• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia27(2017)576–579

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Identification

of

phenolic

compounds

in

Myricaria

bracteata

leaves

by

high-performance

liquid

chromatography

with

a

diode

array

detector

and

liquid

chromatography

with

tandem

mass

spectrometry

Alexander

A.

Chernonosov

a,∗

,

Evgeniya

A.

Karpova

b

,

Elena

M.

Lyakh

b aInstituteofChemicalBiologyandFundamentalMedicine,SiberianBranchofRussianAcademyofSciences,Novosibirsk,Russia bCentralSiberianBotanicalGarden,SiberianBranchofRussianAcademyofSciences,Novosibirsk,Russia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15November2016 Accepted4July2017 Availableonline2August2017

Keywords: HPLC-DAD LC-MS/MS Flavonol Flavon Ellagicacid

a

b

s

t

r

a

c

t

MyricariabracteataRoyle,Tamaricaceae,isaspecieswithawidegeographicrangethatencompasses East-ernEurope,WesternandCentralSiberia,CentralAsia,andtheHimalayas.Thisplantisusedintraditional folkmedicineinRussia(Siberia)andinChinatypicallyasananalgesicandforthetreatmentofsome infec-tionsandcertaintypesofintoxication.Theaimofthisstudywastoidentifyphenolicconstituentsofthe leavesofM.bracteatafromtwoconsiderablydistantpopulations.Chromatographicprofilesoftheleaves ofM.bracteatawereanalyzedforthefirsttime.Seventeencompounds,mainlymethylethersofquercetin (isorhamnetin,rhamnazin),kaempferol(kaempferide,rhamnocitrin),andellagicacidaswellasquercetin, quercetin3-glucoside,kaempferol,luteolin,chrysoeriol,citricacid,gallicacid,methylgallate,ethyl gal-late,andferulicacidwereidentifiedinhydrolyzedaqueousethanolextractsoftheleaves.Flavonols andellagicacidwerethemajorcompoundsinbothsamples.Isorhamnetinwasthemainflavonoid con-stituent.KaempferideandrhamnazinwerealsoabundantintheflavonoidcomplexoftheleavesofM. bracteatafromtheAltai.ThisstudyshowsthatM.bracteataleavesareasourceofflavonoidswithpossible biologicalactivities.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

MyricariaDesv.,Tamaricaceae,isagenusofherbswitha

poten-tialfor applicationstoconventional medicine.Myricaria species areusedinfolkmedicineinRussia(Siberianregions)andinmany Asiancountries(morecommonlyinChina,Mongolia,andIndia) forthetreatmentofsomeinfections,certaintypesofintoxication, liverdiseases,scalds,andarthritis(Semenova,1993;Gewali,2008; Kletteretal.,2008;Kirbagetal.,2009;Singh,2012).Somespecies werereportedtohavehighantimicrobialandacetylcholinesterase inhibitoryactivitiesandthuscanbeconsiderednaturalsourcesof antibioticsanddrugsforthetreatmentofneurologicaldisorders suchasAlzheimer’sdisease(Mukherjeeetal.,2007).

High antimicrobial activity of the volatiles of intact

Myri-cariabracteata plantsagainst Staphylococcusepidermidis aswell

asapronouncedantifungalactivityagainstCandidaalbicanswere alsorevealed(LyakhandTsybulya,2009).Crudeethanolextract from the above-ground part of M. bracteata and its fractions

∗ Correspondingauthor.

E-mail:alexander.chernonosov@niboch.nsc.ru(A.A.Chernonosov).

havebeenshowntohaveastrongantimicrobialactivityagainst

Staphylococcusaureus,Enterococcusfaecalis,Micrococcusluteus,and

Pseudomonasaeruginosa(Gonchigetal.,2008).

Theliteraturelacksdetailedinformationonregularconstituents

of M.bracteata, theirgeographic variability, and thekey active

ingredients.Theaimofthisstudywastoidentifythephenolic con-stituentsoftheleavesofM.bracteatafromtwoconsiderablydistant populations.

Materialsandmethods

All chemicals were mass spectrometry (MS) and analytical grade. Chemical reference standards of gallic and ferulic acids

were purchased from Serva (Heidelberg, Germany); quercetin,

kaempferol,rhamnetin, isorhamnetin,luteolin,citric andellagic acidswerepurchasedfromSigma(St.Louis,MO,USA).

ThesamplesofMyricariabracteataRoyle,Tamaricaceae,leaves werecollectedinthefruitingperiodof2011.SampleAwas col-lectedat1800mabovethesealevel(a.s.l.)onapebblefloodplain oftheBolshoiYalomanRiver,1kmfromBolshoiYalomanvillage, OngudayskyRegion,theAltaiRepublic.SampleBwascollectedat 3100ma.s.l.onapebbleandsandyfloodplainoftheTokuz-Bulak

http://dx.doi.org/10.1016/j.bjp.2017.07.001

(2)

A.A.Chernonosovetal./RevistaBrasileiradeFarmacognosia27(2017)576–579 577

River(thelefttributaryoftheGuntRiver),1.5kmfromthe Kuy-gantukoyvillage,ShugnonRegion,theRepublicofTajikistan.The collectedMyricariasamplesweredriedandgroundintopowder usingahouseholdmill.

Apreciselyweighedsampleofair-driedplantmaterial(0.3g) wasexhaustivelyextractedwithanethanol:watermixture(70:30, v/v) in a water bath at 60–70◦C. The aqueousethanol extract washydrolyzedwith2NHClfor2hinaboilingwaterbath.The hydrolysatewaspurifiedbymeansofaC16Diapackcartridgeand redissolvedinethanol.

MassspectrometricanalysiswascarriedoutattheCoreFacility ofMassSpectrometricAnalysis(ICBFMSBRAS).AnAgilent1200 liquidchromatographysystem,withanAgilent6410QQQmass spectrometer(AgilentTechnologies,USA)equippedwithan elec-trosprayionization(ESI)source,servedasanLC-MS/MS system. Thechromatographicseparationwascarriedoutat25◦Cona Zor-baxEclipseXBD-C18Column(4.6mm×150mm,5␮mi.d.)withan

EclipseXBD-C18guardcolumn(4.6mm×12.5mm,5␮mi.d.).

Forthegradientelution,10mM NH4COOHinwater (pH4.0,

adjustedwithformicacid),i.e.,solventA,and10mMNH4COOH(pH

4.0adjustedwithformicacid)inacetonitrile–water95:5(v/v),i.e., solventB,wereused.Therunwasstartedwith0.6mlmin−1flow

rateatasolventA:solventBratioof100:0(v/v)followedbyalinear gradientto50:50(v/v)forthefirst5min,thento48:52(v/v)from min5tomin10,thento0:100(v/v)frommin10tomin20;and returnedto35:65(v/v)frommin20tomin35,thento100:0(v/v) frommin35tomin40.Thesampleinjectionvolumewas30␮l.All

dataacquisitionandpeakintegrationtaskswereperformedinthe MassHuntersoftware(version1.3)fromAgilentTechnologies.

Atthe firststep of theanalysis, thesamples wereanalyzed in full-scannegativemodefrom 100to1500Da. The multiple-reaction monitoring (MRM) transitions for possible molecular structures that have been proposed for a detected ion

(Sup-plementary data A) were based on the RIKEN MSn spectral

database for phytochemicals (http://spectra.psc.riken.jp), Mass-Bank (http://www.massbank.jp) and the Human Metabolome Database(HMDB)(http://www.hmdb.ca).

The HPLC system for absolute quantification of phenolic

consistedofanAgilent1200withadiodearraydetector(DAD) andtheChemStation(AgilentTechnologies,USA)softwarefordata processing. Thechromatographic separation wascarried out at 25◦C onaZorbaxSB-C18Column(4.6mm×150mm,5mi.d.) withanAgilentGuardColumnHardwareKit(p.n.820888-901).

The mobile phase consisted of MeOH (solvent A) and 0.1%

orthophosphoricacidinwater(solventB).Therunwasstartedat 1mlmin−1ratewithasolventA–solventBmixtureat50:50(v/v)

followedbyalineargradientto52:48(v/v)forthefirst15min,then to100:0(v/v)frommin15tomin17.Itwasreturnedto50:50(v/v) frommin17tomin20.Thesampleinjectionvolumewas10␮l.

Thequantificationof phenoliccompoundswasconductedas previouslyreported(KarpovaandKhramova,2014)(see Supple-mentarydataB).Allthedatawerereportedasmean±standard deviation(SD)ofthreereplicates.Theresultswerecomparedby Student’sttest.Thedataanalysiswasperformedusingthe Sta-tistica7.0software(StatsoftInc.,Tulsa,OK,USA),anddifferences betweenthemeanswereconsideredstatisticallysignificantatthe 5%level(p<0.05).

Resultsanddiscussion

Seventeenconstituents,mainlyflavonoids,wereidentifiedin thehydrolyzedextractsofeachgeographicsampleoftheleavesof

M.bracteata.Thecompositionoftheleaveswasidentical(Fig.1).

Atthebeginningoftheanalysis,threephenolicacidswere iden-tifiedinM.bracteataleafextract(Table1).Citric(1),gallic(2),ellagic

T

otal ion intenc

ity

M. bracteata (A) from Bolshoi Yaloman, the Altai Republic

M. bracteata (B) from Kuygantukoy, the Republic of Tajikistan Time, min

Time, min

T

otal ion intenc

ity 160000 160000 180000 140000 140000 120000 120000 100000 100000 80000 80000 60000 60000 40000 40000 20000 20000 0 0 -2 -2 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22 22 24 24 26 26 28 28 30 30 32 32 5000 4000 4000 6000 8000 10000 3000 2000 2000 1000 0 0 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 400 300 200 100 0

7 8 9 10 11 12 1 2 2 7 7 8 8 9 9 10 10 11 11 3 3 4 4 5 5 6 6 13 13 15 15 16 16, 12 12 14 14 17 17

A

B

Fig.1.LC-MS/MSbasepeakchromatogramsofMSinnegativeionmodeforthe hydrolyzedaqueousethanolextractsoftheleavesofMyricariabracteatafromthe Altai(A)andfromtheTajikistan(B).

(7),andferulic(9)acidsweredirectlyidentifiedbycomparisonof theirretention timewiththat ofstandardsandwereconfirmed intheMS/MSspectrum.Citricacidisbeingsuggestedasa con-stituentofM.bracteataforthefirsttimeandcharacterizesthisplant asalkali-tolerant(Nawwaretal.,2013).

Ethylgallate(8)wastentativelyidentifiedaccordingto[M−H]− atm/z197andMS/MSfragmentionsatm/z124and169,wherethe lattercorrespondstogallicacid.Compounds3and4with[M−H]− atm/z183andanMS/MSfragmentionatm/z124(Rendekovaetal., 2015)weretentativelyidentified as methylgallateisomers. An additionalfragmentionatm/z140wasdetectedfor3(Rendekova etal.,2015);however,thisfragmentionwasnotrevealedfor4, probablybecauseoflowquantity.Methylgallateandother deriva-tivesofhydroxybenzoicacidshavebeenreportedtobefrequent constituentsofM.bracteata(Zhangetal.,2011;Zhaoetal.,2005).

A total of ten flavonoid derivatives were identified in M.

bracteataleaves.Quercetin(11),luteolin(10),kaempferol(12)and

isorhamnetin(13)wereidentifiedbycomparisonofretentiontime andtheMS/MSspectrawiththoseofauthenticstandards.

Compound14wastentativelyidentifiedasrhamnocitrinbyits molecularion[M−H]−atm/z299.2andfragmentionsatm/z271, 256,and227,whichreflectdecarbonylation,i.e.,[M-H-CO]−,the lossofamethylradicalwithsubsequentdoubledecarbonylation,

i.e., [M-H-CH3-CO-H]− and [M-H-CH3-CO-CO-H]−, respectively.

Compound15withdeprotonatedion[M−H]−atm/z329andthe fragmentionsm/z314[M-H-CH3]−,m/z299[M-H-2CH3]−,andm/z

(3)

578 A.A.Chernonosovetal./RevistaBrasileiradeFarmacognosia27(2017)576–579

Table1

PhytochemicalconstituentsidentifiedinMyricariabracteataleavesofplantsfromtheAltai(A)andTajikistan(B)andsomephenoliccompoundsconcentrations.

No. TR(min) [M−H]−,m/z Fragmentions,m/z Identifiedcompounds Concentrationinleaves,

mg/gofdryweight

A B

1 3.7 191 111,87,67,57 Citricacida

2 6.8 169 125,97,79,69 Gallicacida 1.69±0.19b 1.71±0.06

3 8.4 183 140,124 MethylgallateI

4 9.3 183 124 MethylgallateII

5 9.7 317 179,151,137,107 Myricetina

6 10 463 301 Quercetinhexoside/Ellagicacidhexoside

7 10.6 301 284,257,229,185 Ellagicacida 5.72

±0.22 4.29±0.15

8 11.1 197 169,124 Ethylgallate

9 11.9 193 178,149,134 Ferulicacida 0.15±0.02b 0.11±0.03

10 18.2 285 151,133,121,107 Luteolina 0.00±0.00 0.03±0.01

11 18.3 301 245,229,179,151,

121,107

Quercetina 0.25±0.02 1.64±0.08

12 21.2 285 255,227,211,187,

159,143,117,108, 93

Kaempferola 0.42

±0.06b 0.37

±0.06

13 21.8 315 300,283,271,255,

243,227,164,151, 148,136,107,83, 63

Isorhamnetina 2.25±0.06 11.73±0.19

14 24.6 299.2 271,256,255,227,

211,199,151

Rhamnocitrin

15 24.7 329.2 314,299,271,227 Rhamnazin

16 29.3 299 284,255,227,164,

163,132,107,83, 63

Kaempferide

17 29.3 299 226,211,200,199,

183,158,151,133, 107

Chrysoeriol

aIdentifiedbycomparisonwithastandard. b Insignificantdifferencesbetweensamples(p>0.05).

Kaempferide(16)andchrysoeriol(17)weretentatively identi-fiedbytheirmolecularion[M−H]−atm/z299andfragmentation patternscontainingspecificionsatm/z63,83,163,and164orm/z

151,158,and183,respectively.

Compound 5 was tentatively identified as myricetin with a molecularion[M−H]− atm/z317andtypicalMS/MSfragments atm/z179and151thatcorrespondedtoretrocyclizationonthe A–Cring(1,2A)andtheconsecutivelossofCO(1,2A-CO), respec-tively.MyricetinhasnotbeendetectedinTamaricaceaebefore,and thelackofthataglyconisregardedasacharacteristicofthefamily (Harborne,1975).ItwasdetectedinthesamplesbyMSinsmall amount.Itsabsenceinotherpreviouslystudiedsamplesof

Myri-cariawasmostlikelyduetothepeculiaritiesofthemethodsor

samplepreparation.

Compound6, withmolecularion [M−H]− atm/z 463 and a fragmention at m/z 301, could beproposed as one of ellagic-acidorquercetinhexosidestructure.Indirectconfirmationofthe quercetinderivativecouldbethefactthatquercetin3-glucoside wasfoundinthemajorityofMyricariaspeciesearlier(Iwashina, 2013).

Concentrationsofsomephenolic compoundsin leavesofM.

bracteataareshown in Table1. Significantdifferencesbetween

thegeographic locations(p<0.05)wererevealedin ellagicacid, quercetin,luteolin,andisorhamnetin.Mostsignificantly,the sam-plesdifferedinconcentrationsofquercetinandisorhamnetin.

Isorhamnetinwasdominantin theleavesofplantsfromthe Tajikistan.Kaempferideandrhamnazinalsomadeasignificant con-tributiontothetotalphenoliccontentintheleavesofplantsfrom theAltai(Fig.1).Ellagicacidwasfoundtobethesecondmajor phenolicconstituentofleavesofM.bracteata.ResultsofbothHPLC andLC-MS/MSanalysisshowedhigherconcentrationofellagicacid insampleAcomparedtosampleB.Citricacid,phenolicacids,and

theirderivatives,luteolin,kaempferol,andrhamnocitrinwerethe minorconstituentsinbothsamples.

TheseresultsareinagreementwiththefindingsofChumbalov etal.(1975)whostudiedsamplesofM.bracteatafromKazakhstan, andincontrasttoWangetal.(2008),reportedflavonesasthemajor activeingredientsofM.bracteata.Inotherstudies,therearenodata ontheabundanceofsuchcompounds.

Abroadgeographicdistributionofthespeciesissuggestiveof quantitativeorqualitative differencesinthechemical composi-tionoftheplantsowingtodifferentenvironmentalcircumstances (Keinänen etal., 1999).Theresultsobtainedin this study indi-catethatthesamplesdiffermainlyinflavonolaccumulation.The chiefdifferencebetweenthesamplesisthelowerconcentrationof isorhamnetinandthehigherlevelsofrhamnazinandkaempferide, othermethylatedmetabolitesofquercetinandkaempferol,in sam-pleA.

There are no reports in the literature about the

quan-tification and variation of phenolic compounds in species M.

bracteata.Our resultssuggest thatit is important todetermine

the chromatographic profile of this species to reveal possible chemotypes.

Theprogress intheresearch onchemicalconstituents ofM.

bracteatafromdifferentgeographicalareasformsthebasisfor

iden-tificationofpharmacologicalleadsinmedicinalplantmaterialsand forsettingthestandardsofqualitycontrol.

(4)

A.A.Chernonosovetal./RevistaBrasileiradeFarmacognosia27(2017)576–579 579

Authors’contributions

AC conducted the HPLC-MS/MS analysis and wrote the

manuscript.EKcontributedtotheHPLCexperimentsandwrote themanuscript.ELcollectedandidentifiedthesamples.Allauthors readandapprovedthefinalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgment

ThisworkwassupportedpartiallybyaRussianState-funded project(VI.62.2.2,0309-2016-0007).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2017.07.001.

References

Chumbalov, T.K., Bikbulatova,T.N.,Il’yasova, M.I., Mukhamedieva, R.M., 1975. Polyphenols ofMyricaria alopecuroides. II. Flavonoid aglycons. Chem. Nat. Compd.11,308-308.

Gewali,M.B.,2008.AspectsofTraditionalMedicineinNepal.InstituteofNatural Medicine,UniversityofToyama.

Gonchig,E.,Erdenebat,S.,Togtoo,O.,Bataa,S.,Gendaram,O.,Kim,Y.S.,Ryu,S.Y., 2008.AntimicrobialactivityofMongolianmedicinalplants.Nat.Prod.Sci.14, 1–5.

Harborne,J.B.,1975.Flavonoidbisulphatesandtheircooccurrenceswithellagic acidintheBixaceae,Frankeniaceaeandrelatedfamilies.Phytochemistry14, 1331–1337.

Iwashina,T.,2013.Flavonoidpropertiesoffivefamiliesnewlyincorporatedintothe orderCaryophyllales(Review).Bull.Natl.Mus.Nat.Sci.,Ser.B39,25–51.

Karpova,E.A.,Khramova,E.P.,2014.Phenoliccompositionandcontentof repre-sentativesofthegenusSpiraeaL.undertheindustrialpollutioninNovosibirsk. Contemp.Probl.Ecol.7,228–236.

Keinänen,M.,Julkunen-Tiitto,R.,Rousi,M.,Tahvanainen,J.,1999.Taxonomic impli-cationsofphenolicvariationinleavesofbirch(BetulaL.)species.Biochem.Syst. Ecol.27,243–254.

Kirbag,S.,Zengin,F.,Kursat,M.,2009.Antimicrobialactivitiesofextractsofsome plants.Pak.J.Bot.41,2067–2070.

Kletter,C.,Glasl,S.,Thalhammer,T.,Narantuya,S.,2008.TraditionalMongolian medicine–apotentialfordrugdiscovery.Sci.Pharm.76,49–63.

La,X.,Zhang,Y.,Zeng,Y.,2010.Recentadvanceonthechemistryandbioactivityof genusMyricaria.JQinghaiNormalUniv.(Nat.Sci.Ed.)4,52–56.

Lyakh,E.M.,Tsybulya,N.V.,2009.Tothestudyofantibacterialandantifungalactivity ofvolatileemissionsofMyricariabracteata(Tamaricaceae).Rastitel’nyeresursy [PlantResour.]45,154–156(InRussian).

Mukherjee,P.K.,Kumar,V.,Mal,M.,Houghton,P.J.,2007.Acetylcholinesterase inhibitorsfromplants.Phytomedicine14,289–300.

Nawwar,M.,Swilam,N.,Hashim,A.,Al-Abd,A.,Abdel-Naim,A.,Lindequist,U.,2013. CytotoxicisoferulicacidamidefromMyricariagermanica(Tamaricaceae).Plant Signal.Behav.8,33–41.

Rendekova,K.,Fialova,S.,Janosova,L.,Mucaji,P.,Slobodnikova,L.,2015.Theactivity ofCotinuscoggygriaScop.leavesonStaphylococcusaureusstrainsinplanktonic andbiofilmgrowthforms.Molecules21,E50.

Semenova,L.S.,1993.FlavonoidcompositionofshootsofMyricarialongifolia(Willd.) Ehrenb.Rastitel’nyeresursy[PlantResour.]29,40–42(InRussian).

Singh,K.N.,2012.Traditionalknowledgeonethnobotanicalusesofplant biodiver-sity:adetailedstudyfromtheIndianwesternHimalaya.Biodivers.Res.Conserv. 28,63–77.

Wang, Y.-Z., Guo, C.-Y., Zhong, H.-G., Zhang, W.-N., Wang, D.-L., Wang, X., Dong, F.-H., 2008. In vivo effects of pain relieving plaster on closed soft tissue injury in rabbit ears. BMC Complement. Altern. Med., http://dx.doi.org/10.1186/1472-6882-8-51.

Zeng,Y.,Chen,Z.,Zhong,L.,Li, H.,2005.Studyontheeffectsthatcausedby the traditionTibetan herb Myricariagermanica (L.)Desv.onthe immune functionofcellsandthetoxicitytesty.J.QinghaiNormalUniv.(Nat.Sci.Ed.), http://en.cnki.com.cn/Article en/CJFDTOTAL-QHSD200501018.htm (accessed May2017).

Zhang,Y.,Yuan,Y.,Cui,B.,Li,S.,2011.Studyonchemicalconstituentsfromethyl acetateextractofMyricariabracteata.ZhongguoZhongYaoZaZhi[ChinaJournal ofChineseMateriaMedica]36,1019–1023.

Imagem

Fig. 1. LC-MS/MS base peak chromatograms of MS in negative ion mode for the hydrolyzed aqueous ethanol extracts of the leaves of Myricaria bracteata from the Altai (A) and from the Tajikistan (B).

Referências

Documentos relacionados

We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a

Parte desse grupo, durante a Constituinte, já fazia parte do MUP (Movimento de Unidade Progressista), fração do PMDB já bastante organizada, que tinha como um de

Dessa forma otimizaremos o recurso assistencial – visita domiciliar – e através dele podemos instrumentar o planejamento das ações bem como

magna as tintas de tatuagem, com exceção da preta, causaram toxicidade aguda, na qual a tinta vermelha apresentou-se mais tóxica e as tintas azul e verde se

Observa-se, pela análise da figura 4 que 9,02% das referências do grupo de elevado desempenho são relativas ao fator motivacional ‘Pessoas’ enquanto apenas 4,17% das referências

Realizamos três experimentos para o estudo da vazão de gases entre as câmaras de vácuo do sistema, para três condutâncias de pequeno diâmetro (0,02 mm , 0,05mm e 0,08mm) sem

Para melhor explicitar os resultados foram construídas quadro categorias, sendo elas: Distinção entre espiritualidade / religiosidade; Benefícios que os cuidados com

Caso se queira aderir, em parte, ao argumento de Naves e reconhecer a forma jurídica não na relação de troca em si considerada, mas na relação de capital, ainda assim se pode