• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
3
0
0

Texto

(1)

Struture and Bonding of Iron-Aeptor Pairs in Silion

S.Zhao,

TexasInstrumentsIn.,Dallas,TX,75243

J. F. Justo, L. V. C. Assali,

InstitutodeFsia,Universidade deS~aoPaulo,

CP66318, CEP05315-970, S~aoPaulo,SP,Brazil

and L.C. Kimerling

Massahusetts InstituteofTehnology,Cambridge,MA,02139

Reeivedon23April,2001

Iron-aeptor pairs (Fe-A, A = B, Al, Ga, and In) in silion were investigated using an

ioni-basedmodel,whihinorporatesthevaleneeletronloudpolarizationandthelattierelaxation.

Our results are generaly ingoodagreement withthe experimental trendsamongthe Fe-A pairs,

desribingtheinreaseinthepairdonorenergylevelwithinreasingAprinipalquantumnumber

anddereasingpairseparationdistane,andthepairongurationalsymmetries.

Iron pairs with aeptor impurities in silion [1℄,

forming eletrially ative enters. The properties of

these pairs, suh as the ongurational struture and

thepositionsoftheenergylevelsinthebandgap,have

beeninvestigated by eletron paramagneti resonane

(EPR)anddeepleveltransientspetrosopy(DLTS)[2℄

overthelastthirtyyears. Thesepairshavebeen

identi-edasonsistingofasubstitutionalaeptor(A

s )with

aniron(Fe

i

)ateither thenearestneighbor(T1,h111i

symmetry)orthenextnearestneighbor(T2,h100i

sym-metry) tetrahedral interstitial site. Aording to an

ionimodel,usedtoexplaintheexperimentaldata,the

Fe

i A

s

pairsareformedbyapositivelyhargediron(Fe +

i

orFe ++

i

)andanegativelyhargedaeptor(A

s ).

The ioni model fails in desribing several trends

among the Fe

i A

s

pairs,suh as the pair stability and

the related positions of the aeptor and donor

ele-troni levels[3℄. Adding anelastienergyterm tothe

pointhargeinteration,Kimerlingetal. [4℄explained

thepairstruturesobservedbytheexperiments. They

notied that large aeptor impurities provide strong

repulsionenoughtoompetewiththeCoulomb

attra-tion so that the Fe

i

stays at a T2 site (and not at a

T1site) nexttotheaeptor. Ourmodelinorporates

anewinterationinthepointhargeCoulomb

intera-tion,ashortrangeattrativeomponenttosimulatethe

valeneeletroniloudpolarization[5℄. Therepulsive

interation between Fe

i and A

s

orSi is approximated

by a softened Lennard-Jones type potential, and the

silion rystal is treated as adieletri medium. The

resultsareomparedtotheexperimental dataon

on-gurationalsymmetries and deep levelpositions. Our

modelapturedseveraltrendsonthepairsobservedby

experiments[2℄,showinganinreasein thepairdonor

energylevelwithinreasingprinipalquantumnumber

ofA

s

anddereasingpairseparationdistane,opposite

toresultsobtainedbyKimerlingetal. [4℄.

WhentheseparationbetweenFe

i andA

s

is

ompa-rabletotheirioniradii,theeletroniloudofoneion

isstronglyperturbedbytheeld oftheother,ausing

an induedpolarizationon that eletroni loud. Our

polarizationmodel(PM)inludesashortrange

attra-tiveomponenttotheCoulombinterationtodesribe

the eletroni loudpolarization. As anestimation to

theinduedeletroniloudpolarizationeet,wetake

thevaleneeletroniloudasahargedspherial

sur-fae at ertainradius around theradial peak position

of thevaleneeletroni hargedensity. Then, similar

totheinterationbetweentwoondutingspheres,the

eletrostatiinterationanbewrittenas(rr

Fe A )

V

att (r)=

1

4

r

0

q

1 q

2

r 1

2

a 3

2 q

2

1

r 4

+ a

3

1 q

2

2

r 4

; (1)

wherea

1 anda

2

arethevaleneeletroniloud

spher-ialsurfaeradii,q

1 andq

2

arethenetioniharges.

Thealulationswereperformedusing279Siatoms,

one A

s

, and one Fe

i

. The distane r

Fe A

is hanged

alongh111idiretion(passingthroughT1andT4sites)

andh100idiretion(passingthroughT2site)tondthe

potentialurvesforFe 0

i ,Fe

+

i

,andFe ++

i

. Theminimum

ofeahurveV

min (Fe

0

i ),V

min (Fe

+

i

),andV

min (Fe

++

i )is

theground stateforFe 0

i , Fe

+

i

,and Fe ++

i

, respetively.

ThemodelpreditstheFe

i A

s

pairongurational

sym-metriesbydeterminingtheenergetiallyfavorablesites

(2)

0

2

4

6

1.5

2

2.5

3

3.5

4

4.5

(a) Fe-B Pair

Potential Energy of Interstitial Fe (eV)

Fe-B Distance, (A)

0

2

4

6

1.5

2

2.5

3

3.5

4

4.5

(b) Fe-Al Pair

Fe-Al Distance, (A)

Potential Energy of Interstitial Fe (eV)

0

2

4

6

1.5

2

2.5

3

3.5

4

4.5

(c) Fe-Ga Pair

Fe-Ga Distance, (A)

Potential Energy of Interstitial Fe (eV)

0

2

4

6

1.5

2

2.5

3

3.5

4

4.5

(d) Fe-In Pair

Fe-In Distance, (A)

Potential Energy of Interstitial Fe (eV)

Fe

Fe

Fe

<111>

<100>

<111>

<100>

<111>

<100>

<111>

<100>

T1

T2

T4

T1

T2

T4

T1

T2

T4

T1

T2

T4

0

+

++

Fe

Fe

Fe

0

+

++

Fe

Fe

Fe

0

+

++

Fe

Fe

Fe

0

+

++

Figure 1. Therole of Fei harge state onthe FeiAs pair

symmetry and stability. Thepotential urvesalong h111i

and h100i diretions are represented by solid and dashed

lines,respetively.

Fig. 1showsthe potential urves alongh111i and

h100i diretions for Fe 0

i , Fe

+

i

andFe ++

i

. Aordingto

Figs. 1a and 1d, stable Fe

i B

s

and metastable Fe

i In

s

pairshaveh111i-trigonalsymmetry,whilestableFe

i In

s

and metastable Fe

i B

s

pairs have h100i-orthorhombi

symmetry. The h111i-trigonal symmetry an be

as-signed to stable Fe +

i Al

s , Fe

++

i Al

s , Fe

+

i Ga

s , and

Fe ++

i Ga

s

pairs, while metastable Fe +

i Al

s , Fe

++

i Al

s ,

Fe +

i Ga

s

, and Fe ++

i Ga

s

pairs show h100i symmetry

(Figs. 1band1). Inaddition,Figs. 1band1predit

that thestable Fe 0

i Ga

s

pair exhibits h100i symmetry,

while the stable Fe 0

i Al

s

pair has equal probability to

showeitherh111i-trigonalorh100i-orthorhombi

stru-tures. Theassignmentsforstableandmetastable

stru-turesare in good agreement withtheEPRand DLTS

observations[2℄. Thestableongurationswithesfrom

h111i-trigonaltoh100i-orthorhombiforFe

i A

s

pairs

go-ing from B

s to In

s

, and is related to an inrease in

repulsionbetweenA

s andFe

i .

The minimum of eah urve an be used to

om-pute the pair aeptor and donor levels. For Fe

i at

near neighbor T sites relative to A

s

, the donor level

(Fe +=++

i A

s )

0=+

isgivenby

E

T

(0=+)=E

v +V

min (Fe

+

i ) V

min (Fe

++

i )+E

0

T ; (2)

where E

v

isthetopofthevalenebandandE 0

T isthe

minimumoftheFe ++

i

potentialurveatnearneighbor

sitesofA

s

. Thepairaeptorlevel(Fe 0=+

i A

s )

=0

is

ob-tainedbyaddingthediereneV

min (Fe

0

i )-V

min (Fe

+

i )to

thedonorlevel. ForisolatedFe

i

,atremotesitesrelative

to A

s ,V

min (Fe

0

i )-V

min (Fe

+

i

)=0.38eV, whih is onsis-Fe

0=+

i

at E

v

+0:38eV exists in theband gap. Inour

model,thedierenebetweenV

min (Fe

0

i )andV

min (Fe

+

i )

forisolatedFe

i

arisesfromtheelastienergyausedby

eletronshelloverlapbetweenatoms. Fig. 2showsthe

donor(0/+)andaeptor(-/0)levelsforthetransitions

asomputedby ourpolarization model forFe

i sitting

atT1 (Fig. 2a)orT2 (Fig. 2b)sites. Our resultsfor

thepairdonorandaeptorlevelsagreeverywellwith

theknown experimental data for the (0/+) and (-/0)

transitions.

ThePMpreditstheorretmagnitudesandtrends

of thedonorlevelfor the T1 site (E

T

(1)) and theT2

site(E

T

(2))pairswithinreasingA

s

sizeand

dereas-ingr

Fe A

as observedin experiments, whilethe point

harge model would give an opposite trend.

Aord-ing to our model, repulsion and polarization from A

s

shouldgiveamaximumontributionattheT1siteand

yield the greatest variation in Fe

i A

s

pair energy

lev-els. Thisisonsistentwiththeexperimentaldatathat

E

T

(1) displays the greatest sensitivity to A

s

identity

andE

T

(2)showsrelativeuniformity. ThePMsuggests

that the pair aeptor level (Fe 0=+

i A

s )

=0

should

be-omeshallowerintheband gapasA

s

goesfromB

s to

In

s

,whilereentexperimentaldata[6℄suggestthatthis

levelisalmostonstantforA

s .

(a)

VB

CB

Fe B

i s

Fe Al

i

s

Fe Ga

i

s

Fe In

i

s

(b)

VB

CB

Fe B

i s

Fe Al

i

s

Fe Ga

i

s

Fe In

i

s

Figure2. Representationofdonorandaeptorlevels,

or-respondingto(0/+) and(-/0) transitions,for FeiAs. The

gureshows the levels for the Fei sitting at a T1 site(a)

andat aT2 site(b). Dashed linesrepresent theavailable

(3)

Table I. Pair binding energies E

b

(in eV), omputed

using the polarization model, for stable Fe

i A

s in Si,

omparedtoexperimental data.

Fe

i A

s

E exp

b

E

b

Fe +

i B

s

0.65[3℄, 0.58[7℄ 0.56

Fe +

i Al

s

0.52[8℄ 0.58

Fe +

i Ga

s

0.53

Fe +

i In

s

0.55

Fe ++

i B

s

1.13

Fe ++

i Al

s

1.04[8℄ 1.19

Fe ++

i Ga

s

1.16

Fe ++

i In

s

1.09

ThepairbindingenergiesareshowninTableI.The

model preditsatrendofmonotoni dereasewith

in-reasingA

s

sizefor bothFe +

i

andFe ++

i

. The inrease

inbindingenergyduetovaleneeletroniloud

polar-izationompeteswiththerepulsiveinterationso that

the model gives nearly onstant binding energies for

bothFe +

i

andFe ++

i

,onsistentwithexperimentaldata

[3,7,8℄. Lattierelaxationlearlyplaysan important

rolein determiningthepairbindingenergy.

The relativepopulationof Fe

i A

s

pairsin aertain

harge state at T1 and T2 sites (R

12

) is alulated,

basedonaBoltzmanndistributionat thermal

equilib-rium:

R

12 =

N(1)

N(2) =

Z

1

Z

2 exp

E

12

kT

; (3)

where E

12 = E

min

(T2) E

min

(T1) is the energy

dierene for Fe

i

at the T1 and T2 sites, and Z is

the site degeneray. The relative site populations for

the pairs are ompared with results from

metastabil-ityexperimentsinTableII.Ourmodelprovidesagood

desription of the energy dierenes between the T1

and T2 sites (E

12

)for all the pairs. The alulated

N(1)=N(2) ratios at T = 200 K, around the

temper-ature of the observedstrutural transformation [8,9℄,

alsoagreeverywellwiththeexperimentaldata.

TableII.Calulatedrelativesitepopulations(R

12 )atT

=200Kandenergydierene(E

12

),betweenenters

withFe

i

atT1andT2sitesforthepairs. Experimental

resultsareinparenthesis.

R

12

E

12 (eV)

Fe +

i B

s

4.110 4

(1[4℄) 0.19(>0.1[4℄)

Fe +

i Al

s

1:210 2

(2.2[4℄) 0.09(0.07[8℄)

Fe +

i Ga

s

3.8(7.0[4℄) 0.03(0.03[10℄)

Fe +

i In

s

3:510 4

(0.0[4℄) -0.13(-0.13[9℄)

Fe ++

i B

s

4:310 7

(1[4℄) 0.31(>0:1[4℄)

Fe ++

i Al

s

1:310 5

(1[4℄) 0.21(0.14[8℄)

Fe ++

i Ga

s

4:010 3

(1[4℄) 0.15(0.13[9℄)

Fe ++

i In

s

0.12(0.42[4℄) -0.03(-0.01[9℄)

In summary, our model aptures several eets

withintheionimodelframework:(i)trendsamongthe

FeA pairsrevealingadeepeningofthedonorlevelin

theband gap withinreasingprinipal quantum

num-berofA

s

anddereasingpairseparationdistaner

Fe A ;

and(ii) ongurationalsymmetriesand thebistability

ofthepairs. However,thedeviationsatE

T

(1)between

measuredandalulateddatasuggestthatother

inter-ations are still missing. The deviations ould ome

from thelimitationsoftheionimodelsatnear

neigh-bor T sites. The bulk, treated as dieletri medium,

an still be valid for the spae betweena T4 siteand

theA

s

,andbetweenaT2siteandtheA

s

. However,at

the T1 site, the sreening would hardly be eetively

desribed by thebulk dieletrionstant, sineone of

the Fe

i

rst neighbors is theA

s

. Covalenyinvolving

theFe

i ,A

s

,andsurroundingSiatomsmayalsoplayan

importantrole,aspointedoutbyrst-priniples

alu-lations[11,12,13℄. Althoughaompleteunderstanding

onthepropertiesofthepairsshouldbeestablishedwith

moredetailed experimentsandalulations,ourmodel

isimportantin identifyingtheontributionofeah

in-terationforthepairformation.

Aknowledgments

ThisworkissupportedbytheNRELunderontrat

No. XD-2-11004-4. JFJandLVCAthanktheBrazilian

ageniesFAPESPand CNPqfornanialsupport.

Referenes

[1℄ G.W.LudwigandH.H.Woodbury,SolidStatePhys.

13,223(1962).

[2℄ A. A.Istratov, H.Hieslmair, andE. R.Weber, Appl.

Phys.A69,13(1999).

[3℄ L.C.KimerlingandJ.L.Benton,Physia116B,297

(1983).

[4℄ L. C. Kimerling, M. T. Asom, J. L. Benton, P. J.

Drevinsky, and C. E. Caefer, Mater. Si. Forum

38-41,141(1989).

[5℄ S.Zhao,L.V.C.Assali,J.F.Justo,G.H.Gilmer,and

L.C.Kimerling,J.Appl.Phys.90,2744(2001).

[6℄ P. Tidlund, M. Kleverman, and H. G. Grimmeiss,

Semiond.Si.Tehnol.11,748(1996).

[7℄ W. Wijaranakula, J. Eletrohem. So. 140, 275

(1993).

[8℄ A.ChantreandD.Bois,Phys.Rev.B31,7979(1985).

[9℄ A. Chantre and L. C. Kimerling, Mater. Si. Forum

10-12,387(1986).

[10℄ H.Takahashi,M.Suezawa,andK.Sumino,Mater.Si.

Forum83-87,155(1992).

[11℄ L.V.C.AssaliandJ.R.Leite,Mater.Si.Forum

10-12,55(1986);38-41,409(1989);83-7,143(1992).

[12℄ L.V.C.AssaliandJ.F.Justo,Phys.Rev.B58,3870

(1998).

[13℄ J.F.Justo andL. V. C.Assali, Int.J.Mod.Phys.B

Imagem

Figure 1. The role of Fei harge state on the F eiAs pair
Table II. Calulated relative site populations (R

Referências

Documentos relacionados

In this study, the development of a methodology based on nested-PCR technique, using an external primers pair in a first amplification and the “classical” primers pair MY09/11 in

In the first group the first metacentric pair is considerably larger than the sec- ond metacentric pair and the species presented silver- staining NORs in the pericentromeric

Como objetivos específicos buscou-se: a caracterizar as principais produções agrícolas desenvolvidas pelos pequenos produtores para a geração de renda, na escala temporal de 1997-2015

From bottom upwards: the first pair of traces shows recordings from Rl and R2 before sections 1,2 and 3 were performed; after section 1 (second pair of traces) and 2 (third pair)

No entanto, a parceria não é uma característica única desse movimento ou das canções, Cyntrão (2004) nos mostra que, no Brasil, a parceria entre poetas e músicos populares advém

Os objetivos deste trabalho foram realizar uma triagem fitoquímica e uma análise citotóxica e antifúngica do Extrato Etanólico Bruto EEB e da Fase Clorofórmica FCHCl3 de folhas

É neste âmbito que, será analisado como caso de estudo, o investimento num projecto de aproveitamento energético do biogás produzido no Aterro Sanitário de Mato da

In the outer hypostyle hall of Edfu (section east, south wall, intercolumnar screen wall next to the House of Books or temple library), there’s also a purifying scene, very