• Nenhum resultado encontrado

Enteritis Caused by Type 2c Canine Parvovirus in a 5-Year-Old Dog. Cláudio Wageck Canal 3 & David Driemeier 1

N/A
N/A
Protected

Academic year: 2021

Share "Enteritis Caused by Type 2c Canine Parvovirus in a 5-Year-Old Dog. Cláudio Wageck Canal 3 & David Driemeier 1"

Copied!
56
0
0

Texto

(1)

EXAMPLES - EXEMPLOS 1

CASE REPORT 2

3

Enteritis Caused by Type 2c Canine Parvovirus in a 5-Year-Old Dog 4

Veronica Machado Rolim1, Luciana Sonne1, Renata Assis Casagrande2, Suyene Oltramari 5

Souza1, Luciane Dubina Pinto3, Angelica Terezinha Barth Wouters4, Flademir Wouters4, 6

Cláudio Wageck Canal3 & David Driemeier1 7

8

1Setor de Patologia Veterinária (SPV), Faculdade de Veterinária (FaVet), Universidade 9

Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. 2Patologia Veterinária, 10

Universidade do Estado de Santa Catarina (UDESC), Lages, SC, Brazil. 3Setor de Virologia, 11

FaVet, UFRGS, Porto Alegre, RS. 4 Setor de Patologia Veterinária, Universidade Federal de 12

Lavras (UFL), Lavras, MG, Brazil. CORRESPONDENCE: D. Driemeier 13

[davetpat@ufrgs.br - Tel.: +55 (51) 3308-6107]. Faculdade de Veterinária - UFRGS. Av. 14

Bento Gonçalves n. 9090, Bairro Agronomia. CEP 91540-000 Porto Alegre, RS, Brazil. 15

16 17

ABSTRACT 18

Background: Canine parvovirosis, caused by canine parvovirus type 2 (CPV-2), emerged in 19

the 1970s as an important disease affecting dogs, causing severe hemorrhagic gastroenteritis 20

and death. It can occur in any breed, gender, and age; however, puppies of 4 to 12 weeks of 21

age are most commonly afflicted. In 2000 a new variant of the virus, called CPV-2c, was 22

discovered, and has been related to hemorrhagic gastroenteritis in dogs with up to 2 years of 23

age, although some cases have been described in older animals with a full vaccination history. 24

This paper reports a case of enteritis by canine parvovirus type 2c (CPV-2c) in a 5-year-old 25

dog. 26

Case: At necropsy a pallid oral and conjunctival mucosae were observed. The small intestine 27

showed a very reddish and wrinkled serosa, the wall was thickened, the mucosae was 28

diffusely wrinkled and yellowed with evidenced Peyer plaques and there was no content in 29

the final portion of the intestine. The mesenteric lymph nodes were enlarged and reddish. 30

Multiple suffusions on the serosa of the stomach, and petechiae and subepicardial suffusions 31

(2)

in the heart were observed. The histological findings were, collapse of the lamina propria of 32

the small intestine, and fusion of the villi, necrosis of enterocytes, atrophy and the 33

disappearance of crypts, with dilation of remaining crypts showing large rounded nuclei with 34

one or two evident nucleoli, exhibiting accentuated cellular pleomorphism in some cases 35

forming syncytia. In addition, there were bacterial colonies and fibrin adhered to the mucosae. 36

The serosa showed diffuse congestion, marked transmural multifocal hemorrhage, thrombosis 37

and fibrin deposition on the serosa surface. Necrosis of the germinative centers with moderate 38

lymphoid depletion was observed in the lymphoid aggregates of the large intestine. In the 39

bone marrow, spleen and mesenteric lymph node there were accentuated lymphoid depletion, 40

hemorrhage and moderate hemosiderosis. The remaining tissue of the thymus showed 41

accentuated multifocal to coalescent hemorrhage. The anti-parvovirus IHC showed intense 42

immunostaining of the cytoplasm of epithelial cells, mainly in the crypts of the small 43

intestine. In the spleen and lymph node there was intense immunostaining in the lymphocytes 44

of follicular centers. The PCR and sequencing techniques applied to the sample allowed the 45

identification of CPV-2c. 46

Discussion: Diarrhea in dogs has been associated with a wide variety of viral agents; the 47

canine parvovirus, rotavirus and coronavirus being the main primary pathogens involved. 48

Since CPV-2 emerged at the end of the 1970s this pathogen has gained great importance in 49

the care of dogs and is probably the most common infectious disease of canine species. 50

Shortly after appearing in the canine population, CPV-2 underwent alterations in some of its 51

amino acids, which resulted in new and better adapted viral strains. Studies in which 52

circulating viral strains have been identified have demonstrated the importance of CPV-2c in 53

outbreaks of parvovirosis in previously vaccinated puppies. There are few reports of the 54

detection of CPV-2c in adult dogs. The majority of cases described relate to dogs up to 2 ½ 55

years of age, one exception being a case involving a 12-year-old dog This new variant of 56

(3)

CPV-2 should be considered as an important pathogen in the diagnosis of causes of 57

sanguinolent diarrhea in adult dogs. 58

Keywords: CPV-2c, adult dogs, parvovirus, enteric disease. 59

60

INTRODUCTION 61

Canine parvovirosis, caused by canine parvovirus type 2 (CPV-2), emerged in the 62

1970s as an important disease affecting dogs, causing severe hemorrhagic gastroenteritis and 63

death [1]. It can occur in any breed, gender, and age; however, puppies of 4 to 12 weeks of 64

age are most commonly afflicted [5,11]. CPV-2 was rapidly replaced with the new antigenic 65

variants CPV-2a and CPV-2b [7]. In 2000 a new variant of the virus, called CPV-2c [4],was 66

discovered, and has since been reported in several parts of the world, including Brazil [13,14]. 67

This variant has been related to hemorrhagic gastroenteritis in dogs with up to 2 years of age 68

[4,7,8], although some cases have been described in older animals with a full vaccination 69

history [6,7]. The aim of this study was to describe a case of parvovirosis caused by variant 2c 70

(CPV-2c) in a 5-year-old dog, with immunohistochemical and molecular characterization. 71

72

CASE 73

A 5-year-old male mixed breed dog was submitted to necropsy with a history of 74

intense sanguinolent diarrhea over three days, vomiting, dehydration, marked apathy and 75

anorexia. It was reported that the dog had received three doses of commercial vaccine against 76

parvovirus, canine distemper, adenovirus type 1, adenovirus type 2 and parainfluenza at 45, 77

66 and 87 days of age, however, it received no yearly revaccination. 78

At necropsy a good physical condition, pallid oral and conjunctival mucosae were 79

observed. The small intestine showed a very reddish and wrinkled serosa (Figure 1a), the wall 80

was thickened, the mucosae was diffusely wrinkled and yellowed (Figure 1b) with evidenced 81

(4)

Peyer plaques and there was no content in the final portion of the intestine. The mesenteric 82

lymph nodes were enlarged and reddish. Multiple suffusions on the serosa of the stomach, and 83

petechiae and subepicardial suffusions in the heart were observed. 84

Several organs were collected, fixed in 10% formalin, routinely processed for 85

histological examination and stained with hematoxylin and eosin. Feces samples were 86

collected from the rectum for viral detection. The tissue samples were submitted to the 87

immunohistochemical (IHC) technique with anti-parvovirus monoclonal antibody (MCA 88

2064) by the peroxidase-bound streptavidin-biotin method [12]. The extraction of viral DNA 89

from the fecal sample for the detection of CPV was performed as described previously [2]. 90

The PCR was carried out for the amplification of 583 bp (base pairs) of the VP2 gene 91

(position 4003-4585), using a previously described protocol [4]. 92

The histological findings were, collapse of the lamina propria of the small intestine, 93

and fusion of the villi, necrosis of enterocytes, atrophy and the disappearance of crypts, with 94

dilation of remaining crypts showing large rounded nuclei with one or two evident nucleoli, 95

exhibiting accentuated cellular pleomorphism in some cases forming syncytia (Figure 1c). In 96

addition, there were bacterial colonies and fibrin adhered to the mucosae. The serosa showed 97

diffuse congestion, marked transmural multifocal hemorrhage, thrombosis and fibrin 98

deposition on the serosa surface. Necrosis of the germinative centers with moderate lymphoid 99

depletion was observed in the lymphoid aggregates of the large intestine. In the bone marrow, 100

spleen and mesenteric lymph node there were accentuated lymphoid depletion, hemorrhage 101

and moderate hemosiderosis. The remaining tissue of the thymus showed accentuated 102

multifocal to coalescent hemorrhage. 103

The anti-parvovirus IHC showed intense immunostaining of the cytoplasm of 104

epithelial cells, mainly in the crypts of the small intestine (Figure 1d). In the spleen and lymph 105

node there was intense immunostaining in the lymphocytes of follicular centers (Figure 1e). 106

(5)

In the liver, staining was observed in the cytoplasm of Kupffer cells. In the bone marrow there 107

was staining mainly in the cytoplasm of a few cells (Figure 1f). 108

The application of the PCR and sequencing techniques detected CPV-2c. The partial 109

amplification of the VP2 gene revealed a single band with the expected size of 583bp. 110

DISCUSSION 111

Diarrhea in dogs has been associated with a wide variety of viral agents; the canine 112

parvovirus, rotavirus and coronavirus being the main primary pathogens involved [11]. Since 113

CPV-2 emerged at the end of the 1970s this pathogen has gained great importance in the care 114

of dogs and is probably the most common infectious disease of canine species [11].Shortly 115

after appearing in the canine population, CPV-2 underwent alterations in some of its amino 116

acids, which resulted in new and better adapted viral strains [4,7]. 117

CPV-2c was detected for the first time in 2000 and rapidly spread to diverse regions of 118

the world [4,8,13,14]. Although cases of parvovirosis are typically associated with puppies of 119

4 to 12 weeks of age, the period in which a decrease in the maternal antibodies occurs, a case 120

of parvovirosis in a 5-year-old dog is reported herein. The clinical signs, as well as the 121

macroscopic and microscopic findings for this dog are similar to those described for other 122

fatal cases of canine parvovirosis [3,12]. 123

Studies in which circulating viral strains have been identified have demonstrated the 124

importance of CPV-2c in outbreaks of parvovirosis in previously vaccinated puppies 125

[8,13,14]. There are few reports of the detection of CPV-2c in adult dogs [6,7]. The majority 126

of cases described relate to dogs up to 2 ½ years of age, one exception being a case involving 127

a 12-year-old dog [7]. 128

Hemorrhagic gastroenteritis in dogs can sporadically be associated with intestinal 129

infections by type A Clostridium perfringens, parasitism by Ancylostoma caninum, [3] and 130

Cryptosporidium parvum [9]. Recently a new canine circovirus (DogCV) was described in the

(6)

liver of a dog with severe hemorrhagic gastroenteritis, vasculitis, and granulomatous 132

lymphadenitis [10]. DogCV also could be a complicating factor in other canine infectious 133

diseases, as with PCV2 [10]. 134

In conclusion, CPV-2, besides being a principal infectious agent in young dogs, has 135

evolved the new variant 2c which should be considered an important pathogen in the 136

differential diagnosis of the causes of sanguinolent diarrhea. 137

138

Declaration of interest. The authors report no conflicts of interest. The authors alone are 139

responsible for the content and writing of the paper. 140

141

REFERENCES 142

1 Appel M.J.G., Scott F.W. & Carmichael L.E. 1979. Isolation and immunisation studies 143

of a canine parvo-like virus from dogs with haemorrhagic enteritis. Veterinary Record. 144

105: 156-159. 145

2 Boom R., Sol C.J.A., Salimans M.M.M., Jansen C.L., Wertheim-van Dillen P.M.E. & 146

Noordaa V.D. 1990. Rapid and simple method for purification of nucleic acids. Journal of 147

Clinical Microbiology. 28: 495-503.

148

3 Brown C.C., Baker D.C. & Barker I.K. 2007. Alimentary system. In: Maxie M.G. (Ed.). 149

Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals. 5th edn. v.2. Philadelphia:

150

Saunders Elsevier, pp.3-293. 151

4 Buonavoglia C., Martella V., Pratelli A., Tempesta M., Cavalli A., Buonavoglia D., 152

Bozzo G., Elia G., Decaro N. & Carmichael L. 2001. Evidence for evolution of canine 153

parvovirus type 2 in Italy. Journal of General Virology. 82(12): 3021-3025. 154

5 Decaro N. & Buonavoglia C. 2012. Canine parvovirus - A review of epidemiological and 155

diagnostic aspects, with emphasis on type 2c. Veterinary Microbiology. 155: 1-12. 156

(7)

6 Decaro N., Cirone F., Desario C., Elia G., Lorusso E., Colaianni M.L., Martella V. &

157

Buonavoglia C. 2009. Severe parvovirus in a 12-year-old dog that had been repeatedly 158

vaccinated. Veterinary Record. 164: 593-595. 159

7 Decaro N., Desario C., Elia G., Martella V., Mari V., Lavazza A., Nardi M. &

160

Buonavoglia C. 2008. Evidence for immunisation failure in vaccinated adult dogs infected 161

with canine parvovirus type 2c. New Microbiologica. 31: 125-130. 162

8 Decaro N., Martella V., Desario C., Bellacicco A.L., Camero M., Manna L., D’Aloja 163

D. & Buonavoglia C. 2006. First detection of canine parvovirus type 2c in pups with 164

haemorrhagic enteritis in Spain. Journal of Veterinary Medical Science. 53(10): 468-472. 165

9 Hall E.J. & German A.J. 2005. Diseases of the small intestine. In: Ettinger S.J. & 166

Feldman E.C (Eds). Veterinary Internal Medicine. 6th edn. v.2. St. Louis: Elsevier 167

Saunders, p.1332-1377. 168

10 Li L., McGraw S., Zhu K., Leutenegger C.M., Marks S.L., Kubiski S., Gaffney P., 169

Dela Cruz Jr. F.N., Wang C., Delwart E. & Pesavento P.A. 2013. Circovirus in tissues 170

of dogs with vasculitis and hemorrhage. Emerging Infectious Diseases. 1994): 534-541. 171

11 Mccaw D.L. & Hoskins J.D. 2006. Canine viral enteritis. In: Greene C.E. (Ed). Infectious 172

diseases of the dog and cat. Cap.8. St. Louis: Elsevier Saunders, pp.63-73.

173

12 Oliveira E.C., Pescador C.A., Sonne L., Pavarini S.P., Santos A.S., Corbellini L.G. & 174

Driemeier D. 2009. Análise imuno-histoquímica de cães naturalmente infectados pelo 175

parvovírus canino. Pesquisa Veterinária Brasileira. 29(2): 131-136. 176

13 Pinto L.D., Streck A.F., Gonçalves K.R., Souza C.K., Corbellini A.O., Corbellini L.G. 177

& Canal C.W. 2010. Typing of canine parvovirus strains circulating in Brazil between 178

2008 and 2010. Virus Research. 165(1): 29-33. 179

(8)

14 Streck A.F., Souza C.K., Gonçalves K.R., Zang L., Pinto D.B. & Canal C.W. 2009. 180

First detection of canine parvovirus type 2c in Brazil. Brazilian Journal of Microbiology. 181

40(3): 465-469. 182

183

Figure 1. Canine parvovirosis in dog. Small intestine: A: very reddish and wrinkled serosa. 184

B: thickened intestinal wall and mucosae diffusely wrinkled and yellowed. C: collapsed 185

intestinal lamina propria, with fusion of the villi, atrophy and disappearance of crypts, and 186

dilation of the remaining crypts (HE, Obj. 10). Immunohistochemistry for CPV-2, Biotin-187

streptavidin peroxidase method: D: small intestine with staining of enterocytes, mainly of 188

crypts (Obj. 10). E: lymph node with immunostaining in lymphocytes of follicular centers 189

(Obj. 20). F: bone marrow with staining in few cells (Obj. 40). 190

191 192

CASE REPORT 193

Aspectos histopatológicos e imuno-histoquímicos da raiva em raposas

194

Cerdocyon thous

195

H

istopathological and

I

mmunohistochemical

A

spects of

R

abies in

F

oxes

196

Cerdocyon thous

197

198

Jeann Leal de Araújo1, Antônio Flavio Medeiros Dantas1, Glauco José Nogueira de 199

Galiza2, Pedro Miguel Ocampos Pedroso3, Maria Luana Cristiny Rodrigues Silva1, 200

Luciano da Anunciação Pimentel4& Franklin Riet-Correa1 201

202

1Hospital Veterinário, Laboratório de Patologia Animal, CSTR, UFCG, Campus de Patos, PB, 203

Brazil. 2Laboratório de Patologia Veterinária, Departamento de Patologia, CCS, UFSM, Santa 204

Maria, RS, Brazil. 3Laboratório de Patologia Veterinária, CCA, UFRB, Cruz das Almas, BA, 205

Brazil. 4Universidade de Cuiabá, Cuiabá, MT, Brazil. CORRESPONDENCE: A.F.M. Dantas 206

[dantas.af@uol.com.br - Tel.: +55 (83) 9929-8064]. Hospital Veterinário, Laboratório de 207

Patologia Animal, CSTR, UFCG, Campus de Patos. Avenida Universitária S/N, Santa 208

Cecilia. CEP 58708-110 Patos, PB, Brazil. 209

(9)

210

ABSTRACT 211

Background: Several wild canids are considered reservoirs of rabies virus in the Northeast of 212

Brazil, two wild canids have been reported as reservoirs of rabies virus Cerdocyon thous 213

(crab-eating fox) and Pseudalopex vetulus (hoary fox) (previously called Dusicyon vetulus). 214

The diagnosis of rabies in foxes is usually performed through fluorescent antibody test (FAT) 215

and mouse inoculation test (MIT). However, until the moment, there are no detailed 216

histopathological and immunohistochemical (IHC) description studies in foxes affected by 217

this disease studies. Therefore, the aim of this work was the characterization of pathological 218

and IHC findings of foxes with rabies sent to the Laboratory of Animal Pathology (LPA) of 219

the Federal University of Campina Grande (UFCG) in Patos, semiarid region of Paraiba, 220

Brazil. 221

Case: Two foxes were sent to the LPA, phenotypic species identification through analysis of 222

morphological aspects was performed and posteriorly necropsied. Fragments of organs of the 223

thoracic and abdominal cavities, salivary glands, eye and Gasser ganglia were collected in 224

addition to the central nervous system (CNS) that was collected integer and fixed at 10% 225

buffered formalin. Later, serial sections of the 16 fragments of the CNS were performed, 226

measuring about 0.5 cm thick and cleaved. Fragments of cerebrum, cerebellum, brainstem, 227

spinal cord and salivary glands were sent to performing FAT and MIT. Paraffin blocks with 228

fragments of the hippocampus were selected and submitted to IHC. Macroscopically, the two 229

foxes had multiple skin lacerations, bone fractures and ruptures of abdominal organs from 230

injuries. The vessels of the meninges were slightly congested. Histologically, the CNS had 231

diffuse non-suppurative encephalitis, with inflammatory infiltrate composed primarily by 232

lymphocytes and plasma cells, forming mononuclear perivascular cuffing, and gliosis 233

associated with mild eosinophilic intracytoplasmic inclusion corpuscles primarily in neurons 234

(10)

of the cortex, basal ganglia, hippocampus, thalamus, colliculi, bridge, obex and cerebellum. 235

Meningitis and mild myelitis non-suppurative were also observed in both cases with rare viral 236

inclusions in spinal cord neurons. Similar inflammation was also observed in the Gasser 237

ganglion and in others peripheral nerve ganglia. Adrenal and salivary glands showed 238

multifocal areas of moderate mononuclear inflammatory infiltrate composed mainly by 239

macrophages and plasma cells. Strong positive IHC labeling was observed for rabies in the 240

neurons in different brain regions, especially in the cerebral cortex and in Purkinje cells of the 241

cerebellum. In both cases the diagnosis of rabies was confirmed by immunofluorescence and 242

mouse inoculation. 243

Discussion: The diagnosis of rabies in foxes wasconducted through the characteristic 244

histopathologic findings of the disease observed in the CNS and confirmed by the FAT, MIT 245

and IHC. Although the histopathological findings in foxes are similar to what is observed in 246

other species, the severity of inflammatory lesions and the large amount of inclusion bodies in 247

the nervous tissue is an outstanding feature, regardless of the inflammatory response. The 248

diagnosis of rabies in foxes can be achieved by characteristic histopathologic findings of the 249

CNS, supported by evaluating peripheral nerve ganglia, salivary glands and adrenal which 250

may also present similar microscopic lesions. Auxiliary Laboratory tests must be performed, 251

such as FAT, MIT and IHC for confirmation of the disease. 252

Keywords: wild animals, canids, Lyssavirus. 253

Descritores: animais selvagens, canídeos, Lyssavirus. 254

255

INTRODUÇÃO

256

Vários canídeos silvestres são considerados reservatórios do vírus rábico, a exemplo 257

da raposa vermelha (Vulpes vulpes), distribuída mundialmente na Europa, América do Norte, 258

norte da África e na Austrália [4]. 259

(11)

No Brasil, o ciclo silvestre terrestre da raiva é representado principalmente por saguis 260

(Callithrix jacchus) ou raposas (Cerdocyon thous). Na região Nordeste, dois canídeos 261

silvestres já foram relatados como reservatórios do vírus rábico: Cerdocyon thous (crab-eating

262

fox, cachorro-do-mato) e Pseudalopex vetulus (hoary fox, raposa cinzenta) (previamente 263

denominada Dusicyon vetulus) [3,6]. Existem relatos de casos de raposas com raiva e 264

transmissão para humanos nos estados do Ceará, Paraíba, Pernambuco, Bahia e Minas Gerais 265

[1,2] e dos 329 casos de raiva notificados no período de 2002 a 2009, cerca de 88% eram de 266

canídeos silvestres, todos ocorridos na região Nordeste, onde muitos desses eram mantidos 267

como animais de estimação. Segundo dados da Secretaria de Vigilância em Saúde (SVS/MS) 268

[13], no Brasil, os canídeos silvestres foram responsáveis por 7,9% dos 165 óbitos de 269

humanos com raiva, no período de 1986-2006. No Estado da Paraíba entre os anos de 2007 e 270

2010, foram notificados sete casos de raiva em cães e gatos, e cinco casos em canídeos 271

silvestres [13]. 272

Até o momento, não existem estudos detalhados de descrição histopatológica e imuno-273

histoquímica em raposas acometidas por essa doença, portanto, o objetivo do presente 274

trabalho é a caracterização dos achados patológicos e imuno-histoquímicos de raposas com 275

raiva encaminhadas ao Laboratório de Patologia Animal (LPA) da Universidade Federal de 276

Campina Grande (UFCG) em Patos, semiárido da Paraíba, Brasil. 277

CASOS 278

As raposas utilizadas foram encaminhas mortas para o LPA da UFCG, realizada a 279

identificação fenotípica da espécie através da análise de aspectos morfológicos do animal com 280

base no Guia de Identificação de Canídeos Brasileiros [10] e posteriormente necropsiadas. 281

Foram coletados fragmentos de órgãos das cavidades torácica e abdominal, glândulas 282

salivares, globo ocular e gânglio de Gasser, além do sistema nervoso central (SNC) que foi 283

coletado e fixado em formol tamponado a 10%. Posteriormente foram realizados cortes 284

(12)

seriados do encéfalo, medindo aproximadamente 0,5 cm de espessura e clivados 16 285

fragmentos do SNC identificados: 1) córtex frontal, 2) córtex parietal, 3) córtex temporal, 4) 286

córtex occipital, 5) núcleos da base, 6) hipocampo, 7) tálamo, 8) colículo rostral, 9) colículo 287

caudal, 10) pedúnculos cerebelar, 11) ponte, 12) óbex, 13) cerebelo, 14) medula cervical, 15) 288

medula torácica e 16) medula lombar. Para a confecção das lâminas histológicas, os 289

fragmentos clivados foram processados rotineiramente e coradas pela técnica de hematoxilina 290

e eosina (HE). 291

Seguindo protocolos estabelecidos previamente [5,8] foram realizadas as técnicas de 292

imunofluorescência direta (IFD) e inoculação intracerebral em camundongos (ICC), 293

respectivamente, em fragmentos do cérebro, cerebelo, tronco encefálico, medula espinhal e 294

glândulas salivares das raposas foram enviados para a execução dessas técnicas. 295

Blocos de parafina com fragmentos do hipocampo foram selecionados e submetidos à 296

técnica de imuno-histoquímica para a detecção do vírus da raiva. Após desparafinizanação e 297

reidratação dos tecidos, foi realizada recuperação antigênica com solução de citrato (pH 6,0) 298

em forno micro-ondas, em potência máxima, por dez min. O anticorpo primário utilizado era 299

policlonal para raiva produzido em cabras marcado com FITC (anticorpo conjugado de 300

isotiocianato de fluorescência - Chemicon #5199)1, diluído 1:1000 em solução tamponada 301

fosfato salina (PBST) com Tween® 20 (Sigma P2287)2, e incubado por 60 min a 37Cº. O 302

anticorpo secundário biotilinilado e o complexo estreptavidina-biotina-peroxidase 303

(LSAB+System HRP)3 foram utilizados consecutivamente, incubados à temperatura ambiente 304

por 30 min e marcados através da adição do DAB + Substrate - Choromogen System3 e contra 305

corados com hematoxilina de Harris. Como controle positivo foi utilizado secções 306

histológicas de casos confirmados de raiva em bovinos. Como controle negativo, as mesmas 307

secções foram utilizadas, com substituição do anticorpo primário por PBST. 308

(13)

Esses casos ocorreram em anos distintos, sendo o primeiro em maio de 2010 e o 309

segundo em abril de 2013. As duas raposas enviadas foram identificadas como pertencentes à 310

espécie Cerdocyon thous. Segundo informações obtidas dos moradores da zona rural do 311

Município de São José de Espinharas - PB, local onde os animais foram encontrados, as 312

raposas foram atropeladas após terem sido vistas com sinais nervosos caracterizados por 313

incoordenação, perda de equilíbrio, acentuado balançar compulsivo da cabeça e aparente 314

debilidade muscular. 315

Macroscopicamente as duas raposas apresentavam múltiplas lacerações cutâneas, 316

fraturas ósseas e rupturas de órgãos abdominais provenientes de traumatismos. Os vasos das 317

leptomeninges estavam levemente congestos. 318

Histologicamente verificou-se reação inflamatória mononuclear, principalmente no 319

SNC, variando no grau de intensidade e sua localização (Tabela 1). Havia encefalite não 320

supurativa, caracterizada pela presença de infiltrado inflamatório constituído principalmente 321

por linfócitos e plasmócitos, formando manguitos perivasculares (Figura 1A), associada a 322

discreta gliose e corpúsculos de inclusões eosinofílicos intracitoplasmáticos principalmente 323

em neurônios dos córtices, núcleos da base, hipocampo (Figura 1B), tálamo, colículos, ponte, 324

óbex e cerebelo. Meningomielite linfoplasmocitária discreta com raras inclusões virais em 325

neurônios da medula espinhal também foram observadas nos dois casos. 326

Inflamação semelhante também foi observada nos gânglios nervosos periféricos, 327

glândulas salivares e adrenais dos dois casos. Havia infiltrado inflamatório principalmente de 328

linfócitos e plasmócitos entre os feixes nervosos do gânglio de Gasser, caracterizando 329

ganglioneurite não supurativa (Figura 1C), associada a raras inclusões virais 330

intracitoplasmáticas em neurônios. Ganglioneurite não supurativa também foi observada no 331

gânglio ciliar do primeiro caso. Infiltrado linfoplasmocitário também foi encontrado nas 332

glândulas salivares (Figura 1D) e nas adrenais dos dois casos, característicos de adenite e 333

(14)

adrenalite não supurativa. Corpúsculos de inclusões raramente foram verificados em 334

agregados de neurônios distribuídos perifericamente a essas estruturas glandulares. 335

No exame de IFD e na ICC o resultado foi positivo em todos os fragmentos testados 336

para o vírus da raiva. 337

Pela imuno-histoquímica os dois casos marcaram fortemente com anticorpos para o 338

vírus rábico, demonstrando múltiplos agregados de grânulos distribuídos no pericário, como 339

também na forma de corpúsculos grandes, únicos ou múltiplos no citoplasma de neurônios do 340

córtex (Figura 2A) e ponte (Figura 2B). No controle negativo não foram observadas nenhum 341

tipo de imunomarcação (Figura 2C). 342

343

DISCUSSÃO 344

O diagnóstico da raiva em raposas foi realizado através dos achados histopatológicos 345

característicos da doença, observados no SNC e confirmados pela IFD, ICC e IHQ. 346

Apesar dos achados histopatológicos encontrados nas raposas serem semelhantes ao 347

que são observados em outras espécies [14], a severidade das lesões inflamatórias e a grande 348

quantidade de corpúsculos de inclusão no tecido nervoso é uma característica marcante, 349

independente da resposta inflamatória. A inflamação não supurativa e a presença de inclusões 350

observadas nos gânglios nervosos periféricos encontrados ao redor ou dentro do tecido das 351

glândulas salivares e das adrenais, semelhantemente a reação inflamatória observada no SNC, 352

podem auxiliar no diagnóstico dessa patologia, principalmente nos casos em que não são 353

observadas inclusões no SNC. As glândulas salivares também tem sido um importante órgão 354

para a realização do isolamento viral do Lyssavirus, já tendo sido encontrada positividade 355

para raiva em glândulas salivares avaliadas por outros autores [11]. 356

Diferentemente dos herbívoros, onde geralmente as principais lesões são cerebelares, 357

os carnívoros tendem a apresentar lesões mais intensas na região de hipocampo, entretanto, de 358

(15)

forma semelhante aos bovinos, pode haver áreas com pouca ou ausente reação inflamatória 359

[14]. Um aspecto importante da análise histopatológica é a realização de cortes seriados do 360

sistema nervoso central, uma vez que a localização e intensidade das lesões podem variar 361

entre as regiões do SNC, não havendo uma uniformidade. 362

A forte marcação nos neurônios do hipocampo no presente trabalho através da imuno-363

histoquímica, difere dos achados de Stein et al. [12] que encontraram uma marcação 364

moderada no hipocampo de raposas da espécie Urocyon cinereoargenteus e Vulpes vulpes. 365

Apesar das implicações legais, muitas pessoas tem o hábito de criar raposas e outros 366

animais silvestres no Nordeste brasileiro. Essa tradição aumenta significativamente o risco de 367

transmissão da raiva para humanos e outros animais. No ano de 2012, duas pessoas morreram 368

no Nordeste vítimas de raiva transmitidas por animais silvestres [13]. No Estado da Paraíba, a 369

raposa tem sido o animal silvestre com maior número de agressões contra humanos, havendo 370

no período de 2000 a 2003, cerca de 24 casos de agressões em humanos por raposas [7]. 371

Propõe-se que a ocorrência de raiva em herbívoros nos Estados da Paraíba e 372

Pernambuco é causada principalmente por uma variante do vírus chamada de RABV, 373

relacionada a morcegos hematófagos e que ela está circulante nessa área do Nordeste por pelo 374

menos sete anos, isolada por barreiras geográficas [9]. Sugere-se ainda, a presença de duas 375

ramificações de Lyssavirus na região da Paraíba, sendo uma associada com quirópteros e 376

outra com carnívoros. Entretanto, existe uma variabilidade genética nessas ramificações, 377

subdividindo o grupo de quirópteros em “morcegos insetívoros” e “morcegos hematófagos”, e 378

o grupo dos carnívoros em “cão”, “raposa 1” e “raposa 2” (está mais próxima do grupo “cão”) 379

[7]. Essa existência de variabilidade entre as ramificações das variantes do vírus rábico sugere 380

que pelo menos dois grupos de vírus coexistem na mesma região e apesar de somente a 381

variante de morcegos hematófagos ter sido incriminada como causadora da raiva em 382

herbívoros, a criação de animais silvestres como animais de estimação no Nordeste favorece o 383

(16)

risco de transmissão da doença para os animais de produção, sugerindo um papel importante 384

das raposas nesse cenário. A presença da variabilidade genética das variantes de raposas, 385

sugerem que estes animais tem um papel muito mais importante na manutenção e 386

disseminação da raiva no Brasil do que antes se pensava, tendo uma implicação de saúde 387

pública significante já que nessa região o monitoramento desses animais é muitas vezes 388

ineficiente ou ausente, e a prática da vacinação de animais silvestres não tem sido empregada 389

no país [2]. 390

O diagnóstico da raiva em raposas pode ser realizado pelos achados histopatológicos 391

característicos do SNC, auxiliado pela avaliação dos gânglios nervosos periféricos, glândulas 392

salivares e adrenais que também podem apresentar lesões microscópicas semelhantes. Em 393

adição os exames laboratoriais auxiliares devem ser realizados, como IFD, ICC e IHQ para a 394

confirmação da doença. 395

MANUFACTURERS 396

1Chemicon International Inc. Temecula, CA, USA. 397

2Sigma-Aldrich Corp. St. Louis, MO, USA. 398

3Dako Cytomation. Carpinteria, CA, USA. 399

400

Declaration of interest. The authors report no conflicts of interest. The authors alone are 401

responsible for the content and writing of the paper. 402

REFERENCES 403

1 Araújo F.A.A. 2002. Raiva humana no Brasil: 1992-2001. 90f. Belo Horizonte, MG. 404

Dissertação (Mestrado em Medicina Veterinária) - Programa de Pós-graduação em Medicina 405

Veterinária, Universidade Federal de Minas Gerais. 406

2 Bernardi F., Nadin-Davis S.A., Wandeler A.I., Armstrong J., Gomes, A.A.B., Lima 407

F.S., Nogueira F.R.B. & Ito F.H. 2005. Antigenic and genetic characterization of rabies 408

(17)

viruses isolated from domestic and wild animals of Brazil identifies the hoary fox as a rabies 409

reservoir. Journal of General Virology.86(11): 3153-3162. 410

3 Carnieli Jr. P., Brandão, P.E., Carrieri M.L., Castilho J.G., Macedo C.I., Machado 411

L.M., Rangel N., Carvalho R.C., Carvalho V.A., Montebello L., Wada M. & Kotait I. 412

2008. Characterization of rabies virus isolated from canids and identification of the main wild 413

canid host in Northeastern Brazil. Virus Research. 131(1): 33-46. 414

4 Childs J.E. & Real L.A. 2007. Epidemiology. In: Jackson A.C. & Wunner W.H. (Eds). 415

Rabies. San Diego: Academic Press, pp.123-199.

416

5 Dean D.J., Abelseth M.K. & Atanasiu P. 1996. The fluorescent antibody test. In: Meslin 417

F.X., Kaplan M.M. & Koprowski H. (Eds). Laboratory Techniques in Rabies. 4th edn. 418

Geneva: World Health Organization, pp.88-93. 419

6 Gomes A.A.B. 2004. Epidemiologia da raiva: caracterização de vírus isolados de animais 420

domésticos e silvestres do semi-árido paraibano da região de Patos, Nordeste do Brasil. 107f. 421

São Paulo, SP. Tese (Doutorado em Medicina Veterinária) - Programa de Pós-graduação em 422

Epidemiologia Experimental Aplicada às Zoonoses, Universidade de São Paulo. 423

7 Gomes A.A.B., Silva M.L.C.R., Bernardi F., Sakai T., Itou T. & Ito F.H. 2012. 424

Molecular epidemiology of animal rabies in the semiarid region of Paraíba, Northeastern 425

Brazil. Arquivos do Instituto Biológico. 79(4): 611-615. 426

8 Koprowski H. 1996. The mouse inoculation test. In: Meslin F.X., Kaplan M.M. & 427

Koprowski H. (Eds). Laboratory Techniques in Rabies. 4th edn. Geneva: World Health 428

Organization, pp.80-86. 429

9 Mochizuki N., Kawasaki H., Silva M.L.C.R., Afonso J.A.B., Itou T., Fumio H. & Sakai 430

T. 2012. Molecular epidemiology of livestock rabies viruses isolated in the northeastern 431

Brazilian states of Paraíba and Pernambuco from 2003-2009. BMC Research Notes. 5(32): 1-432

7. 433

(18)

10 Ramos Jr. V.A., Pessutti C. & Chieregatto C.A.F.S. 2003. Guia de Identificação dos 434

Canídeos Silvestres Brasileiros. Sorocaba: JoyJoy Studio Ltda. - Comunicação Ambiental,

435

35p. 436

11 Silva M.L.C.R, Lima F.S., Gomes A.A.B., Azevedo S.S., Alves C.J., Bernardi F. & Ito 437

F.H. 2009. Isolation of rabies virus from the parotid salivary glands of foxes (Pseudalopex 438

vetulus) from Paraíba State, Northeastern Brazil. Brazilian Journal of Microbiology. 40(3):

439

446-449. 440

12 Stein L.T., Rech R.R., Harrison L. & Brown C.C. 2010. Immunohistochemical study of 441

rabies virus within the central nervous system of domestic and wildlife species. Veterinary 442

Pathology. 47(4): 630-633.

443

13 SVS - Ministério da Saúde. Fundação Nacional de Saúde. 2012. Mapas da Raiva no 444

Brasil. Brasília: Organização Pan-Americana da Saúde; Organização Mundial da Saúde;

445

Ministério da Saúde. 446

14 Zachary J.F. 2009. Sistema Nervoso. In: McGavin M.D. & Zachary J.F. (Eds). Bases da 447

Patologia em Veterinária. 4.ed. Rio de Janeiro: Elsevier, pp.833-971.

448

Tabela 1. Distribuição das lesões no SNC de raposas (Cerdocyon thous) com raiva de acordo 449

com a intensidade da resposta inflamatória e presença de corpúsculos de Negri. 450

Figura 1. Lesões histológicas de raposas (Cerdocyon thous) com raiva. (A) Córtex occipital 451

mostrando manguitos mononucleares perivasculares e corpúsculos de Negri (seta) [HE, 10x]. 452

(B) Hipocampo com múltiplos corpúsculos de Negri (setas) [HE, 20x]. (C) Gânglio trigêmeo 453

com infiltrado inflamatório mononuclear [HE, 20x]. (D) Glândula salivar com inflamação não 454

supurativa [HE, 20x]. 455

Figura 2. Seções do encéfalo de raposas (Cerdocyon thous) com raiva, submetidas à técnica 456

de imuno-histoquímica. (A) Córtex e (B) Tronco encefálico (ponte) mostrando múltiplos 457

agregados de grânulos amarronzados distribuídos no pericário e prolongamentos 458

citoplasmáticos de neurônios, caracterizando imunomarcação positiva para raiva. (C) Córtex. 459

Controle negativo (sem anticorpo). Técnica de imuno-histoquímica método da estreptavidina-460

biotina-peroxidase (LSAB+System HRP) contracorados com Hematoxilina de Harris [Barra = 461

20 µm]. 462

(19)

463

CASE REPORT

464

Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil 465

Juliano Souza Leal1,2, Caroline Pinto de Andrade2, Gabriel Laizola Frainer 466

Correa2, Gisele Silva Boos2, Matheus Viezzer Bianchi2, Sergio Ceroni da 467

Silva2 ,Rui Fernando Felix Lopes3 & David Driemeier2 468

469 470

1Programa de Pós-graduação em Ciências Veterinárias (PPGCV), Faculdade de Veterinária 471

(FaVet), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. 472

2Setor de Patologia Veterinária (SPV), Departamento de Patologia Clínica Veterinária 473

(DPCV), FAVET, UFRGS, Porto Alegre, RS, Brazil. 3Departamento de Ciências 474

Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS. 475

CORRESPONDENCE: J.S. Leal [julianoob@gmail.com - Tel.: +55 (51) 3308 3631]. Setor 476

de Patologia Veterinária, FAVET, UFRGS. Av. Bento Gonçalves n. 9090, Bairro Agronomia. 477

CEP 91540-000 Porto Alegre, RS, Brazil. 478

(20)

20 ABSTRACT

480

Background: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep 481

flocks and goat herds. The transfer of animals or groups of these between sheep farms is 482

associated with increased numbers of infected animals and with the susceptibility or the 483

resistance to natural or classical scrapie form. Although several aspects linked to the etiology 484

of the natural form of this infection remain unclarified, the role of an important genetic

485

control in scrapie incidence has been proposed. Polymorphisms of the PrP gene (prion 486

protein, or simply prion), mainly in codons 136, 154, and 171, have been associated with the 487

risk of scrapie. 488

Case: One animal from a group of 292 sheep was diagnosed positive for scrapie in the 489

municipality of Valparaíso, state of São Paulo, Brazil. The group was part of a flock of 811 490

free-range, mixed-breed Suffolk sheep of the two genders and ages between 2 and 7 years 491

from different Brazilian regions. Blood was collected for genotyping (for codons 136, 141, 492

154 and 171), and the third lid and rectal mucosa were sampled for immunohistochemistry 493

(IHC) for scrapie, from all 292 animals of the group. IHC revealed that seven (2.4%) animals 494

were positive for the disease. Collection of samples was repeated for 90 animals, among 495

which the seven individuals diagnosed positive and 83 other animals that had some degree of 496

kinship with those. These 90 sheep were sacrificed and necropsied, when samples of brain 497

(obex), cerebellum, third eyelid, rectal mucosa, mesenteric lymph node, palatine tonsil, and 498

spleen were collected for IHC. The results of IHC analyses carried out after necropsy of the 499

seven positive animals submitted to the second collection of lymphoreticular tissueand of the 500

83 animals with some degree of kinship with them confirmed the positive diagnosis obtained 501

in the first analysis, and revealed that three other sheep were also positive for scrapie. 502

Samples of 80 animals (89%) were negative for the disease in all organs and tissues analyzed. 503

In turn, 10 sheep (11%) were positive, presenting immunoreactivity in one or more tissues. 504

(21)

21 Genotyping revealed the presence of four of the five alleles of the PrP gene commonly 505

detected in sheep: ARR, ARQ, VRQ and ARH. These allele combinations formed six 506

haplotypes: ARR/ARR, ARR/ARQ, ARH/ARH, ARQ/ARH, ARQ/ARQ and ARQ/VRQ. 507

Animals were classified according to susceptibility to scrapie, when 8.9% of the genotyped 508

sheep were classified into risk group R1 (more resistant, with no restriction to breeding). In 509

turn, 40% of the animals tested ranked in groups R4 and R5 (genetically very susceptible, 510

cannot be used for breeding purposes). 511

Discussion: The susceptibility of sheep flocks depends on the genetic pattern of animals and 512

is determined by the sequence of the gene that codifies protein PrP. Additionally, numerous 513

prion strains are differentiated based on pathological and biochemical characteristics, and may 514

affect animals differently, depending on each individual’s genotype. Most epidemiologic data 515

published to date indicate that animals that carry the ARR/ARR genotype are less susceptible 516

to classical scrapie. However, in the present study, the fact that two scrapie-positive sheep 517

presented the haplotype ARR/ARR indicates that this genotype cannot always be considered 518

an indicator of resistance to the causal agent of the classical manifestation of the disease. The 519

coexistence in the same environment of several crossbred animals from different flocks and 520

farms, which characterizes a new heterogeneous flock, may have promoted a favorable 521

scenario to spread the disease, infecting animals in the most resistant group. 522

Keywords: biopsy, scrapie, TSEs, immunohistochemistry. 523

Descritores: biopsia, scrapie clássico, EETs, imuno-histoquímica. 524

525

INTRODUCTION 526

Scrapie, also called epizootic tremor, is a transmissible spongiform encephalopathy 527

(TSE) that affects sheep flocks and goat herds [44]. The relocation of animals to and from 528

sheep farms has been associated with increased numbers of infected animals [28,39]. Once it 529

(22)

22 is introduced in a flock, the disease may be transmitted both vertically, from ewe to lamb, and 530

horizontally, across animals [15,39,49]. Many aspects surrounding the etiology of the natural 531

form of this infection remain to be clarified, though the existence of an important genetic 532

control has been proposed to explain the disease’s incidence [24]. The analysis of the gene 533

PrP (prion protein, or simply prion) in ovine of different breeds has drawn attention to the 534

interaction between host genotype polymorphisms and susceptibility to the infectious agent of 535

scrapie [10,21-23,31]. 536

Single nucleotide polymorphisms (SNT) have been linked to susceptibility or 537

resistance to classical scrapie. These polymorphisms occur at codons 136 (A or V, alanine or 538

valine), 154 (R or H, arginine or histidine) and 171 (R, Q or H, arginine, glutamine or 539

histidine) [16]. The diagnosis of the classical form in sheep with haplotype A136R154R171 is 540

rare [24]. Under natural exposure conditions, this genotype (ARR/ARR) has been 541

acknowledged as having the lowest risk for the classical form [16]. This case report describes

542

the occurrence of an outbreak in a flock of mixed Suffolk sheep of varied origins in the state 543

of São Paulo, southeastern Brazil, when the disease was diagnosed in two animals carrying 544

the genotype ARR/ARR, compatible with classical scrapie. 545

546

CASE 547

In 2011, one ovine head from a group of 292 animals was diagnosed with the classical 548

form of scrapie. These sheep were part of a larger flock of 811 free-range animals of both 549

genders and between 2 and 7 years of age that were brought from southern, southeastern and 550

midwestern Brazil. Since the animal died, and diagnosis was carried out after the death, a 551

decision was made to collect blood samples from all 292 animals of the group, for sequencing 552

and genotyping (for codons 136, 141, 154 and 171). In addition, the third eyelid and the rectal 553

mucosa of all 292 animals were biopsied for immunohistochemistry (IHC). After IHC, a new 554

(23)

23 collection was conducted in 90 animals (approximately 30% of the original group). These 555

included the animals with positive diagnosis in the first collection, and those that had some 556

degree of kinship with scrapie-positive sheep in the original group. These animals were 557

sacrificed and necropsied to collect brain tissue (obex), cerebellum, third eyelid, rectal 558

mucosa, mesenteric lymph node, palatine tonsil, and spleen used in the IHC analyses. 559

Tissue samples were collected and processed for histology and IHC for PrPSc 560

following the methodology proposed by O’Rourke et al. [43]. Rectal biopsy samples were 561

collected and processed according to Espenes et al. [17]. Anti-prion1 monoclonal antibodies 562

F89/160.1.5 and F99/97.6.1 were diluted to a 1:500 solution and added to samples, which 563

were then incubated in a humid chamber at 4ºC for 12 h [34]. 564

Blood was collected by punction of the jugular vein using EDTA as anticoagulant and 565

stored at -20ºC for subsequent processing. Genomic DNA of sheep was extracted using 500 566

μL whole blood and the QIAmp™ DNA Blood Kit2 according to the manufacturer’s 567

instructions. PCR was carried out using the DNA sample, 15 pmol each primer, 1X PCR 568

buffer (Tris-HCl pH 8.4, 50 mM KCl)3, MgCl

2 1.5 mM, dNTP4 200 μM, and 1U Platinum™ 569

enzyme Taq DNA Polymerase3 according to the following cycles: 95ºC for 5 min, 35 cycles 570

at 95ºC for 30 s and at 58ºC for 30 s, and 72ºC for 30 s. PCR was performed using a forward 571

primer flanking the 136 codon position (5’-ATGAAGCATGTGGCAGGAGC-3’) and a 572

reverse primer flanking the 171 codon position (5’-GGTGACTGTGTGTTGCTTGACTG-3’). 573

A 245-bp fragment was generated, which contains the regions of the main codons analyzed 574

for susceptibility to scrapie [36]. 575

The PCR product was purified and quantified using the commercial products Purelin5 576

and Qubit5, respectively, following the manufacturers’ instructions. Sequencing was 577

performed with 3 ng DNA and 3.2 pmol each primer, using the BigDye Terminator v.1.1 578

Cycle Sequencing kit6 in the ABI PRISM 3110 Genetic Analyzer6. 579

(24)

24 Of the 292 mixed Suffolk sheep whose lymphoreticular tissues of the third eyelid were 580

analyzed by IHC, seven (2.4%) were positive for scrapie in the first sample collection. 581

The IHC results of the second samples collected from these seven sheep after necropsy 582

and of the samples collected from the other 83 animals with some degree of kinship with them 583

confirmed the positive diagnosis obtained initially, and revealed that three other animals were 584

also positive for the scrapie. The samples of all organs and tissues of 80 animals (89%) were 585

negative, while those of 10 sheep (11%) were positive, with immunoreactivity in one or more 586

tissues. 587

At least three lymphoid follicles were analyzed by IHC in all samples obtained from 588

necropsied animals. No animal was positive in all samples collected, but different organs and 589

tissues showed immunoreactivity. The third eyelid (Figure 1) and the palatine tonsil were the 590

tissues with the highest percentage of immunoreactive samples (90%, 9/10). The lymphoid 591

tissue of the rectal mucosa (Figure 2) showed immunoreactivity in only one animal (10%, 592

1/10). No immunoreactivity was observed in mesenteric lymph node, spleen and obex 593

samples. 594

Genotyping of codon 141 showed homozygosis for lysine (L141L or L/L) in all 90 595

animals investigated. The genotypes and frequencies of alleles for codons 136, 154 and 171 of 596

these sheep (10 positive and 80 related) are shown in Table 1.

597

Four of the five alleles of the PrP gene commonly detected in ovine were found: ARR, 598

ARQ, VRQ and ARH. The allele AHQ was not detected in any sample. Of the 15 599

possibilities, these allele combinations formed six haplotypes: ARR/ARR, ARR/ARQ, 600

ARH/ARH, ARQ/ARH, ARQ/ARQ and ARQ/VRQ. 601

The haplotype ARR/ARQ was detected in 39 samples (43.3%) and was the most 602

frequent, followed by haplotypes ARQ/ARQ, detected in 34 (37.7%), ARR/ARR, present in 603

eight (8.9%), and ARQ/ARH, observed in five samples (5.6%). Haplotypes ARH/ARH and 604

(25)

25 ARQ/VRQ were detected in two samples each (2.2%). The classification of animals 605

according to the susceptibility criteria described by Dawson et al. [13] placed 8.9% of the 606

total number of genotyped animals in scrapie risk group R1, which includes more resistant 607

animals that are not subject to reproduction restrictions. A significant percentage of animals 608

(43.3%) was in risk group R2, which requires careful selection for breeding. In addition, 7.8% 609

of animals were in group R3 (intermediate risk), while 40% were in groups R4 and R5 (highly 610

susceptible animals that should not be included in reproduction programs). 611

612

DISCUSSION 613

The susceptibility of sheep flocks to scrapie depends largely on the genetic pattern of 614

the animal, and is determined mainly by the sequence of the gene that codifies the PrP 615

protein, since there are several polymorphisms that affect the conversion of the cell protein 616

PrPC to its pathological form, PrPSc [8,9]. Nevertheless, it is not possible to consider the 617

occurrence of only one form of ovine prion, since there are numerous prion strains with 618

different pathological and biochemical characteristics that may affect animals distinctively, 619

depending on their genotypes [1,30]. 620

In the present study, the frequency of codon VRQ was very low (2.2%), confirming 621

previous findings, which revealed that the alleles ARR and ARQ prevail in Suffolk sheep, and 622

that the allele ARH sometimes is detected [12,32]. The high sensitivity of homozygous VRQ 623

carriers or of individuals with ARQ haplotypes has also been reported in the literature [24]. 624

This condition raises concerns about susceptibility from the epidemiological perspective, 625

since the allele VRQ, which is rare or absent in breeds like Suffolk, was present in two 626

animals, one of which was positive for scrapie. 627

Most epidemiological and genetic data published indicate that sheep carrying the 628

haplotype ARR/ARR are less susceptible to classical form, while animals with the haplotype 629

(26)

26 VRQ in homozygosis or with ARQ haplotypes are highly susceptible [24]. This hypothesis is 630

supported by genotyping data for thousands of sheep with the disease around the world. For 631

example, a study carried out in Japan described a classical scrapie case in one ARR/ARR 632

sheep [16]. Sensitivity of ARR/ARR sheep in a scenario of oral exposure to the disease has 633

also been reported [3]. Atypical cases were observed in ARR/ARR animals [11,42]. 634

Polymorphisms at codon positions 136, 154 and 171 are not the only ones associated 635

with resistance or susceptibility to scrapie [33]. An analysis of the variation of codon 636

positions 136 and 171, for instance, showed that each has several adjacent polymorphic sites 637

and may codify up to four amino acids [7,50]. The atypical scrapie form, characterized by 638

strain Nor98 [6], is more frequently detected in AHQ animals that carry a polymorphism in 639

codon 141, and has not been described in Suffolk sheep in Brazil [2]. This atypical form 640

expresses phenylalanine (F), instead of leucine (L) in the form L141F [6,37,46]. 641

However, although it is generally acceptable that classical scrapie is an infectious and 642

contagious disease [14], contagion with the atypical form is questionable in light of the fact 643

that the specific marker for the atypical manifestation of the disease is detected outside the 644

central nervous system [5,20,29], even in cases experimentally transmitted to transgenicmice 645

[35] and sheep [47]. Several studies have demonstrated that susceptibility to the atypical form 646

is consistently associated with PrP codons 141 (L/F) and 154 (R/H) [6,42]. In fact, studies 647

have proposed the hypothesis that this form may evolve when the animal is not exposed to the 648

infectious agent [5,18,29,48], given the limited knowledge of the physiopathology of this 649

manifestation of the disease [19]. 650

In the present study, two (2/8) positive animals presented the haplotype ARR/ARR, 651

which is considered to be the least susceptible and therefore responsible for the lowest risk of 652

scrapie. However, like all sheep that were genotyped, these animals did not present any 653

change in lysine in codon position 141. This change (that is, when lysine is replaced by 654

(27)

27 phenylalanine) has been associated with atypical scrapie in Suffolk sheep [6]. Therefore, these 655

two ARR/ARR sheep do not fit in the genotypic characteristics of sheep that may commonly 656

present the atypical form. It is possible that the presence of several crossbred animals of 657

different flocks and farms in the same environment, which characterizes an heterogeneous 658

flock, has created the favorable conditions for the disease to evolve and spread, infecting the 659

more susceptible animals. 660

The variation in the frequency of the PrP genotype between flocks has been identified 661

as a real risk factor for the disease [4]. The introduction of adult sheep free of scrapie in 662

contaminated flocks is believed to allow lateral transmission, even between adult animals 663

with less susceptible genotypes [40,45], although young sheep are more predisposed [43]. 664

Other reasons behind differences in occurrence include the stress caused during husbandry 665

and large population numbers [26]. Additionally, the lack of a defined epidemiological pattern 666

and the different strains of the causal agent play an important role in inter-flock variability 667

[40]. Several models were based on the assumption that outbreak duration is influenced by 668

flock size and by the frequency of the PrP genotype in one flock [25,26,38,51]. Commercial 669

flocks with high genetic diversity, mainly in codons other than 136, 154 and 171, are more 670

consistently affected. In these animals, the onset of clinical manifestations occurs at 671

significantly different ages, with means varying from 2 to 5.7 years, due to noteworthy 672

dissimilarities in age and PrP genotype profiles [40]. The purchase of infected animals has 673

been pointed out as the main scrapie infection mechanism in flocks [27, 41]. 674

675

CONCLUSION 676

The diagnosis of scrapie in two homozygous ARR/ARR sheep indicates that the 677

resistance of this genotype to the classical form of the disease is debatable. Although scrapie 678

in these animals is rare, the cases presented in this case report lend strength to the notion that 679

(28)

28 its occurrence depends on a combination of infectious factors, including differences in 680

biological and biochemical properties in the natural hosts to this prion. 681

MANUFACTURERS 682

1DAKO Corp. Carpinteria, CA, USA. 683

2Qiagen. Hilden, Germany. 684

3InvitrogenTM, São Paulo, Brazil. 685

4Life TechnologiesTM. Gaithersburg, MD, USA. 686

5InvitrogenTM. Carlsbad, CA, USA. 687

6Applied Biosystems Inc. Foster City, CA, USA. 688

689

Declaration of interest. The authors report no conflicts of interest. The authors alone are 690

responsible for the content and writing of the paper. 691

692

REFERENCES 693

1 Acín C., Martín-Burriel I., Goldmann W., Lyahyai J., Monzón M., Bolea R., Smith A., 694

Rodellar C., Badiola J.J. & Zaragoza P. 2004. Prion protein gene polymorphisms in 695

healthy and scrapie-affected Spanish sheep. Journal of General Virology. 85(7): 2103-2110. 696

2 Andrade C.A., Almeida L.L., Castro L.A., Leal J.S., Silva S.C. & Driemeier D. 2011. 697

Single nucleotide polymorphisms at 15 codons of the prion protein gene from a scrapie-698

affected herd of Suffolk sheep in Brazil. Pesquisa Veterinária Brasileira. 31(10): 893-898.

699

3 Andreoletti O., Morel N., Lacroux C., Rouillon V., Barc C., Tabouret G., Sarradin P., 700

Berthon P., Bernardet P., Mathey J., Lugan S., Costes P., Corbière F., Espinosa J.C., 701

Torres J.M., Grassi J., Schelcher F. & Lantier F. 2006. Bovine spongiform 702

encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. Journal of General 703

Virology. 87(4): 1043-1046.

704

4 Baylis M., Houston F., Goldmann W., Hunter N. & McLean A.R. 2000. The signature 705

of scrapie: differences in the PrP genotype profile of scrapie-affected and scrapie-free UK 706

(29)

29 sheep flocks. Proceedings of the Royal Society B: Biological Sciences. 267(1457): 2029-2035. 707

5 Benestad S.L., Sarradin P., Thu B., Schonheit J., Tranulis M.A. & Bratberg B. 2003. 708

Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. 709

Veterinary Record. 153(7): 202-208.

710

6 Benestad S.L., Arsac J.N., Goldmann W. & Noremark M. 2008. Atypical/Nor98 scrapie: 711

properties of the agent, genetics, and epidemiology. Veterinary Research. 39(4): 19. 712

7 Benkel B.F., Valle E., Bissonnette N. & Hossain Farid A. 2007. Simultaneous detection 713

of eight single nucleotide polymorphisms in the ovine prion protein gene. Molecular and 714

Cellular Probes. 21(5-6): 363-367.

715

8 Bossers A., Belt P.B.G.M., Raymond G. J., Caughey B., De Vries R. & Smits M.A. 716

1997. Scrapie susceptibility linked polymorphisms modulate the in vitro conversion of sheep 717

prion protein to protease-resistant forms. Proceedings of the National Academy of Sciences of 718

the USA. 94(10): 4931-4936.

719

9 Bossers A., De Vries R. & Smits M.A. 2000. Susceptibility of sheep for scrapie as 720

assessed by in vitro conversion of nine naturally occurring variants of PrP. Journal of 721

Virology. 74(3): 1407-1414.

722

10 Bruce ME. 2003. TSE strain variation. British Medical Bulletin. 66: 99-108. 723

11 Buschmann A., Biacabe A.G., Ziegler U., Bencsik A., Madec J.Y., Erhardt G., 724

Lühken G., Baron T. & Groschup M.H. 2004. Atypical scrapie cases in Germany and 725

France are identified by discrepant reaction patterns in BSE rapid tests. Journal of Virological 726

Methods. 117(1): 27-36.

727

12 Dawson M., Hoinville L.J., Hosie B.D. & Hunter N. 1998. Guidance on the use of PrP 728

genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Veterinary 729

Record. 142(23): 623-625.

730

13 Dawson M., Moore R.C. & Bishop S.C. 2008. Progress and limits of PrP gene selection 731

(30)

30 policy. Veterinary Research. 39: 25.

732

14 Detwiler L.A. & Baylis M. 2003. The epidemiology of scrapie. Revue Scientifique et 733

Technique. 22(1): 121-143.

734

15 Dickinson A.G., Stamp J.T. & Renwick C.C. 1974. Maternal and lateral transmission of 735

scrapie in sheep. Journal of Comparative Pathology. 84(1): 19-25. 736

16 Elsen J.M., Amigues Y., Schelcher F., Ducrocq V., Andreoletti O., Eychenne F., 737

Khang J.V., Poivey J.P., Lantier F. & Laplace J.L. 1999. Genetic susceptibility and 738

transmission factors in scrapie: detailed analysis of an epidemic in a closed flock of 739

Romanov. Archives of Virology. 144(3): 431-445. 740

17 Espenes A., Press C.M.C.L., Landsverk T., Tranulis M.A., Aleksandersen M., 741

Gunnes G., Benestad S.L., Fuglestveit R. & Ulvund M.J. 2006. Detection of PrPSc in 742

rectal biopsy and necropsy samples from sheep with experimental scrapie. Journal of 743

Comparative Pathology. 134(2-3): 115-125.

744

18 Fediaevsky A., Morignat E., Ducrot C. & Calavas D. 2009. A case-control study on the 745

origin of atypical scrapie in sheep, France. Emerging Infectious Diseases. 15(5): 710-718. 746

19 Fediaevsky A., Calavas D., Gasqui P., Moazami-Goudarzi K., Laurent P., Arsac J.N., 747

Ducrot C., Moreno C. 2010. Quantitative estimation of genetic risk for atypical scrapie in 748

French sheep and potential consequences of the current breeding programme for resistance to 749

scrapie on the risk of atypical scrapie. Genetics Selection Evolution. 42: 14. 750

20 Fediaevsky A., Gasqui P., Calavas D. & Ducrot C. 2010. Discrepant epidemiological 751

patterns between classical and atypical scrapie in sheep flocks under French TSE control 752

measures. The Veterinary Journal. 185(3): 338-340. 753

21 Foster J.D., Wilson M. & Hunter N. 1996. Immunolocalisation of the prion protein (PrP) 754

in the brains of sheep with scrapie. Veterinary Record. 139(21): 512-515. 755

22 Goldmann W., Hunter N., Benson G., Foster J.D. & Hope J. 1991. Different scrapie-756

(31)

31 associated fibril proteins (PrP) are encoded by lines of sheep selected for different alleles of 757

the Sip gene. Journal of General Virology. 72(10): 2411-2417. 758

23 Goldmann W., Hunter N., Smith G., Foster J. & Hope J. 1994. PrP genotype and agent 759

effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a 760

natural host of scrapie. Journal of General Virology. 75(5): 989-995. 761

24 Groschup M.H., Lacroux C., Buschmann A., Lühken G., Mathey J., Eiden M., Lugan 762

S., Hoffmann C., Espinosa J.C., Baron T., Torres J.M., Erhardt G. & Andreoletti O. 763

2007. Classic scrapie in sheep with the ARR/ARR prion genotype in Germany and France. 764

Emerging Infectious Diseases. 13(8): 1201-1207.

765

25 Gubbins S. 2005. A modelling framework to describe the spread of scrapie between sheep 766

flocks in Great Britain. Preventive Veterinary Medicine. 67(2-3): 143-155. 767

26 Hagenaars T.J., Ferguson N.M., Donnelly C.A. & Anderson R.M. 2001. Persistence 768

patterns of scrapie in a sheep flock. Epidemiology and Infection. 127(1): 157-167. 769

27 Healy A.M., Morgan K.L., Hannon D., Collins J.D., Weavers E. & Doherty M.L. 770

2004. Postal questionnaire survey of scrapie in sheep flocks in Ireland. Veterinary Record. 771

155(16): 493-494. 772

28 Hoinville L.J., Hoek A., Gravenor M.B. & McLean A.R. 2000. Descriptive 773

epidemiology of scrapie in Great Britain: results of a postal survey. Veterinary Record. 774

146(16): 455-461. 775

29 Hopp P., Omer M.K. & Heier B.T. 2006. A case-control study of scrapie Nor98 in 776

Norwegian sheep flocks. Journal of General Virology. 87(12): 3729-3736. 777

30 Hunter N., Foster J.D. & Hope J. 1992. Natural scrapie in British sheep: breeds, ages 778

and PrP gene polymorphisms. Veterinary Record. 130(18): 389-392. 779

31 Hunter N., Goldmann W., Benson G., Foster J.D. & Hope J. 1993. Swaledale sheep 780

affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep 781

(32)

32 and those selected for reduced incidence of scrapie. Journal of General Virology. 74(6): 782

1025-1031. 783

32 Hunter N., Cairns D., Foster J.D., Smith G., Goldmann W. & Donnelly K. 1997. Is 784

scrapie solely a genetic disease? Nature. 386(6621): 137. 785

33 Laegreid W.W., Clawson M.L., Heaton M.P., Green B.T., O'Rourke K.I. & Knowles 786

D.P. 2008. Scrapie resistance in ARQ sheep. Journal of Virology. 82(20):10318-10320. 787

34 Leal J.S., Correa G.L.F., Dalto A.G.C., Boos G.S., Oliveira E.C., Bandarra P.M., 788

Lopes R.F.F. & Driemeier D. 2012. Utilização de biopsias da terceira pálpebra e mucosa 789

retal em ovinos para diagnóstico de scrapie em uma propriedade da Região Sul do Brasil. 790

Pesquisa Veterinária Brasileira. 32(10): 990-994.

791

35 Le Dur A., Béringue V., Andréoletti O., Reine F., Lai T.L., Baron T., Bratberg B., 792

Vilotte J.L., Sarradin P., Benestad S.L. & Laude H. 2005. A newly identified type of 793

scrapie agent can naturally infect sheep with resistant PrP genotypes. Proceedings of the 794

National Academy of Sciences of the USA. 102(44): 16031-16036.

795

36 L'Homme Y., Leboeuf A. & Cameron J. 2008. PrP genotype frequencies of Quebec 796

sheep breeds determined by real-time PCR and molecular beacons. Canadian Journal of 797

Veterinary Research. 72(4): 320-324.

798

37 Lühken G., Buschmann A., Groschup M.H. & Erhardt G. 2004. Prion protein allele 799

A136H154Q171 is associated with high susceptibility to scrapie in purebred and crossbred 800

German Merinoland sheep. Archives of Virology. 149(8): 1571-1580. 801

38 Matthews L., Woolhouse M.E.J. & Hunter N. 1999. The basic reproduction number for 802

scrapie. Proceedings of the Royal Society B: Biological Sciences. 266(1423): 1085-1090. 803

39 McIntyre K.M., Gubbins S., Sivam S.K. & Baylis M. 2006. Flock-level risk factors for 804

scrapie in Great Britain: analysis of a 2002 anonymous postal survey. BMC Veterinary 805

Research. 2: 25.

Referências

Documentos relacionados

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Phylogenetic analysis of the variants circulating in the canine population of Cuiabá Municipality revealed a group composed of similar variants to those from other Brazilian States,

Viral type characterization and clinical aspects of canine parvovirus in naturally infected dogs in São Paulo State, Brazil.. Brazilian states and found CPV-2c to be the predominant

Major-histocompatibility-complex gene markers and restriction- fragment analysis of steroid 21-hydroxylase (CYP21) and complement C4 genes in classical congenital

Africanos livres que precisam ser emancipados de novo para readquirir a liberdade já dada por força da própria legislação imperial; a da constituição do escravo em sujeito..

(1970) int.roduziram e discut.iram diver-sos mét.odos de eliminar- um conjunt.o de parâmet.ros nuisance de uma íunção de verossimilhança de modo que inferências