• Nenhum resultado encontrado

Lectin activity in mycelial extracts of Fusarium species

N/A
N/A
Protected

Academic year: 2021

Share "Lectin activity in mycelial extracts of Fusarium species"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Microbial

Physiology

Lectin

activity

in

mycelial

extracts

of

Fusarium

species

Ranjeeta

Bhari,

Bhawanpreet

Kaur,

Ram

S.

Singh

CarbohydrateandProteinBiotechnologyLaboratory,DepartmentofBiotechnology,PunjabiUniversity,Patiala,Punjab,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25February2015 Accepted12November2015 Availableonline22April2016 AssociateEditor:RosanaPuccia

Keywords: Fusarium Lectin Hemagglutination Carbohydratespecificity Cultureage

a

b

s

t

r

a

c

t

Lectinsarenon-immunogeniccarbohydrate-recognizingproteinsthatbindtoglycoproteins, glycolipids,orpolysaccharideswithhighaffinityandexhibitremarkableabilityto aggluti-nateerythrocytesandothercells.Inthepresentstudy,tenFusariumspeciespreviouslynot exploredforlectinswerescreenedforthepresenceoflectinactivity.Mycelialextractsof F.fujikuroi,F.beomiformii,F.begoniae,F.nisikadoi,F.anthophilum,F.incarnatum,andF. tabac-inummanifestedagglutinationofrabbiterythrocytes.Neuraminidasetreatmentofrabbit erythrocytesincreasedlectintitersofF.nisikadoiandF.tabacinumextracts,whereasthe pro-teasetreatmentresultedinasignificantdeclineinagglutinationbymostofthelectins. Resultsofhapteninhibitionstudiesdemonstrateduniquecarbohydratespecificityof Fusa-riumlectinstowardO-acetylsialicacids.ActivityofthemajorityofFusariumlectinsexhibited bindingaffinitytod-ribose,l-fucose,d-glucose,l-arabinose,d-mannitol,d-galactosamine hydrochloride, d-galacturonicacid,N-acetyl-d-galactosamine, N-acetyl-neuraminicacid, 2-deoxy-d-ribose,fetuin,asialofetuin,andbovinesubmaxillarymucin.Melibioseand N-glycolylneuraminicaciddidnotinhibittheactivityofanyoftheFusariumlectins.Mycelial extractsofF.begoniae,F.nisikadoi,F.anthophilum,andF.incarnatuminteractedwithmostofthe carbohydratestested.F.fujikuroiandF.anthophilumextractsdisplayedstronginteractionwith starch.Theexpressionoflectinactivityasafunctionofcultureagewasinvestigated.Most speciesdisplayedlectinactivityonthe7thdayofcultivation,anditvariedwithprogressing ofcultureage.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Lectinsarecarbohydrate-bindingproteinsorglycoproteinsof non-immuneoriginthatplayanimportantroleasrecognition

Correspondingauthor.

E-mail:rssingh11@lycos.com(R.S.Singh).

moleculesincell–cellorcell–matrixinteractions.1Microbial lectinsincludevariousagglutinins,adhesins,precipitins, tox-ins, and enzymes2 and occur widelyin bacteria, protozoa, viruses, andfungi.3 Lectinshaveapplicationsinblood typ-ingandareknowntoexertessentialfunctionsintheimmune

http://dx.doi.org/10.1016/j.bjm.2016.04.024

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

recognitionprocessofviral,bacteria,mycoplasmal,and par-asiticinfections,aswellasinfertilization,cancermetastasis, andgrowthanddifferentiationseveralcells.4,5 Afterplants, mushroomsarethemostwidelystudiedgroupoforganisms forlectins,andtheselectinshavegainedconsiderable atten-tionduetotheirpromisingbiologicalactivities.6,7Yeastlectins areknowntobeinvolvedincell–cellinteractions, pathogene-sis,andcellflocculation.8Themitogenicpotentialofmicrobial lectinshasbeen well establishedas wellastheir abilityto inducemitosisinlymphocytes/splenocytes.9

There are several reports regarding lectins from micro-fungi,includingRhizopusstolonifer,10Aspergillusfumigatus,11,12 A.oryzae,13Penicilliummarneffei,14P.thomiiandP.griseofulvum,15 Sclerotiumrolfsii16and Fusariumsolani.17Additionally, micro-fungiexhibiting lectinactivity and theirpossible functions have been reviewed exhaustively by our group.18 Singh et al.19–21 screened 40 species of Aspergillus for the pres-ence of lectin activity and discovered wide occurrence of lectins in this genera. Few of them have also been evi-denced to possess mitogenic22–24 and immunomodulatory properties.25

Recently,Singh and Thakur26 reported lectinactivity in mycelialextractsofeightFusariumspecies,namelyF. acumi-natum, F. chlamydosporium, F. compactum, F. crookwellense, F. culmorum,F. dimerum,F. decemcellulare,andF. coeruleum.The present study attempted to explore lectin activity in ten speciesofFusarium,whichhavebeennotinvestigatedearlier. Thelectinswerecharacterizedwithrespecttotheirbiological spectrum and carbohydrate inhibition profile. The expres-sionoflectin activity withrespect tocultureage was also investigated.Thepresentexaminationcouldprovideuseful informationforcataloginglectinsandpromptfurtherresearch onthepossiblerolesandapplicationsofthelectinsisolated fromFusariumsp.

Materials

and

methods

Maintenance,growthandharvestingofmicrobialcultures TenFusariumspecies,namelyF.fujikuroi(MTCC9930),F. beomi-formii(MTCC9946),F.diaminii(MTCC9937),F.annulatum(MTCC 9951), F. begoniae (MTCC 9929), F. nisikadoi (MTCC 9948), F. staphyleae(MTCC9911),F.anthophilum(MTCC10129),F. incar-natum (MTCC 10292), and F. tabacinum (MTCC 10131) were procuredfromMicrobialTypeCultureCollection(MTCC), Insti-tuteofMicrobialTechnology,Chandigarh, India. Allstrains were maintained on potato dextrose agar slants contain-ing potato 20.0%, dextrose2.0%, and agar 2.0%; pH ofthe medium was adjusted to 5.6. Agar slants were stored at 4±1◦C, until further use and were subcultured regularly at an interval of two weeks. The cultures were grown in Erlenmeyer’s flasks (250mL) containing 100mL of mainte-nance medium without agar and were incubated at 25◦C understationaryconditionsfor7and 10days,respectively. Mycelium was harvested by filtration, washed thoroughly with phosphate buffered saline (PBS, 0.1M, pH 7.2), and brieflypressedbetweenthefoldsoffilterpaper.Theculture supernatantwasseparatelycollectedandassayedforlectin activity.

Lectinextraction

ThemyceliumwashomogenizedinPBS(1:1.5,w/v)usingan ultra-highspeedhomogenizer(Ultra-Turrax®T25basic,

IKA-Werke, Staufen,Germany) and then ground inmortar and pestlewithacidifiedriversandfor30min.19Theextractwas centrifuged(3000×g,20min,4◦C),andthesupernatantwas assayedforlectinactivity.

Hemagglutinationassay

BloodsamplesdrawninAlsever’ssolutionwerestoredat4◦C untilfurtheruse.Erythrocytesuspension(2%,v/v)was pre-paredinPBS,and two-foldseriallydilutedmycelialextract wastestedforagglutinationofhuman,goat,pig,sheep,and rabbiterythrocytes.19Thesurfacesofhumanandrabbit eryth-rocytesweremodifiedwiththeenzymes,neuraminidaseand protease,asdescribedbyMengetal.27andusedinthe aggluti-nationassay.Hemagglutinationwasdeterminedvisuallybyan appearanceofmatformationasanindicativeoflectinactivity, whereasbuttonformationwastakenasanabsenceoflectin activity.Lectintiterwasdefinedasinverseofthehighest dilu-tioncapableofproducingvisibleagglutinationoferythrocytes. Hapteninhibitionassay

Hapten inhibitionassaywas carriedout againstapanelof carbohydrates according to a method described by Singh etal.19Lectinwasincubatedfor1hwithanequalvolumeof thetestsolutioninthewellsofU-bottommicrotiterplates. Erythrocytesuspensionwasaddedandhemagglutinationwas establishedvisuallyfollowing30minofincubation.Button for-mation in thepresence ofcarbohydrates indicatedspecific interaction, whilemat formation was taken anabsence of interactionbetweenthelectinandthecarbohydrate.The min-imum inhibitoryconcentration(MIC)ofeach ofthespecific carbohydrateswasdeterminedbyserialdoubledilutionofthe testsolution.MICwasdefinedasthelowestconcentrationof thecarbohydratecapableofinducingcompleteinhibitionof lectin-mediatedhemagglutination.

The carbohydrates tested as inhibitors were: d-ribose, l-rhamnose, xylose, l-fucose, d-glucose, d-mannose, d-arabinose, l-arabinose,d-galactose, d-fructose, d-mannitol, d-sucrose, d-maltose, d-lactose, melibiose, d-trehalose dihydrate,d-raffinose,maltotriose,inositol,meso-inositol, d-glucosaminehydrochloride, d-galactosaminehydrochloride, d-glucuronic acid, d-galacturonic acid, N-acetyl-d-glucosamine, N-acetyl-d-galactosamine, 2-deoxy-d-glucose, 2-deoxy-d-ribose,porcinestomachmucin,bovine submaxil-lary mucin, fetuin, asialofetuin, inulin, pullulan, starch, chondroitin-6-sulphate, N-acetyl neuraminic acid, and N-glycolylneuraminicacid.Simplesugarsweretestedatafinal concentrationof100mM,whereasglycoproteinsand polysac-charideswereanalyzedatafinalconcentrationof1mg/mL. Lectinactivityasafunctionofcultureage

Theactivityoflectin-positivecultureswasdetermined asa functionofthemycelialgrowth,asdescribedbySinghetal.28 Erlenmeyer flasks (250mL) containing50mLmedium were

(3)

inoculatedwithculturediscs of5mmdiameter(containing myceliumandagar)andincubatedoveraperiodof5–12days at30◦C, under stationary condition. Mycelium was recov-eredat24hintervals,homogenizedinPBS(1:1.5,w/v),and thengroundinmortarandpestlewithacidifiedriversandfor 30min.Lectintiterintheextractswasdetermined.Foreach fungalculture,anidenticalamountofbiomasswasinvariably takeninsamequantityofPBSoverthedaystodeterminethe comparativehemagglutinationasafunctionofcultureage.

Results

Screeningoffungalculturesforthepresenceoflectin activity

Ten species of Fusarium were screened for their ability to agglutinate rabbit, goat, sheep, pig, and human (A, B, AB, andO)erythrocytes.Nolectinactivity inthe culture super-natant was displayed by these Fusarium species, whereas mycelial extracts of seven species, namely F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incar-natum, and F. tabacinum were found to agglutinate only rabbit erythrocytes (Table 1); and no agglutination was observed with other erythrocytes. Hemagglutination assay was also performed using neuraminidase and protease-treatedrabbitandhumanerythrocytes.Noneoftheextracts agglutinatedeventhe enzyme-treatedhumanerythrocytes. Agglutination of enzyme-treated rabbit erythrocytes with Fusariumlectinsshowedavariableresponse.Lectinextracts of F. anthophilum exhibited a 4-fold increase in the titer with neuraminidase-treated erythrocytes, whereas that of F. nisikadoi and F. tabacinumshowed onlya 2-fold increase (Fig. 1).However,thetiterofF.incarnatummycelialextracts wassubstantiallyreducedbyneuraminidase-modified eryth-rocytes. Lectin titers of F. fujikuroi, F. beomiformii, and F. begoniae extracts manifested no effect of the treatment withneuraminidaseonerythrocytes.F.fujikuroiandF. tabac-inum extracts displayed titers similar to those of native and protease-treated erythrocytes. The activity of lectins

Table1–LectinactivityofFusariumspp.withrabbit

erythrocytes.

Species Lectinactivity(Titer)

7days 10days F.fujikuroi 0 4 F.beomiformii 8 16 F.begonia 8 16 F.nisikadoi 8 32 F.tabacinum 32 4 F.anthophilum 16 2 F.incarnatum 8 32 F.diaminii 0 0 F.annulatum 0 0 F.staphyleae 0 0

Lectinactivity wasdetermined byhemagglutinationassay. The

mycelialextractswerepreparedfrom7dayand10day-oldcultures.

140

Native erythrocytes

Neuraminidase treated erythrocytes Protease treated erythrocytes

120 100 80

Lectin activity (Titre)

60 40 20 0

F. fujikuroi

F. beomiformii F. begoniae F. nisikadoi F. tabacinumF. anthophilum F. incarnatum

Fig.1–Effectofenzyme-treatmentonagglutinationof rabbiterythrocytesbyFusariumspp.Erythrocyteswere treatedwithprotease(2mg/mL)orneuraminidase (0.2IU/mL)andsuspensionswereusedin hemagglutinationassay.

from other Fusariumspp. wasreduced afterprotease treat-ment.

Carbohydrateinhibitionassay

Carbohydrate specificity profile of Fusarium lectins is pre-sentedinTable2.FewFusariumlectinsdisplayedexceedingly rarecarbohydratespecificities.Lectinactivityofthemajority of Fusarium species was inhibited by d-ribose, l-fucose, d-glucose,l-arabinose,d-mannitol,d-galactosamine hydrochlo-ride,d-galacturonicacid,N-acetyl-d-galactosamine,N-acetyl neuraminicacid,2-deoxy-d-ribose,fetuin,and asialofetuin. F. begoniae, F. anthophilum, and F. incarnatum extracts inter-acted with most of the sugars tested. d-Mannose could slightlyinhibittheactivityofF.nisikadoilectins.d-Galactose andd-trehalosedihydratesuppressedtheactivityofF. bego-niae lectin. Porcine stomach mucin was inhibitory to F. anthophilum and F. begoniae lectins. However, activity of all of the Fusarium lectins was inhibited by bovine submaxil-lary mucin. Melibiose and N-glycolyl neuraminic acid did notsuppress the actionofany ofthelectins. F. fujikuroi,F. beomiformii,andF.tabacinumlectinsinteractedwithonlyfew of the carbohydrates examined. The activity of F. fujikuroi lectinwasinhibitedbyd-galacturonicacid,d-galactosamine hydrochloride,fetuin,andasialofetuinwithrespectiveMICsof 3.12mM,1.56mM,31.25␮g/mL,and250␮g/mL.Thelectinsof F.fujikuroiandF.anthophilumstronglyinteractedwithstarch, and MICs of 1.95␮g/mL and 3.90␮g/mL, respectively, were observed.

LectinactivityofFusariumspp.asafunctionofgrowth Lectinactivitywasdeterminedoveraperiodof5–12daysto determinetheinfluenceofcultureageonlectinexpression. Lectinactivitywasexpressedby7-dayoldculturesofall Fusa-riumlectinsexceptforF. fujikuroi,wherelectinactivity was expressedonlyby9–10daysoldcultures(Fig.2).F.anthophilum andF.tabacinumlectinsdisplayedmaximumactivityafter7–8 daysofcultivation.F.incarnatumexpressedaconsistentlyhigh titerin8–10daysoldcultures.

(4)

Table2–CarbohydratespecificityofFusariumspp.lectins.

Carbohydrate F.fujikuroi F.beomiformii F.begoniae F.nisikadoi F.anthophilum F.tabacinum F.incarnatum

d-Ribose – – 25mM 3.12mM 12.5mM 6.25mM 6.25mM l-Rhamnose – – 3.12mM 6.25mM 3.12mM – – Xylose – – 50mM 3.12mM 25mM – – l-Fucose – – 12.5mM 3.12mM 12.5mM – 12.5mM d-Glucose – – 50mM 1.56mM 3.12mM – 3.12mM d-Mannose – – – 25mM – – – d-Arabinose – – – 25mM 12.5mM – 12.5mM l-Arabinose – – 12.5mM 12.5mM 50mM – 50mM d-Galactose – – 12.5mM – – – 50mM d-Fructose – – 1.56mM – – 50mM 12.5mM d-Mannitol – – 3.12mM – 50mM 0.78mM 25mM d-Sucrose – – 12.5mM – 6.25mM – – d-Maltose – – 3.12mM – 1.56mM – – d-Lactose – 3.12mM 50mM – – – – Melibiose – – – – – – – d-Trehalosedehydrate – – 1.56mM – – – – d-Raffinose – – 3.12mM – – 3.12mM 0.78mM Maltotriose – – 12.5mM – 12.5mM – – Inositol – – 12.5mM – – – 12.5mM Meso-inositol – – 6.25mM – – – 25mM d-Glucosamine hydrochloride – – 25mM 6.25mM – – – d-Galactosamine hydrochloride 3.12mM 12.5mM 25mM 12.5mM 6.25mM – 6.25mM d-Glucuronicacid – – 12.5mM – 3.12mM – 25mM d-Galacturonicacid 1.56mM 1.56mM 6.25mM – 50mM – 50mM N-acetyl-d-glucosamine – – 12.5mM 25mM – – – N-acetyl-d-galactosamine – 12.5mM 6.25mM 25mM 12.5mM – 12.5mM 2-Deoxy-d-glucose – – 25mM 12.5mM – 250␮g/mL – 2-Deoxy-d-ribose – – 25mM 125␮g/ml 25mM – 12.5mM

N-acetylneuraminicacid – 12.5mM 0.195mM 12.5mM 3.90mM – –

N-glycolylneuraminicacid – – – – – – –

Bovinesubmaxillarymucin 31.25␮g/mL 0.975␮g/mL 0.06␮g/mL 0.487␮g/mL 0.12␮g/mL 62.5␮g/mL 31.25␮g/mL

Porcinestomachmucin – – 0.975␮g/mL – 0.975␮g/mL – –

Fetuin 125␮g/mL 500␮g/mL 0.243␮g/mL – 0.121␮g/mL 500␮g/mL – Asialofetuin 250␮g/mL 250␮g/mL 0.487␮g/mL 125␮g/mL 0.975␮g/mL – 31.25␮g/mL Chondroitin-6-sulphate – – 500␮g/mL – 15.62␮g/mL – 31.25␮g/mL Inulin – – 125␮g/mL – 125␮g/mL – 500␮g/mL Pullulan – – 500␮g/mL – – 15.62␮g/mL 62.5␮g/mL Starch 1.95␮g/mL – 500␮g/mL – 3.90␮g/mL – –

Note:–,non-inhibitorycarbohydrates.

Simplesugarsweretestedatafinalconcentrationof100mM,whileglycoproteinsandpolysaccharidesweretestedataconcentrationof

1mg/mL.Thetestsolutionswereastwo-foldseriallydilutedacrossthewellsofmicrotiterplatesandincubatedwithappropriatelydiluted

lectintodetermineminimuminhibitoryconcentrationofspecificcarbohydrate.

Discussion

The present study reportslectin activity from seven Fusa-riumspecies,namely,F.fujikuroi,F.beomiformii,F.begoniae,F. nisikadoi, F.anthophilum,F. incarnatum, and F.tabacinum, the presenceoflectinsinthese specieshasnotbeen explored previously.Ourresultsandthoseofpreviousinvestigations conductedbySinghandThakur26demonstrateawide pres-enceofmyceliallectinsinFusariumspecies. Inthepresent study,lectinsfromallthesevenspecieswerefoundto agglu-tinate only rabbit erythrocytes, and no agglutination with human, goat, sheep, and pig erythrocytes was observed. Ishikawaand Oishi29 reportedagglutination ofchick, horse and rabbit erythrocytes by culture filtrate of Fusarium sp., whereasthecellextractwascapableofagglutinatinghuman

erythrocytes. Singh and Thakur26 evidenced that Fusarium lectins mostly agglutinate human and rabbit erythrocytes, and onlyafewofthem couldagglutinate sheep,goat,and porcineerythrocytes.Khanetal.17,30foundthatFusariumsolani lectin agglutinatedonlypronase-or neuraminidase-treated humanerythrocytes.Consideringthesefindings,the hemag-glutination activity ofeach extract wasalso testedagainst neuraminidase-orprotease-treatedhumanerythrocytes,but lectinsfailedtoagglutinateeventheenzyme-modifiedhuman erythrocytes.

Neuraminidase removes sialic acid from the surface of erythrocytes and exposes subterminal galactosyl residues, thus reducing the net negative charge on the surface of erythrocytesandincreasingtheiragglutinationability.31The decrease inagglutinationoferythrocytes afterthe protease treatmentindicatestheremovalofthepreferredbindingsites

(5)

35 F. beomiformii F. begonia F. tabacinum F. nisikadoi F. anthophilum F. incarnatum 30 25 20 15 10

Lectin activity (Titre)

Lectin activity (Titre)

5 0 35 30 25 20 15 10 5 0 5 6 7 8

Culture age (Days)

9 10 11 12

5 6 7 8

Culture age (Days)

9 10 11 12

F. fujikuroi

Fig.2–EffectofcultureageonlectinactivityofFusarium

spp.Themyceliawererecoveredafter24hintervalsovera periodof5–12daysanddisruptedtoassaylectinactivity.

forFusariumlectins.Thetreatmentoferythrocyteswith neu-raminidasewasalsoreportedtoincreasethetitersofFusarium lectins,whereasnosucheffectwasestablishedafterprotease treatments.26

Inthepresentstudy,themajorityoflectinswereinhibited byd-galactosaminehydrochloride,N-acetyl-d-galactosamine, asialofetuin,andfetuin.Mostofthelectinsmanifested inhibi-tionbyfreesialicacid,whichwascontrarytoearlierfindings ofSinghand Thakur.26 Khan etal.30 reportedspecificity of FusariumsolanilectintoN-linkedglycans.Thelectinsinthis studydidnotinteractwithN-glycolylneuraminicacid,which explainsthefailure oflectinstoagglutinate porcine eryth-rocytes.Bovinesubmaxillarymucin isapotentinhibitor of Fusariumlectins,whereasporcinestomachmucinisaweak inhibitor.TheformercontainsN-acetylneuraminicacid, N-glycolylneuraminicacid,N-acetyl9-O-acetylneuraminicacid, and 8,9-di-O-acetyl neuraminic acid. On the other hand, mucin from porcinestomachcontains 90% N-glycolyl neu-raminic acid, 10% N-acetyl neuraminic acid, and traces of N-acetyl 9-O-acetyl neuraminic acid.32 Free N-acetyl neu-raminicacidcouldinhibittheactivityoffewFusariumlectins, butN-glycolylneuraminicacidhadnoinhibitoryeffect,which justifiesthestronginhibitorypotentialofN-acetylneuraminic acidcontainingglycoproteinbovinesubmaxillarymucinand weakbindingwithporcinestomachmucin.Fetuinmainly con-tainsN-glycolylneuraminicacid,33 and mostofthelectins discoveredin representative Fusarium species showed only weakinteractionwithfetuin.Theresultsdepicttheinhibition

oflectinactivityofFusariumextractsbysialoglycoconjugates. However, inhibitionbyasialofetuincorroboratesthe earlier findings,wherelectinsspecificforsialicacidalsomanifested inhibitionbytheasialoformglycoproteins.34,35

Theresultsofthepresentinvestigationsuggestan affin-ityofFusariumlectinstoO-acetylneuraminicacid,whichis alsoreflectedintheerythrocytespecificity.Thelectinsbound torabbiterythrocytes,whichcontainN-O-acetylneuraminic acid. Human A, O, sheep,and goat erythrocytes have sur-faceglycoconjugatesrichinN-acetylneuraminicacid,32which mighthavebeenresponsibleforthefailureoflectinsto agglu-tinatetheseerythrocytes.However,theaugmentationoflectin titeraftertheneuraminidasetreatmentandthe fine speci-ficityofFusariumlectinscannotbecompletelyexplainedat thispoint.Thesemightbeduetothepresenceofmorethan onelectinintheextractstested.

Fusarium lectins were foundto bedevelopmentally reg-ulated. There was no increase in lectin activity with the progressingcultureageandacorrespondingriseintheprotein contentofmycelia,indicatingthatthelectinactivitywasnot afunctionofgrowthratealone.Thedevelopmentalregulation ofFusariumlectinscorroboratestoearlierreportsonFusarium sp.26andothermicrofungi.15,21,28,36,37

Inthe presentstudy,thelargenumberoflectin-positive speciescapableofagglutinatingonlyrabbiterythrocytes indi-catesahighincidenceofsialicacid-specificlectinsamongst themembersofthisgenus.Althoughhemagglutinating activ-ityisnotapowerfultooltodefineminordifferencesinaffinity betweendifferentmolecules,recognitionofdifferentglycan structuressuggests thewidespreadoccurrenceofreceptors forFusariumlectins.NormaltissueshaveN-acetylneuraminic acid,whereasmalignantcellscontainO-acetyl sialicacid.32 Theselectinscanbeavaluabletoolforlocalizationand assess-mentofglycoconjugatescontainingO-acetylsialicacid.The uniquecarbohydratespecificityofFusariumlectinsinvites fur-therresearchonthisgenus.Thecarbohydratespecificitiesand hemagglutinationprofilesindicatethatmorethanonelectin maybepresentintheextracts.However,furtherinvestigations arerequiredtoestablishthesubtlesaccharidespecificityof Fusariumlectinsreportedherein.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgement

AuthorsarethankfultoHead,DepartmentofBiotechnology, PunjabiUniversity,Patialaforprovidingthenecessary labora-toryfacilitiesduringthewholecourseofthestudy.

r

e

f

e

r

e

n

c

e

s

1.SharonN,LisH,eds.Lectins.Amsterdam:KluwerScientific

Publishers;2003.

2.LakhtinVM.Molecularorganizationoflectins.MolBiol

(6)

3. SinghRS,TiwaryAK,KennedyJF.Lectins:sources,activities,

andapplications.CritRevBiotechnol.1999;19:145–178.

4. GabiusH-J,GabiusS,eds.Glycosciences:Status&Perspectives.

Weinheim:WileyVCH;2002.

5. NaeemA,SaleemuddinM,KhanRH.Glycoproteintargeting

andotherapplicationsoflectinsinbiotechnology.Curr

ProteinPeptSci.2007;8:261–271.

6. SinghRS,BhariR,KaurHP.Mushroomlectins:currentstatus

andfutureperspectives.CritRevBiotechnol.2010;30:99–126.

7. SinghRS,BhariR.Currentstatusofmicrobiallectinsin

biomedicalresearch.In:SinghRS,PandeyAK,LarrocheC,

eds.AdvancesinIndustrialBiotechnology.NewDelhi:I.K.

InternationalPublishingHousePvt.Ltd.;2014:315–362.

8. SinghRS,BhariR,KaurHP.Characteristicsofyeastlectins

andtheirroleincell–cellinteractions.BiotechnolAdv.

2011;29:726–731.

9. SinghRS,WaliaAK.Microbiallectinsandtheirprospective

mitogenicpotential.CritRevMicrobiol.2014;40:329–347.

10.OdaY,SenahaT,MatsunoY,etal.Anewfungallectin

recognizing˛(1–6)-linkedfucoseintheN-glycan.JBiolChem.

2003;278:32439–32447.

11.IshimuraT,BernardEM,TamadaS,ArmstrongD.Thefucose

specificlectin(FSL)producedbyAspergillusfumigatusmay

promoteattachmentofconidiatomammaliancells.In:

AbstractsoftheIDSA34thAnnualMeeting.1996:206.

12.TronchinG,EnsaultK,SanchezM,LarcherG,LeblondAM,

PhilippeJ.Purificationandpartialcharacterizationofa

32-kilodaltonsialicacidspecificlectinfromAspergillus

fumigatus.InfectImmun.2002;70:6891–6895.

13.MatsumuraK,HigashidaK,IshidaH,etal.Carbohydrate

bindingspecificityofafucose-specificlectinfromAspergillus

oryzae.JBiolChem.2007;281:15700–15708.

14.HamiltonAJ,JeavonsL,YoungchimS,VanittanakomN,Hay

RJ.Sialicacid-dependentrecognitionoflamininbyPenicillium

marneffeiconidia.InfectImmun.1998;66:6024–6026.

15.SinghRS,SharmaS,KaurG,BhariR.ScreeningofPenicillium

speciesforoccurrenceoflectinsandtheircharacterization.J

BasicMicrobiol.2009;49:471–476.

16.SwamyBM,BhatAG,HegdeGV,NaikRS,KulkarniS,Inamdar

SR.ImmunolocalizationandfunctionalroleofSclerotium

rolfsiilectinindevelopmentoffungusbyinteractionwithits

endogenousreceptor.Glycobiology.2004;14:951–957.

17.KhanF,AhmadA,KhanMI.Purificationandcharacterization

ofalectinfromendophyticfungusFusariumsolanihaving

complexsugarspecificity.ArchBiochemBiophys.

2007;457:243–251.

18.SinghRS,BhariR,KaurHP.Currenttrendsoflectinsfrom

microfungi.CritRevBiotechnol.2011;31:193–210.

19.SinghRS,TiwaryAK,BhariR.ScreeningofAspergillusspecies

foroccurrenceoflectinsandtheircharacterization.JBasic

Microbiol.2008;48:112–117.

20.SinghRS,BhariR,RaiJ.FurtherscreeningofAspergillus

speciesforoccurrenceoflectinsandtheirpartial

characterization.JBasicMicrobiol.2010;50:90–97.

21.SinghRS,KaurHP,SinghJ.Newlectinsfromaspergilliand

theircarbohydratespecificity.Biologia.2014;69:15–23.

22.SinghRS,BhariR,SinghJ,TiwaryAK.Purificationand

characterizationofamucin-bindingmyceliallectinfrom

Aspergillusnidulans.WorldJMicrobiolBiotechnol.

2011;27:547–554.

23.SinghRS,KaurHP,SinghJ.Purificationandcharacterization

ofamucin-specificmyceliallectinfromAspergillus

gorakhpurensis:applicationformitogenicandantimicrobial

activity.PLosOne.2014;9(10):e109265.

24.SinghRS,BhariR,KaurR.Purification,characterizationand

mitogenicpotentialofamucin-specificmyceliallectinfrom

Aspergillussparsus.ApplBiochemBiotechnol.

2015;175:1938–1947.

25.SinghRS,BhariR,RanaV,TiwaryAK.Immunomodulatory

andtherapeuticpotentialofamyceliallectinfrom

Aspergillusnidulans.ApplBiochemBiotechnol.2011;165:624–638.

26.SinghRS,ThakurSR.Antimicrobialactivityand

carbohydratespecificityofnewmyceliallectinsfrom

Fusariumsp.Biologia.2014;69:1295–1302.

27.MengQ,KerleyMS,RusselTJ,AlleeGL.Lectin-likeactivityof

EscherichiacoliK88,SalmonellacholeraesuisandBifidobacteria pseudolongumofporcinegastrointestinalorigin.JAnimSci.

1998;76:551–556.

28.SinghRS,ThakurG,BhariR.Optimizationofculture

conditionsandcharacterizationofanewlectinfrom

Aspergillusniger.IndianJMicrobiol.2009;49:219–222.

29.IshikawaF,OishiK.Production,purification,and

characterizationofNeurosporasitophilalectin.AgricBiolChem.

1989;53:1769–1776.

30.KhanF,AhmadA,KhanMI.InteractionofFusariumsolani

lectinwithmonosaccharidesandoligosaccharides.A

fluorometricstudy.PhotochemPhotobiol.2007;83:966–970.

31.SchauerR.Chemistry,metabolismandbiologicalfunctions

ofsialicacids.AdvCarbohydrChemBiochem.1982;40:131–234.

32.DenisM,PalattyPD,BaiNR,SuriyaSJ.Purificationand

characterizationofasialicacidspecificlectinfromthe

hemolymphofthefreshwatercrabParatelphusajacquemontii.

EurJBiochem.2003;270:4348–4355.

33.MercyPD,RavindranathMH.Purificationand

characterizationofN-glycolylneuraminic-acid-specific

lectinfromScyllaserrata.EurJBiochem.1993;215:697–704.

34.KawagishiH,MoriH,UnoA,KimuraA,ChibaS.Asialic

acid-bindinglectinfromthemushroomHericiumerinaceum.

FEBSLett.1994;340:56–58.

35.KobayashiY,KobayashiK,UmeharaK,etal.Purification,

characterization,andsugarbindingspecificityofan

N-glycolylneuraminicacid-specificlectinfromthe

mushroomChlorophyllummolybdites.JBiolChem.

2004;279:53048–53055.

36.SinghRS,BhariR,TiwaryAK.Optimizationofculture

conditions,partialpurificationandcharacterizationofanew

lectinfromAspergillusnidulans.RoumBiotechnolLett.

2010;15:4990–4999.

37.SinghRS,BhariR,KaurHP,VigM.Purificationand

characterizationofanovelthermostablemyceliallectin

fromAspergillusterricola.ApplBiochemBiotechnol.

Referências

Documentos relacionados

Finally, making an overall balance, taking into account the obtained results for the performed classification evaluation metrics underlying gene loss and gene functionality

As mentioned in the previous Chapter, another interesting result given by the developed instrumentation is the possibility to perform measurements of XMCD intensity versus

O objectivo do presente estudo foi investigar as rela- ções entre o perfil fisiológico, a resposta biomecâni- ca e o rendimento desportivo de corredores de meio- fundo

Refletindo agora sobre os valores entre homens e mulheres, podemos chegar a conclusão que os homens gostam mais de telemóveis com tecnologia, e despendem mais

permite  usar  o  Gmail  Space  para  armazenamento de arquivo. Ele atua como um  drive  online,  de  tal  maneira  que  é  possível  fazer  upload  de 

Para estimar o volume de madeira do povoamento, os diferentes índices de vegetação considerados neste estudo foram utilizados como um fator de correção, o qual transforma o

HYBRID teve início há um ano, depois da corrida de Le Mans de 2013; desde então todos na equipa se empenharam para regressarmos a esta competição da forma mais

Os Lajedos de rochas calcárias abrigam a maior quantidade de cavernas do Estado do Rio Grande do Norte, além, de possui grande relevância para a ciência e para o estudo