Entomopathogenicbacterium:Saccharopolysporaspinosa;*InsectGrowthRegulator(IGR):

Pyriprox-yfen;Predatoryinvertebrate:Toxorhynchiteshaemorrhoidalis;Control:GrassInfusion.

replicateswereperformed.Thefemaleswerecapturedand sac-rificedattheendofeachreplicate.Experimentswereconducted undercontrolledtemperature,humidityandphotoperiod condi-tions(27±2◦C;80–90%;12L:12D).

The eggs obtained at the end of each replicate were dried onabsorbent paperfor60minutesat27±2◦C and humidityof 80–90%.Theywerethenstoredunderthesametemperatureand humidityconditionsin750mLcupsforsubsequenteggcounting usingaZEISSStemi200050Xstereoscopicmicroscope.

Fieldexperiments

Forthefieldovipositiontests,50ovitrapsweredistributed(10 foreachtreatment)(Table1).TrapswereinstalledintheINPA cam-pus.Theywereplacednearbuildingsatgroundlevelwithshelter fromthesunandrain.Wefocusedonareasfreeofconstant move-mentofpeopleandanimals;theywerelocated30metersapart fromeach other.Theexperimentlastedfiveconsecutiveweeks, andtheDuratreepaddles werereplacedeverysevendays.Eggs werecountedusingastereoscopemicroscope(ZEISSStemi2000 50X).

Aftereggcounting,paddlesweresubmergedseparatelyin dis-posable600mLflasks containing 400mL ofdistilled water and 0.0055gcatfood(Whiskas®)groundintomincedinfineparticles tofeedthelarvaeandobtainadults.Aftertheadultsemerged,the specieswereidentifiedusingexternalmorphologicalanalysis.The specimensthatwerenotidentifiedbecauseofthedifficultyin visu-alizingthepatternsofornamentationofthescaleswereforwarded liveoneaftertheothertoastereoscopicmicroscope,wherethey wereidentifiedwiththehelpofamosquitoidentificationguide (ConsoliandLourenc¸o-de-Oliveira,1994;Forattini,2002;WRBU, 2018).

Statisticalanalysis

Thefollowingindiceswerecalculated:OPI–ovitraps positiv-ityindex,EDI–eggdensityindex,andVDI(meaneggs)–vector densityindex.TheOPIistheratiobetweenthenumberofpositive trapsandthenumberoftrapsexaminedmultipliedbyone hun-dred(Gomes,1998).TheEDIistheratiobetweenthenumberof eggsandthenumberofpositivetraps(Gomes,2002).TheVDIis themeannumberofeggsineachtypeoftreatmentobtainedby theratiobetweenthenumberofeggsandthenumber oftraps examined(Avendanha,2007).In relationtothedataof number ofeggsobtainedineachtreatment,ananalysiswasfirstmadeto knowifthedatahadanormaldistributionornot,tolaterverify whichstatisticwouldbethemostadequate,parametricor non-parametric.Aftertheseinitialtests,ANOVAwasusedforthedata that presented normal distribution, followed by Tukey’s multi-plecomparisontest(p<0.05),whilethedatathatdidnotpresent normalitywerechosenbynon-parametricKruskaltestsWallis, fol-lowedbytheDunntest(p<0.05).ThestatisticalsoftwareSPSS® 14.0forWindows®(SPSSInc.2005Headquarters,Chicago,IL,USA) wasusedforanalysisassistance.

Results

Ovipositionatthelaboratory

ThenumberofA.aegyptieggscollectedinalltreatmentswas higher than the number of A. albopictus eggs (4215 and 2074 eggs,respectively).ThishadastatisticaldifferenceusingTukey’s test(F=21.836;P=0.0019).No differenceswerefoundbetween themeannumberofA.aegypti(F=1.046;P=0.4320)eggsandA. albopictuseggs(F=0.5312;P=0.7179)eitherinthegrassinfusion (control)orwithcontrolagentsusingTukey’stestat5%significance level(Table2).

Bothspecieshadthehighestmeannumberofeggswithgrass infusion(control);however,A.aegyptihadthehighestmeanin ovi-trapswithdistilledwater+T.haemorrhoidalisandthelowestvalue withgrassinfusion+S.spinosa.ResultsforA.albopictuswereexactly theopposite,but thisdifferencewasnotstatisticallysignificant (Tukey’s,p>0.05).

Ovipositioninthefield

Thehighestmeannumberofeggsforbothspecieswasobtained withgrassinfusion+S.spinosa,andthelowestvaluewasobtained withgrassinfusion+Pyriproxyfen.Thisresultedinamean num-berofeggsthatwastwiceaslowasgrassinfusion+S.spinosa;this corroboratesthesignificantdifferencebetweentreatments(Tukey, P=0.0124) (Table 3).Except for the treatmentwithgrass infu-sion+Pyriproxyfen,alltreatmentshadahighermeannumberof eggsthanthegrassinfusion(control)(Table3);however,therewas nostatisticaldifferencebetweentreatments(Tukey,p>0.05).

Nearly all treatments had an OPI of 100% except distilled water+T.haemorrhoidalis,whichobtained97%ofpositivity(Fig.1). The EDI values of both species showed that biotic agents received a higher amount of eggs than the chemical agent Pyriproxyfen (Fig. 1).Grass infusion+S. spinosa and grass infu-sion+B.thuringiensisisraelensisshowedhigherEDIs(150and130, respectively; Fig. 1). On the other hand, treatment with grass infusion+Pyriproxyfen hadthelowest density(70eggs; Fig.1). The same result wasobserved for theVDI, which was highest withgrass infusion+S. spinosaand the lowest withgrass infu-sion+Pyriproxyfen.

Themosquitoemergencerateobtainedfromeggscapturedin thefieldwashigherforA.albopictus:4734specimenscomprisingof 2270malesand2464females(1:1ratio).Incontrast,494specimens wereobtainedforA.aegypti:272malesand222females(1:1ratio). Therefore,A.albopictuspredominatedthroughoutthestudyarea.

Therateofmosquitoemergencewasanalyzedinthetreatments. The highest number of adults occurredwith grass infusion+S. spinosaandgrassinfusion(control).Inthesetreatments,the num-berofadultA.albopictuswasapproximatelytentimesashighas thatobtainedforA.aegypti(Fig.2).Thecontrolagentshadlittle interferenceintheeggphaseoftheseinsects.

Thelowestvaluesforadultemergencewereseenwithgrass infusion+B.thuringiensisisraelensis(Fig.2)despitethistreatment

(4)

Table2

MeannumberofAedesaegyptieggsandAedesalbopictuseggsobtainedwithovitrapscontaininggrassinfusionanddifferentcontrolagentsunderlaboratoryconditions,in theperiodrangingfromMarchtoApril,2015,Manaus–Amazonas–Brazil.

Treatments Aedesaegypti Aedesalbopictus

Mean Maximum Minimum Mean Maximum Minimum

*Grassinfusion+B.thuringiensisisraelensis 270.a* 345 171 124a 254 56

*Grassinfusion+S.spinosa 222.a 421 92 164.7a 208 135

*Grassinfusion+Pyriproxyfen 249.3a 279 193 117.3a 177 50

*Distilledwater+T.haemorrhoidalis 289.7a 306 269 98a 220 32

*Grassinfusion(Control) 373.7a 440 287 187.3a 278 94

Legend:*SamelettersinthecolumndonotdifferaccordingtotheTukey’stestat5%significancelevel.

Table3

Totalmeanofeggs(AedesaegyptiandAedesalbopictus)obtainedbytheassociationofgrassinfusionanddifferentcontrolagentsusingovitrapsunderfieldconditionsinthe periodrangingfromMarchtoApril,2015,Manaus–Amazonas–Brazil.

Treatments Mean Maximum Minimum

*Grassinfusion+B.thuringiensisisraelensis 1322.8ab* 2025 831

*Grassinfusion+S.spinosa 1528.2a 1932 1121

*Grassinfusion+Pyriproxyfen 712.6b 903 380

*Distilledwater+T.haemorrhoidalis 1158.ab 1525 765

*Grassinfusion(Control) 988.2ab 1299 533

Legend:*SamelettersinthecolumndonotdifferaccordingtotheTukey’stestat5%significancelevel.

100 160 140 120 100 80 60 40 20 0 90 80 70 60 50 40 30 20 10 0 gl + Bti gl + Ss dW + Th gl + P gl (control) OPI EDI Ovitr

aps positivity inde

x OPI (%)

Egg density inde

x -EDI

Fig.1. OvitrapsPositivityIndex(OPI)andEggDensityIndex(EDI)withassociation ofgrassinfusionwithdifferentcontrolagentsusingovitrapsintheperiodranging fromJunetoJuly2015,Manaus–Amazonas–Brazil.Legend:*(gI+Bti)grass

infu-sion+Bacillusthuringiensisisraelensis;*(gI+Ss)grassinfusion+Saccharopolyspora

spinosa;*(dW+Th)distilledwater+Toxorhynchites haemorrhoidalis;*(gI+P)

grassinfusion+Pyriproxyfen;*(gI)grassinfusion(control).

1200 1000 800 600 400 200 0 gl + Bti gl + Ss gl + P gl (control) Treatments Aedes albopictus Aedes aegypti dW + Th Number of adults

Fig.2. TotalAedesaegyptiandAedesalbopictusadultsobtainedthroughegg collec-tioninovitrapscontaininggrassinfusion(control)andassociatedwithdifferent controlagents.Legend:*(gI+Bti)grassinfusion+Bacillusthuringiensis

israelen-sis;*(gI+Ss)grass infusion+Saccharopolysporaspinosa; *(dW+Th)distilled

water+Toxorhynchiteshaemorrhoidalis;*(gI+P)grassinfusion+Pyriproxyfen;*(gI)

–grassinfusion(control).

having the second highest mean number of eggs in the field (Table3).Nodifferenceswereseeninlarvalhatchingratebetween grass infusion(control) and control agents eitherfor A. aegypti (P=0.1481;H=6.78)norforA.albopictus(P=0.093;H=7.96)using theKurskallWallistestwithasignificancelevelof5%(Fig.2).

Discussion

Biologicalcharacteristicsaredeterminingfactorsfor oviposi-tionandmightdirectlyinfluencethehighernumberofA.aegypti eggsobservedinthelaboratory(Phasomkusolsiletal.,2014) espe-ciallybecausemosquitosareanintradomiciliarandanthropophilic insect.Femalesofthisspecies completetheirgonotrophiccycle withtwobloodmeals.Themeannumberofeggsateachoviposition is120;A.albopictusneedsmultiplemealstogenerateanaverage of60to65eggs(Clements,1999;Forattini,2002).

Thehighnumberofeggsseeninbothspeciesinovitrapswith grassinfusion(control)mightbeexplainedbytheproven effective-nessofthissubstrateasanattractanttofemaleAedesspp.(Nunes etal.,2011;Reiteretal.,1991;Santanaetal.,2006).

Thedifferencefoundinthetreatmentwithdistilledwater+T. haemorrhoidaliswithhigheraveragenumberofA.aegyptieggscan beexplainedbythebehaviorofthisspecies.Itovipositsin pre-existingimmature-containingbreedingsites,sinceinmosturban environments,specimensdonotestablishstrongecological rela-tionsofcompetitionwithotherinsects,suchascoexistencewith predatoryinvertebrates,andthusbecomecompletelygeneralistin relationtoovipositionsites(Forattini,2002).Ontheotherhand,A. albopictuscoexistswithT.haemorrhoidalisinthesuburban environ-mentofManaus.T.haemorrhoidalisisanaturalpredatorofculicids invegetatedareas—siteswhereA.albopictusoccurs.Itconsequently colonizesdifferenttypesofnaturalbreedingsitesestablishing eco-logical relationshipswithotherinsects, e.g.habitatcompetition (Baileyetal.,1983;Forattini,2002;WHO,1984).Thismightexplain thelownumberofA.albopictuseggsinovitrapscontaininglarvae ofthispredatoryspecies.

Thechoiceofpotentialoviposition sitesisrelated toseveral environmentalfactorsincludingwatersprayintensity,sizeofthe watersurfacerelativetolight,presenceofimmatureculicidstages, andcertainchemicalcomponentsthatmightactasrepellentsor attractantsdependingontheconcentration(AllanandKline,1995; Chadeeetal.,1990).

(5)

Thelaboratoryexperimentshadcontrolledconditions.It iso-latedthedifferentfactorsrelatedtoovipositionandmaximizedthe treatmentdifferences.Thisallowedustorelatethefactorsfound tobeeffectiveinovitrapsforeachcontrolagent.Theseagentscan attractmorefertilizedfemalesleadingtobetterstudyandcontrol ofthesespecies.

Underfield conditions,moreeggswerecollectedinovitraps withgrassinfusion+S.spinosa.OnestudycarriedoutinMexico alsoshowedtheeffectivenessofthisbacteriumasanattractant formosquito females inthefield where theoviposition rateof A.aegyptiwashigherthanintreatmentswithtemephosor dis-tilledwater (Solís-Valdez et al., 2015). However, in this study, grassinfusion+S.spinosaonlydifferedstatisticallyfromthe chem-icalPyriproxyfen(Tukey,P=0.0124;Table3).Ovitrapswithgrass infusion+B.thuringiensisisraelensis,werepreferredforoviposition corroboratingpriorfieldresults(Carrierietal.,2009;Depolietal., 2016;JahanandSajjadSarwar,2013;Stoops,2005).

Spinosad® isanewgenerationlarvicidederivedfromthe bac-teriumS.spinosa.Itistoxictoseveralinsectspeciesoftheorders Lepidoptera, Thysanoptera, and Diptera including mosquitoes (Bond et al., 2004;Diaset al., 2017;Huseyin et al.,2005).The effectivenessofS.spinosawasverifiedinthefieldforA. aegypti over13 weeksduring thedryseasonand 10 weeksduringthe rainyseason(Marinaetal.,2011).Thisisimportantinformation froman ecological standpoint becauseit shows feasibility at a largescale.Persistenceinthefield—combinedwiththe effective-nessofthebacteriumasanattractanttofemalesandcontrolof immaturestages—makesthistoolanimportantalternative.This information isimportant consideringthe climaticconditions in Manaus.Ithasahighsolarincidenceandabundantrainsevery year,butthesedonotlimittheuseofovitrapsassociatedwithS. spinosa.

However,themajorconcerninusingthisbacteriumfor biologi-calpestorvectorcontrolistheselectionofresistantinsects.Thishas alreadybeenobservedinagriculturalpests(Moultonetal.,2000; RehanandFreed,2014;Rinkevich andScott,2009)andinCulex quinquefasciatusSay,1823(SuandCheng,2012,2014a,2014b)and A.albopictus(Khanetal.,2011).

Theeffectiveness of B.thuringiensis israelensis is proven and selectiveforthecontrolofdifferentdipteralgroupssuchas Culici-dae,Simuliidae,andChironomidae(Bravoetal.,2011).Ithasbeen widelyemployedsuccessfully in differentregionsof theworld. Therewasalimitedselectionofresistantinsectsduetothespecific mechanismofactionandsafety(theseeffectsarenot accumula-tive;Bravoetal.,2011;Gill,1995).ByintegratingB.thuringiensis israelensis,ourresultspointtowardanimportantalternativeasa surveillancetool.ThistoolcouldaidinA.aegyptiandA.albopictus controlinurbanManaus.

Thelowest mean ovipositionwas observedin ovitrapswith grassinfusion+Pyriproxyfen.Thiscorroboratesotherstudies find-ingapreferenceforovipositioninsubstratescontainingbiological products(Quiroz-Martínezetal.,2012;Solís-Valdezetal.,2015). According to Forattini (2002), the microbial activity attracts female mosquitoes to lay their eggs in containers with this substrate.

Thelow numberofeggsobtainedinovitrapscontaining dis-tilledwater+T.haemorrhoidalis,isinaccordancewiththeresults obtainedforA.albopictusunderlaboratoryconditions.Itis impor-tanttoemphasizethatManausisacitywithstronganthropogenic influence,withurbanoccupationamongnativeandsecondary veg-etationmosaics,acharacteristicthatispresentinthestudyarea, withnaturaloccurrenceofT.haemorrhoidalis,whichcoexistswith themosquito speciestested. Thiscoexistencemighthave influ-enced thelow effectiveness of these traps in thefield, due to thewell-knownpredatorypotentialofthisspecies,mainlyofA. albopictus.

The number of eggs obtainedhere using ovitrapsand their respectiveOPI, EDI,and VDI indices highlight theeffectiveness of this tool in monitoring these vectors. The removal of eggs fromtheenvironment is analogous tothecontrol ofimmature stageswithacontrolagent.Thismakesthismethodmore effec-tiveandsaferformosquito-controlprograms.Therewereahigh numberofeggsfoundinthedifferentcontrolagentswithno repel-lents,andthisstrategycouldmonitorvectorsandassistinvector control.

StudiesusingovitrapstoestimatedensityofA.aegyptiandA. albopictusshowthatorganicmatterinfusions,mostlythosemade ofgrass,havebeenusedtomaximizetheeffectofthetrap, serv-ingasanattractanttofemales(Reiteretal.,1991;Santanaetal., 2006;Villasecaetal.,2001).AccordingtoNunesetal.(2011),grass infusionassociatedtoovitrapismoreeffectivethanovitrapswith water.Thiswasalsoobservedinourstudywithovitraps contain-ingonlygrassinfusionandgrassinfusionassociatedwithdifferent controlagents.

Studiesdemonstratethefeasibilityofovitrapsformonitoring andcontrolofA.aegyptiinthelong-term(ChismandApperson, 2003;Perichetal.,2003;Rapleyetal.,2009).Thesetraps, asso-ciatedto enthomopathogens, causereduction in thedensity of mosquitoesofmedicalimportance,preventinglarvaefrom devel-oping,thusensuringmoretimeintheenvironmentandpreventing trapsfrombecomingapotentialbreedingsite(Depolietal.,2016; Regisetal.,2008).

Althoughsomemosquitoes’populationsresistanttoNatularTM

DT– S.spinosahave beenreported,this productshouldnotbe excludedfromcontrolprograms,asithasbeenshowntobe effec-tivewhenassociatedtoovitraps.However,thislarvicideismore indicatedinspecificsituations,i.e.,whereithasnotbeen previ-ouslyusedandwhensurveillanceisrequiredbecauseofitsexcess use.

OvitrapsassociatedtoVectobac® WG–B.thuringiensis israe-lensisalsoplayanimportantroleintheovipositionofA.aegypti andA. albopictus.Thefactthat itis highlyselectiveforthe tar-getorganisms,thatnoselectionofresistantmosquitoeshasbeen detected,andthatitdoesnotrepelfemalesintheoviposition pro-cessmakestheintegrationofthisbiolarvicidewithovitrapsthe bestsurveillance/controltoolforAedes.

Conflictofinterest

Theauthorsdeclarenoconflictofinterest.

Acknowledgements

The authors thank the team of the Laboratory of Biological ControlandBiotechnologyofMalariaandDengueoftheNational InstituteofResearchoftheAmazon,FoundationforResearch Sup-portoftheStateofAmazonas,andNationalCouncilfortheScientific andTechnologicalDevelopmentfortheirfinancialsupport.

References

Alahmed,A.M.,2012.Mosquitofauna(Diptera:Culicidae)oftheeasternregionof SaudiArabiaandtheirseasonalabundance.J.KingSaudUniv.24,55–62. Alarcón,E.P.,Segura,A.M.,Rúa-Uribe,G.,Parra-Henao,G.,2014.Evoluaciónde

ovit-rampasparavigilânciaycontroldeAedesaegyptiemdoscentrosurbanosDel Urabáantioque ˜no.Biomedica34,409–424.

Allan,A.S.,Kline,D.L.,1995.Evaluationoforganicinfusionsandsynthetic com-poundsmediatingovipositioninAedesalbopictusandAedesaegypti(Diptera: Culicidae).J.Chem.Ecol.21,1847–1860.

Avendanha,J.S.,2007.MonitoramentovetorialedovírusDengue,BeloHorizonte MinasGerais.Rev.Inst.AdolfoLutz(Impr.)66,207.

Bailey,D.L.,Jones,R.G.,Simmonds,P.R.,1983. Effectsofindigenous Toxorhyn-chitesrutilusrutilusonAedesaegyptibreedingintiredumps.Mosq.News43, 33–37.

(6)

Beech,C.J.,Nagaraju,J.,Vasan,S.S.,Rose,R.I.,Othman,R.Y.,Pillai,V.,Saraswathy, T.S.,2009.Riskanalysisofahypotheticalopenfieldreleaseofaself-limiting transgenicAedesaegyptimosquitostraintocombatdengue.J.Mol.Microbiol. Biotechnol.17,99–111.

Bond,J.G.,Marina,C.F.,Williams,T.,2004.Thenaturally-derivedinsecticidespinosad ishighlytoxictoAedesandAnopheleslarvae.Med.Vet.Entomol.18,50–56. Bravo,A.,Likitvivatanavong,S.,Gill,S.S.,Soberón,M.,2011.Bacillus

thuringien-sis: a story of a successful bioinsecticide.Insect Biochem. Mol. Biol. 41, 423–431.

Calvo,E.P.,Coronel-Ruiz,C.,Velazco,S.,Velandia-Romero,M.,Castellanos,J.E.,2016. Diagnósticodiferencialdedengueychikungunyaen pacientespediátricos. Biomédica36,35–43.

Carrieri,M.,Masetti,A.,Albieri,A.,Maccagnani,B.,Bellini,R.,2009.Larvicidalactivity andinfluenceofBacillusthuringiensisvar.israelensisonAedesalbopictus oviposi-tioninovitrapsduringatwo-weekcheckintervalprotocol.J.Am.Mosq.Control. Assoc.25,149–155.

Carvalho,D.O.,McKemey,A.R.,Garziera,L.,Lacroix,R.,Donnelly,C.A.,Alphey,L., Capurro,M.L.,2015.SuppressionofafieldpopulationofAedesaegyptiinBrazil bysustainedreleaseoftransgenicmalemosquitoes.PLoSNegl.Trop.Dis.9, e0003864.

Carvalho,F.D.,Moreira,L.A.,2017.WhyisAedesaegyptiLinnaeussosuccessfulasa species?Neotrop.Entomol.46,243–255.

Chadee, D.D., Corbet, P.S., Greenwood, J.J.D., 1990. Egg-laying yellow fever mosquitoesavoidsitescontainingeggslaidbythemselvesorbyconspecifics. Entomol.Exp.Appl.57,295–298.

Chism,B.D.,Apperson,C.S.,2003.Horizontaltransferoftheinsectgrowthregulator pyriproxifentolarvalmicrocosmsbygravidAedesalbopictusandOchlerotatus triseriatusmosquitoesinthelaboratory.Med.Vet.Entomol.17,211–220. Clements,A.N.,1999.TheBiologyofMosquitoes:Development,Nutritionand

Repro-duction,2nded.ChapmanandHall,London.

Consoli,R.A.G.B.,Lourenco-de-Oliveira,R.,1994.Principaismosquitosde importân-ciasanitárianoBrasil,1sted.Fiocruz,RiodeJaneiro,RJ.

Darbro, J.M., Graham, R.I., Kay, B.H., Ryan, P.A., Thomas, M.B., 2011. Evalua-tionofentomopathogenicfungiaspotentialbiologicalcontrolagentsofthe denguemosquitoAedesaegypti(Diptera:Culicidae).BiocontrolSci.Technol.21, 1027–1047.

Depoli,P.A.C.,Zequi,J.A.C.,Nascimento,K.L.C.,Lopes,J.,2016.EficáciadeOvitrampas comDiferentesAtrativosnaVigilânciaeControledeAedes.EntomoBrasilis9, 51–55.

Dias,L.S.,Macoris,M.L.G.,Andrighetti,M.T.M.,Otrera,V.C.G.,Dias,A.S.,Bauzer, L.G.S.R.,Rodovalho,C.M.,Martins,A.J.,Lima,J.B.P.,2017.Toxicityofspinosad to temephos-resistant Aedes aegypti populations in Brazil. PLOS ONE 12, e0173689.

Dutra,H.L.C.,Rocha,M.N.,Dias,F.B.S.,Mansur,S.B.,Caragata,E.P.,Moreira,L.A.,2016. WolbachiablockscurrentlycirculatingZikavirusisolatesinBrazilianAedes aegyptimosquitoes.CellHostMicrobe19,771–774.

Fay,R.W.,Eliason,D.A.,1966.Apreferredovipositionsiteasasurveillancemethod forAedesaegypti.Mosq.News26,531–534.

Ferreira,F.A.D.S.,Arcos,A.N.,Sampaio,R.T.D.M.,Rodrigues,I.B.,Tadei,W.P.,2015. EffectofBacillussphaericusNeideonAnopheles(Diptera:Culicidae)and asso-ciatedinsect faunainfishponds intheAmazon. Rev.Bras. Entomol.59, 234–239.

Fisher,S.,De Majo,M.S.,Quiroga,L.,Paez,M.,Schweigmann,N., 2017. Long-termspatio-temporaldynamicsofthemosquitoAedesaegyptiintemperate Argentina.Bull.Entomol.Res.107,225–233.

Forattini,O.P.,2002.Culicidologiamédica:identificac¸ão,biologiaeepidemiologia, 2nded.Edusp,SãoPaulo.

Gill,S.S.,1995.MechanismofactionofBacillusthuringiensistoxins.Mem.Inst. OswaldoCruz.90,69–74.

Gomes,A.C.,1998.Medidasdosníveisdeinfestac¸ãourbanaparaAedes(Stegomyia) aegyptieAedes(Stegomyia)albopictusemprogramasdeVigilânciaEntomológica. Inf.Epidemiol.SUS7,49–57.

Gomes,A.C.,2002.Vigilânciaentomológica.Inf.Epidemiol.SUS1,79–90. Gubler,D.,2005.Theemergenceofepidemicdenguefeveranddenguehemorrhagic

feverintheAmericas:acaseoffailedpublichealthpolicy.Rev.Panam.Salud Pública17,221–224.

Gubler,D.J.,Reiter,P.,Ebi,K.L.,Yap,W.,Nasci,R.,Patz,J.A.,2001.Climatevariability andchangeintheUnitedStates:potentialimpactsonvector-androdent-borne diseasesEnviron.HealthPerspect.109,223–233.

Huseyin,C.,Yanikoglu,A.,Cilek,J.E.,2005.Evaluationofthenaturally-derived insec-ticidespinosadagainstCulexpipiensL.(Diptera:Culicidae)larvaeinseptictank waterinAntalya,Turkey.J.VectorEcol.30,151–154.

Jahan,N.,SajjadSarwar,M.,2013.Fieldevaluationoflethalovitrapsforthecontrol ofdenguevectorsinLahorePakistan.Pak.J.Zool.45,305–315.

Khan,H.A.A.,Akram,W.,Shehzad,K.,Shaalan,E.A.,2011.Firstreportoffieldevolved resistancetoagrochemicalsindenguemosquitoAedesalbopictus(Diptera: Culi-cidae),fromPakistan.Parasit.Vectors4,146.

Koeppen,N.W.,1948.Climatologia,Comumestudiodelosclimasdelatierra.Fondo CulturalEconômico,México.

Lopes,J.,1999.Ecologiademosquitos(Diptera,Culicidae)emcriadouros natu-raiseartificiaisdeárearuraldonortedoParaná,Brasil.VIII.Influênciadas larvaspredadoras(Toxorhynchitessp.,LimatusdurhamiieCulexbigoti)sobrea populac¸ãodelarvasdeCulexquinquefasciatuseCulexeduardoi.Rev.Bras.Zool. 16,821–826.

Marina,C.F.,Bond,J.G.,Casas, M.,Mu ˜noz,J.,Orozco,A.,Valle, J.,Williams,T., 2011.SpinosadasaneffectivelarvicideforcontrolofAedesalbopictusand

Aedesaegypti,vectorsofdengueinsouthern Mexico.PestManag.Sci. 67, 114–121.

Martins,V.P.,Silveira,D.A.,Ramalho,I.L.,2013.AedesalbopictusnoBrasil:aspectos ecológicoseriscosdetransmissãodadengue.Entomotropica28,75–86. Medeiros, E.D.S., Rodrigues, I.B., Litaiff-Abreu, E., da S Pinto, A.C., Tadei,

W.P.,2013.Larvicidalactivityofclove(Eugeniacaryophyllata)extractsand eugenolagainstAedesaegyptiandAnophelesdarlingi.Afr.J.Biotechnol. 12, 836–840.

Moore,C.G.,Mitchell,C.J.,1997.AedesalbopictusintheUnitedStates:ten-year pres-enceandpublichealthimplications.Emerg.Infect.Dis.3,329–334.

Moulton,J.K.,Pepper,D.A.,Dennehy,T.J.,2000.Beetarmyworm(Spodopteraexígua) resistancetospinosad.PestManag.Sci.56,842–848.

Nunes,L.S.,Trindade,R.B.R.,Souto,R.N.P.,2011.Avaliac¸ãodaatratividadede ovit-rampasaAedes(Stegomyia)aegyptiLinnaeus(Diptera:Culicidae)nobairro Hospitalidade,Santana,Amapá.BiotaAmazônia1,26–31.

PAHO (Pan American Health Organization), 2018. Available at: http://www. paho.org/hq/index.php?option=comcontent&view=article&id=11585&Itemid= 41688&lang=en(accessed02.01.18).

Perich,M.J.,Kardec,A.,Braga,I.A.,Portal,I.F.,Burge,R.,Zeichner,B.C.,Wirtz,R.A., 2003.FieldevaluationofalethalovitrapagainstdenguevectorsinBrazil.Med. Vet.Entomol.17,205–210.

Phasomkusolsil,S.,Pantuwatana,K.,Tawong,J.,Khongtak,W.,Monkanna,N., Kert-manee,Y.,Schuster,A.L.,2014.Factorsinfluencingthefeedingresponseof laboratory-rearedAedesaegypti.SoutheastAsianJ.Trop.Med.PublicHealth45, 40.

Pinheiro,V.C.S.,Tadei,W.P.,2002.Frequency,diversity,andproductivitystudyon theAedesaegyptimostpreferredcontainersinthecityofManaus,Amazonas, Brazil.Rev.Inst.Med.Trop.SãoPaulo44,245–250.

Quiroz-Martínez,H.,Garza-Rodríguez,M.I.,Trujillo-González,M.I.,Zepeda-Cavazos, I.G.,Siller-Aguillon,I.,Martínez-Perales,J.F.,Rodríguez-Castro,V.A.,2012. Selec-tionoftwoovipositionsitesbyfemaleAedesaegyptiexposedtotwolarvicides. J.Am.Mosq.ControlAssoc.28,47–49.

Rapley,L.P.,Johnson,P.H.,Williams,C.R.,Silcock,R.M.,Larkman,M.,Long,S.A., Ritchie,S.A.,2009.Alethalovitrap-basedmasstrappingschemefordengue con-trolinAustralia:IIImpactonpopulationsofthemosquitoAedesaegypti.Med. Vet.Entomol.23,303–316.

Regis,L.,Monteiro,A.M.,Melo-Santos,M.A.V.D.,SilveiraJr.,J.C.,Furtado,A.F.,Acioli, R.V.,Souza,W.V.D.,2008.Developingnewapproachesfordetectingand prevent-ingAedesaegyptipopulationoutbreaks:basisforsurveillance,alertandcontrol system.Mem.Inst.OswaldoCruz.103,50–59.

Regis,L.N.,Acioli,R.V.,SilveiraJr.,J.C.,Melo-Santos,M.A.V.,Souza,W.V.,Ribeiro, C.M.N.,Braga,C.,2013.Sustainedreductionofthedenguevectorpopulation resultingfromanintegratedcontrolstrategyappliedintwoBraziliancities. PLOSONE8,1–12.

Rehan,A.,Freed,S.,2014.Selection,mechanism,crossresistanceandstabilityof spinosadresistanceinSpodopteralitura(Fabricius)(Lepidoptera:Noctuidae). CropProt.56,10–15.

Reiter,P.,Amador,M.A.,Colon,N.,1991.EnhancementoftheCDCovitrapwithhay infusionsfordailymonitoringofAedesaegyptipopulations.J.Am.Mosq.Control Assoc.7,52–55.

Rinkevich,F.D.,Scott,J.G.,2009.Transcriptionaldiversityandallelicvariationin nicotinicacetylcholinereceptorsubunitsoftheredflourbeetleTribolium casta-neum.InsectMol.Biol.18,233–242.

Rossati,A.,Bargiacchi,O.,Kroumova,V.,Garavelli,P.L.,2015.Themosquito-borne virusesinEurope.RecentiProg.Med.106,125–130.

Santana,A.L.,Roque,R.A.,Eiras,A.E.,2006.Characteristicsofgrassinfusionsas ovipositionattractantstoAedes(Stegomyia)aegypti(Diptera:Culicidae).J.Med. Entomol.43,214–220.

Santos,R.L.C.D.,2003.UpdatingofthedistributionofAedesalbopictusinBrazil (1997–2002).Rev.SaudePublica37,671–673.

Silva,V.C.D.,Scherer,P.O.,Falcão,S.S.,Alencar,J.,Cunha,S.P.,Rodrigues,I.M., Pin-heiro,N.L.,2006.Diversidadedecriadourosetiposdeimóveisfrequentadospor AedesalbopictuseAedesaegypti.Rev.SaudePublica40,1106–1111.

Soares-da-Silva,J.,Ibiapina,S.S.,Bezerra,J.M.T.,Tadei,W.P.,Pinheiro,V.C.S.,2012. VariationinAedesaegypti(Linnaeus)(Diptera,Culicidae)infestationinartificial containersinCaxias,stateofMaranhão,Brazil.Rev.Soc.Bras.Med.Trop.45, 174–179.

Soares-da-Silva,J.,Pinheiro,V.C.S.,Litaiff-Abreu,E.,Polanczyk,R.A.,Tadei,W.P., 2015.IsolationofBacillusthuringiensisfromthestateofAmazonas,inBrazil, andscreeningagainstAedesaegypti(Diptera,Culicidae).Rev.Bras.Entomol.59, 1–6.

Soares-da-Silva,J.,Queirós,S.G.,Aguiar,J.S.,Viana,J.L.,Neta,M.,Silva,M.C.,Tadei, W.P.,2017.MolecularcharacterizationofthegeneprofileofBacillus thuringien-sis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Trop. 176, 197–205.

Solís-Valdez,C.B.,Barrientos-Contreras,J.,Escobar-González,B.,Zepeda-Cavazos, I.G.,Rodríguez-Castro,V.A.,Quiroz-Martínez,H.,2015.OviposicióndeAedes aegyptiL.(Diptera:Culicidae)enOvitrampascondosLarvicidasenElFuerte, SinaloaMéxico.Southwest.Entomol.40,575–580.

Stoops,C.A.,2005.InfluenceofBacillusthuringiensisvar.israelensisonovipositionof Aedesalbopictus(Skuse).J.VectorEcol.30,41–44.

Su,T.,Cheng,M.L., 2012.ResistancedevelopmentinCulexquinquefasciatusto spinosad:apreliminaryreport.J.Am.Mosq.ControlAssoc.28,263–267. Su,T.,Cheng,M.L.,2014a.Crossresistancesinspinosad-resistantCulex

(7)

Su,T.,Cheng,M.L.,2014b.LaboratoryselectionofresistancetospinosadinCulex quinquefasciatus(Diptera:Culicidae).J.Med.Entomol.51,421–427.

Vega-Rúa,A.,Zouache,K.,Girod,R.,Failloux,A.B.,Lourenc¸o-de-Oliveira,R.,2014. HighlevelofvectorcompetenceofAedesaegyptiandAedesalbopictusfromten AmericancountriesasacrucialfactorinthespreadofChikungunyavirus.J.Virol. 88,6294–6306.

Villaseca,P.,León,W.,Palomino,M.,Mostorino,R.,Lecca,L.,2001.Validaciónde sustratosatractivosaoviposiciónparaladeteccióndeAedesaegypti.Rev.Peru. Med.Exp.SaludPublica18,77–81.

WHO(WorldHealthOrganization),1984.Reportoftheseventhmeetingofthe sci-entificworkinggrouponbiologicalcontrolofvectors.Mimeographeddocument TDR/BCV/SWG–7/84.3,33.

WRBU(WalterReedBiosystematicsUnit),2018.Mosquitoidentificationresources. Availableat:http://www.wrbu.org/VecIDMQ.html(accessed21.01.18). Zequi,J.A.C.,Lopes,J.,Santos,F.P.,Vilas-Bôas,G.T.,2015.Efficacyandpersistence

oftwoBacillusthuringiensisisraelensisformulationsforthecontrolofAedes aegypti(Linnaeus,1762)undersimulatedfieldconditions.Int.J.Mosq.Res.2, 05–09.

Referências

Documentos relacionados

Para isto, a empresa agregou as modernas tecnologias de sistemas embarcados com o sistema de posicionamento global (GPS) e a rede de telefonia GSM, resultando

Os resultados verificados apresentaram a massa e a interação massa e tempo como fatores com efeito significante na remoção dos compostos nitrogenados na

O autor destaca como um dos principais mecanismos de criação da cultura organizacional o modelo fornecido pelas figuras de liderança, que permite a identificação

RESUMO O presente trabalho faz uma análise temporal do desempenho da gestão dos custos dos serviços públicos nos municípios pernambucanos entre os anos 2008 e 2014, através

Neste capítulo, reservou-se um espaço para a discussão das relações entre cidade e cinema, indicando caminhos que podem ser trabalhados tanto nesta dissertação

Este trabalho tem por objeto de investigação a Educação de Jovens e Adultos (EJA) integrada à Educação Profissional (EP) técnica de nível médio no Instituto

The community of Diptera (Insecta) colonizing axils of Alocasia macrorrhizos (L.) G.Don (Araceae), with records of Aedes aegypti (L.) and Aedes albopictus (Skuse) in urban

O objetivo deste trabalho foi estudar a evolução temporal da fecundidade de Sergipe e seus estados vizinhos, Bahia e Alagoas, através de séries históricas do número de nascidos