• Nenhum resultado encontrado

J. Pediatr. (Rio J.) vol.93 número4

N/A
N/A
Protected

Academic year: 2018

Share "J. Pediatr. (Rio J.) vol.93 número4"

Copied!
9
0
0

Texto

(1)

www.jped.com.br

ORIGINAL

ARTICLE

Equations

based

on

anthropometry

to

predict

body

fat

measured

by

absorptiometry

in

schoolchildren

and

adolescents

Luis

Ortiz-Hernández

,

A.

Valeria

Vega

López,

Norma

Ramos-Ibá˜

nez,

L.

Joana

Cázares

Lara,

R.

Joab

Medina

Gómez,

Diana

Pérez-Salgado

UniversidadAutónomaMetropolitana(UAM),DepartamentodeSalud,MexicoCity,Mexico

Received17April2016;accepted24August2016

Availableonline26January2017

KEYWORDS Bodyfat; Children; Adolescents; Mexico; DualX-ray absorptiometry; Anthropometry

Abstract

Objective: Todevelopandvalidateequationstoestimatethepercentageofbodyfatofchildren andadolescentsfromMexicousinganthropometricmeasurements.

Methods: Across-sectionalstudywascarriedoutwith601childrenandadolescentsfrom Mex-icoaged5---19years.Theparticipantswererandomlydividedintothefollowingtwogroups:the developmentsample(n=398)andthevalidationsample(n=203).Thevalidityofpreviously pub-lishedequations(e.g.,Slaughter)wasalsoassessed.Thepercentageofbodyfatwasestimated bydual-energyX-rayabsorptiometry.Theanthropometricmeasurementsincludedheight, sit-ting height, weight, waist andarm circumferences, skinfolds (triceps, biceps, subscapular, supra-iliac,andcalf),andelbowandbitrochantericbreadth. Linearregressionmodelswere estimatedwiththepercentageofbodyfatasthedependentvariableandtheanthropometric measurementsastheindependentvariables.

Results: Equationswerecreatedbasedoncombinationsofsixtonineanthropometricvariables andhadcoefficientsofdetermination(r2)equaltoorhigherthan92.4%forboysand85.8%for

girls.Inthevalidationsample,thedevelopedequationshadhighr2values(85.6%inboysand ≥78.1%ingirls)inallagegroups,lowstandarderrors(SE≤ 3.05%inboysand≤3.52%ingirls), andtheinterceptswerenotdifferentfromtheorigin(p>0.050).Usingthepreviouslypublished equations,thecoefficientsofdeterminationwerelower,and/ortheinterceptsweredifferent fromtheorigin.

Conclusions: Theequationsdevelopedinthisstudy canbeusedtoassessthepercentageof bodyfatofMexicanschoolchildrenandadolescents,astheydemonstrategreatervalidityand lowererrorcomparedwithpreviouslypublishedequations.

©2017SociedadeBrasileiradePediatria.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

Pleasecitethisarticleas:Ortiz-HernándezL,VegaLópezAV,Ramos-Ibá˜nezN,CázaresLaraLJ,MedinaGómezRJ,Pérez-SalgadoD. Equationsbasedonanthropometrytopredictbodyfatmeasuredbyabsorptiometryinschoolchildrenandadolescents.JPediatr(RioJ). 2017;93:365---73.

Correspondingauthor.

E-mail:lortiz@correo.xoc.uam.mx(L.Ortiz-Hernández).

http://dx.doi.org/10.1016/j.jped.2016.08.008

(2)

PALAVRAS-CHAVE Gorduracorporal; Crianc¸as;

Adolescentes; México;

Absorciometriade duplaenergiade raios-X;

Antropometria

Equac¸õescombasenaantropometriaparapreveragorduracorporalmedida porabsorciometriaemcrianc¸asemidadeescolareadolescentes

Resumo

Objetivo: Desenvolverevalidarequac¸õesparaestimaropercentualdegorduracorporal(%GC) decrianc¸aseadolescentesdoMéxicoutilizandomedidasantropométricas.

Métodos: Foirealizadoumestudotransversalcom601crianc¸aseadolescentesdoMéxicocom idadesentre5e19anos.Osparticipantesforamdivididosaleatoriamentenosseguintesdois grupos:aamostradedesenvolvimento(n=398)eaamostradevalidac¸ão(n=203).Avalidade dasequac¸õespublicadasanteriormente(porexemplo,Slaughter)tambémfoiavaliada.O%GC foiestimadoporabsorciometriadeduplaenergiaderaios-X(raio-Xdeduplaenergia(DXA)).As medidasantropométricasincluíramestatura,alturasentado,peso,circunferênciasdacintura edobrac¸o,dobrascutâneas(tríceps,bíceps,subescapular,suprailíacaepanturrilha)elarguras docotoveloebitrocantérica.Osmodelosderegressãolinearforamestimadoscomo%GCsendo avariáveldependenteeasmedidasantropométricascomoasvariáveisindependentes.

Resultados: Asequac¸õesforamcriadas combasenascombinac¸õesdeseus anovevariáveis antropométricaseapresentaramcoeficientesdedeterminac¸ão(r2)iguaisousuperioresa92,4%

parameninose85,8%parameninas.Naamostradevalidac¸ão,asequac¸õesdesenvolvidas apre-sentaramaltosvaloresder2(85,6%emmeninose78,1%emmeninas)emtodososgrupos,

baixoníveldeerrospadrão(EP≤3,05%emmeninose≤3,52%emmeninas)eosinterceptosnão foramdiferentesdaorigem(p>0,050).Utilizandoasequac¸õespublicadasanteriormente,os coeficientesdedeterminac¸ãoforammenorese/ouosinterceptosforamdiferentesdaorigem.

Conclusões: Asequac¸õesdesenvolvidasnesteestudopodemserutilizadasparaavaliaro%GC dascrianc¸asemidadeescolareadolescentesmexicanos,poiselaspossuemumamaiorvalidade emenorerroemcomparac¸ãoàsequac¸õespublicadasanteriormente.

©2017SociedadeBrasileiradePediatria.PublicadoporElsevierEditoraLtda.Este ´eumartigo OpenAccesssobumalicenc¸aCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

Introduction

Overweightandobesity areimportantpublichealth prob-lems because of their magnitude and impact on health. In 2012, prevalence of overweight and obesity in Mexi-can schoolchildren 5---11 years old was 34.4% (19.8% and 14.6%, respectively) and,in adolescents 12---19 years old, it was 34.9%.1 In schoolchildren, this value was slightly

higher(34.8%)in2006,whereasinadolescents,itwaslower (33.2%).

Childrenwithobesitytend tobecomeadultswith obe-sity, which increases their risk for the development of chronic diseases.2 Obesity represents an economic

prob-lembecausethetreatmentofitsco-morbiditiescarrieshigh costs.3Hence,itisnecessarythatobesityisaccurately

diag-nosed.

Differentmethods forassessingbodyfat include hydro-densitometry,dualenergyX-rayabsorptiometry(DXA),and deuterium dilution. These measures are used mainly in researchsettingsbecausetherequiredequipmentiscostly andmustbeoperatedbyspecializedtechnicians.Forthese reasons,thesemethodsareunsuitableforpopulation stud-ies, clinical practice, and screening activities. On the contrary,anthropometricmeasurements---althoughindirect indicatorsofadiposity---areeconomical,non-intrusive,and highlyreproducible.4

Various equations based on anthropometry have been used to estimate body fat in children, and these meth-ods have been developed in Euro- and Afro-descendent

subjects. Slaughter equations5 are the most frequently

used in the evaluation of body composition in children and adolescents.6---9 These equations were developed in

310Afro-AmericanandEuro-Americanpeoplefrom8to29 years of age.5 However, these equations tend to

overes-timate body fat.8,9 In recent years, Dezenberg equations

have been used,7 which were developed in a sample of

202 Afro- and Euro-American children aged 4---10 years of age. In Latinochildren fromthe USA, theseequations inaccurately estimate bodyfat.10 These results show that

equations developed in an ethnic group can be used in other populations, but the obtained estimation could be inaccurate. In the case of the Latino population, it has been recognized thatthe present-dayMexican population isan admixtureamongAmerindian,European,andAfrican ancestries.11

FewstudiesinLatinAmericahaveexploredthevalidity of prediction equations to estimate body fat in children usinganthropometricmeasurements.12,13 Itispossiblethat

equationsdevelopedinpopulationsofEuropeanorAfrican ancestrycouldnotbeappliedtotheLatinAmerican popu-lationduetoethnicdifferencesinamountanddistribution of body fat. For example, in comparison with European-or African-descendedchildren, thosewithLatinoancestry have higher waist circumference.14 In addition, pediatric

LatinAmericanpopulationshaveahighweightinrelationto theirheight(anindirectindicatorofadiposity),whichisnot alwaysisduetoexcessbodyfat.15,16Otherreasonsforhigh

(3)

with the reference population, Latino populations have lower heights15,16 but higher values of muscle mass,16

fat-freemasshydration,17trunklength,15 bodyframe(i.e.,

bone thickness),15 andthoraxcircumference.18 Therefore,

theobjectivesofthisstudywere(1)toevaluatethevalidity ofpreviouslypublishedequationstoestimate%BFinLatino children,and(2)todevelopandvalidatenewequationsin Latinochildren to predict bodyfat using DXAasthe gold standard.

Methods

Across-sectionalstudywascarriedoutwithaconvenience sampleof schoolchildrenandadolescentsaged5---19years fromMexicoCity.Theparticipantswererecruitedfrom ele-mentary(n=7),juniorhigh(n=8),andhighschools(n=4)in MexicoCityandacommunitycenterintheStateofMexico. The researchteampresented the projecttothe principal ofeachschool,andallstudentswereinvitedtoparticipate. Additionally, childrenof employeesfromthe Metropolitan AutonomousUniversity atXochimilco(UAM-X)participated inthestudy.Childrenwithaplastercastormotor disabili-tieswereexcludedfromthestudy.Thestudywasapproved bytheDivisionofBiologicalandHealthSciencesfrom UAM-X. The participants and their parents or guardians were informedabouttheresearchprocedures,andthelatter pro-videdinformedconsent.

Following the procedures used in other studies,7,10,19

the total sample (n=601) was randomly divided into two groups.Datafromtwo-thirdsoftheparticipantswereused todevelopequations(n=398),anddatafromtheremaining one-third of the children were used to validate new and previouslypublishedequations(n=203).TheSPSSsoftware package(IBMCorp.2010.IBMSPSSStatisticsforWindows, version20.0.NY,USA)wasusedtogeneratethesesamples (option‘‘Randomsampleofcases’’inthecommand‘‘Select cases’’).

Mostanthropometricmeasurementswereperformed fol-lowing thetechniques described byLohman etal.20 Waist

circumference was measured according to the technique describedbyFernándezetal.14Observerswerestandardized

following the Habicht protocol.21 Participants were

mea-sured with light clothes and without shoes. Stature was measuredwithaportablestadiometer,model214(SECA®, SP,Brazil)andbodyweightwithadigitalscale,model813 (SECA®, SP, Brazil). Waist and arm circumferences were obtainedwithametallictape(Lufkin®,MD,USA).Skinfolds (triceps, bicipital, subscapular, suprailiac, and calf) were measured with a compass (Harpenden®, Mediflex Produ-tosCirúrgicos,NY,USA).Eachskinfoldwasmeasuredthree times,andtheaveragevaluewasanalyzed.Bitrochanteric breadthandsittingstatureweremeasuredwithan anthro-pometer (Harpenden®, Mediflex Produtos Cirúrgicos, NY, USA).Elbowbreadthwasmeasuredwithananthropometer (Futrex®,MD,USA).

Bodymassindex(BMI:bodyweight/height2)was

calcu-latedasa Z-scorefor ageand sexusingthe WorldHealth Organizationreference.22Maturitywasestimatedusingthe

equationsofMirwaldetal.23

The percentage of body fat (%BF)was evaluated with DXA using equipment Model Discovery Wi (Hologic®, MA,

USA)Calibration, scanning,andimage analysiswere com-pleted following the manufacturer procedures and those described bythe International Society for Clinical Densit-ometry(ISCD).24Theimageswereanalyzedusingthewhole

bodyoption for Hispanic populations,model APEXversion 3.3.0.1(Hologic®, MA, USA). The coefficients of variation for the technicianwere 1.27% for total body fat (TBF) in kilograms,0.66% for leanbody mass,and 1.04%for %TBF, whichareacceptableaccordingtotheISCD.24

The distribution of anthropometric variables was assessedusingtheKolmogorov---Smirnovtest(Table1).When thevariablehadabiaseddistribution,it wastransformed usingthebase-10logarithmtoachieveaclosersymmetric distribution.Linearregressionmodelswereestimatedusing DXAderived%BFasadependentvariableand anthropomet-ricmeasurementasindependentvariables.Separatemodels wereestimatedforeachsex.Theequationsweredeveloped usingthefollowingtwoprocedures:

(a) Differentcombinationsof independentvariableswere manually tested. First, the capacity of each anthro-pometric variable to estimate %BF was evaluated (Supplementary Table S1). In addition, scatter plots were graphedto verifythe linear relationship among thevariables.Acurvilinearrelationshipof%BFwithage wasevidentinboys;meanwhile,amonggirls,this rela-tionshipwaslinear.Forthisreason,inmodelsforboys, thequadratic termof age wasincorporated. Because age and maturity are related, separate models with eachvariablewereestimated,andnodifferenceswere observed. For simplicity, only models with age were reported. The coefficient of determination (r2) and

standarderror(SE)wereusedascriteriatoidentifythe variablesthatbetterpredicted%BF.Avariablewas con-sidered an adequate predictor when the p-value was <0.050.

(b) Theautomaticbackwardandforwardproceduresofthe linearregressioncommandofSPSSsoftwarewereused (Table 2). In the backward option, all variables were introducedinthemodels,andthenthosethathadalow partial correlation withthe dependent variable were excluded (elimination criteria: p>0.100). In the for-wardoption,thevariableswereintroducedone-by-one according to greater correlation with the dependent variable. These variables were introduced and kept ifthey significantly predicted thedependent variable (p<0.050).

Theassessmentofthevalidityofthepreviouslypublished equationswascarriedoutusingage-matchedsubjectsfrom thepopulationthatwasusedtodevelopthem(e.g.,forthe Slaughterequations,25 participantsdatafrom8to18years

oldwereusedandfortheDeurenbergequations26therange

(4)

Table1 DescriptivestatisticsoftheanthropometricmeasuresinthedevelopmentandvalidationsamplesofMexicanchildren andadolescents.

Developmentsample Validationsample

Boys(n=191) Girls(n=207) Boys(n=100) Girls(n=103) %(n) %(n) %(n) %(n)

Sexualmaturity

Prepubescent 66.0(126) 30.9(64) 75.0(75) 42.7(44) Pubescent 27.2(52) 38.6(80) 22.0(22) 34.0(35) Post-pubescent 6.8(13) 30.4(63) 3.0(3) 23.3(24)

Mean± SD Mean± SD Mean± SD Mean± SD

Bodyfat(%) 27.1± 9.4 32.6± 7.0 25.8± 9.0 32.8± 7.4

Age(years) 11.3±2.7 11.5±2.9 10.9±2.6 10.9±2.9

Age2(years2) 136.0± 59.2a 141.1± 67.5a 133.3± 56.0 127.9± 62.6

Height(cm) 149.2±16.9 146.2±13.1c 144.2±15.3 145.2±13.7

Sittingheight(cm) 76.9±8.1 76.5±7.2b 74.3±7.5 75.5±7.9

Sittingheightratio(%) 51.7± 1.8a 52.3± 1.9 51.6± 2.6 52.0± 2.7a

Weight(kg) 47.4±15.9 45.0±14.2 42.0±14.3 43.7±14.0

Bodymassindex(kg/m2) 20.7± 4.2 20.5± 4.1 19.7± 3.8 20.3± 4.3

Armcircumference(cm) 24.2±4.1 23.9±3.8 23.2±3.8 23.9±3.7

Waistcircumference(cm) 73.8± 12.9 72.0± 11.2 70.1± 11.4 72.5± 10.8

Tricepsskinfold(mm) 14.9±6.6a 16.7±5.5 14.2±6.3 17.2±5.8

Bicepsskinfold(mm) 8.3± 4.5c 9.0± 3.9a 7.7± 3.8a 9.8± 4.8a

Subscapularskinfold(mm) 14.2± 7.8a 15.7± 7.2 13.0± 7.6b 16.0± 9.2

Suprailiacskinfold(mm) 18.9±12.7a 22.0±12.0 16.0±11.3a 21.9±11.9

Calfskinfold(mm) 14.1± 6.7a 15.8± 6.5 12.4± 5.9a 16.0± 6.6

Bitrochantericbreadth(cm) 29.7±4.9 29.5±4.2 27.9±4.4 29.3±4.5

Elbowbreadth(cm) 5.6± 0.6 5.1± 0.4 5.4± 0.6 5.1± 0.4

SignificancebytheKolmogorov---Smirnovtest. ap0.050.

b p0.010. c p0.001.

Table2 Multiplelinearregressionmodelshaving%BFbyDXAasoutcomeandanthropometriccharacteristicsaspredictorsin thedevelopmentsampleofMexicanchildrenandadolescents.

Equations Multiplelinearregressionmodels r2(%) SE(%)

Forboys

1 −8.739− 0.384c(height,cm)+35.371a(logweight,kg)0.892b(BMI,kg/m2)0.299a

(armcircumference,cm)+0.258c(waistcircumference,cm)+17.732c(logtriceps

skinfold)+6.698b(logsubscapularskinfold)+3.545d(logsuprailiacskinfold)+4.019d

(logcalfskinfold)

93.4 2.5

2 1.511− 0.152c(height,cm)0.431c(armcircumference,cm)+0.213c(waist

circumference,cm)+21.271c(logtricepsskinfold)+7.386b(logsubscapular

skinfold)+4.981b(logsuprailiacskinfold)

92.7 2.56

3 −1.791+0.329(age,years)−0.033a(age2,years2)0.141c(height,cm)+0.162c(waist

circumference,cm)+18.516c(logtricepsskinfold)+6.013a(logsubscapular

skinfold)+5.633b(logsuprailiacskinfold)

92.4 2.61

Forgirls

1 −7.299−21.436b(logsittingheight)+17.739b(logBMI)+20.143a(logwaist

circumference)+7.813c(logtricepsskinfold)+6.379b(logsubscapularskinfold)+6.051b

(logcalfskinfold)−16.364a(logelbowbreadth)

85.8 2.65

%BFbyDXA,percentageofbodyfatestimatedbydual-energyX-rayabsorptiometry;BMI,bodymassindex;SE,standarderror.

p-Valuesofregressioncoefficientswere: ap<0.050.

(5)

Table3 Cross-validationofnewandpreviouslypublishedpredictionequationsinvalidationsampleofMexicanchildrenand adolescents.

Boys Girls

Min Max Mean r2(%) SE(%) ˛ p Min Max Mean r2(%) SE(%) ˛ p

8---18years n=85 n=84

%BFDXA 11.3 47.2 25.1 17.2 52.5 32.9

Equation1 11.6 44.0 25.6 91.6 2.59 −0.64 0.478 17.2 45.3 33.0 78.1 3.52 0.39 0.841 Equation2 12.2 44.6 25.7 90.7 2.72 −0.49 0.603

Equation3 10.6 43.3 25.2 91.5 2.60 0.25 0.776

Slaughtera 8.6 44.7 20.2 78.2 4.17 6.75 0.000 12.4 47.3 25.6 62.8 4.60 11.79 0.000

Slaughterb 10.6 54.1 23.7 80.7 3.92 6.73 0.000 11.2 60.6 27.6 51.0 5.27 14.96 0.000

7---19years n=93 n=92

%BFDXA 11.3 47.2 25.5 17.2 52.5 33.3

Equation1 11.6 44.0 26.0 91.5 2.66 −0.79 0.370 17.2 45.3 33.3 79.1 3.42 0.45 0.806

Equation2 12.2 44.6 26.2 90.6 2.78 −0.75 0.423

Equation3 10.6 43.3 25.6 91.5 2.65 0.03 0.972

Deurenbergc 10.2 31.4 19.5 80.2 4.05 6.85 0.000 13.8 35.8 23.6 67.6 4.25 3.70 0.097

Deurenbergd 11.3 34.5 20.8 84.8 3.55 6.54 0.000 13.8 40.1 26.1 67.0 4.29 4.97 0.023

4---10years n=29 n=33

%BFDXA 15.6 44.7 28.9 17.2 45.8 33.1

Equation1 17.0 39.9 29.5 88.9 2.82 −2.14 0.335 17.2 44.9 32.3 82.1 3.25 2.11 0.430

Equation2 17.9 40.2 29.8 88.5 2.86 −3.65 0.128

Equation3 17.6 40.8 29.5 90.2 2.64 −2.59 0.219

Dezenberge 12.7 36.1 25.3 68.1 4.77 0.57 0.888 12.9 36.4 25.5 62.9 4.65 10.48 0.002

Dezenbergf 15.2 36.2 25.2 77.4 4.02 0.42 0.892 11.3 38.4 26.4 79.8 3.43 7.67 0.002

Dezenbergg 13.1 34.2 23.6 77.7 3.99 2.50 0.385 13.8 38.5 27.5 79.8 3.43 3.95 0.147

Dezenbergh 12.5 33.6 23.0 77.7 4.00 3.32 0.237 12.8 37.8 26.7 79.8 3.43 5.28 0.046

7---13years n=66 n=53

%BFDXA 12.0 44.7 27.3 17.2 52.5 33.0

Equation1 11.6 41.8 27.6 87.1 2.89 0.17 0.900 17.2 45.3 32.3 83.4 3.36 −0.48 0.822

Equation2 12.2 42.5 27.8 85.6 3.05 −0.03 0.982

Equation3 10.7 43.0 27.3 87.8 2.81 0.82 0.522

Huangi 0.9 42.5 24.2 61.9 4.97 13.51 0.000 5.6 46.2 28.2 63.5 4.96 14.25 0.000

Huangj 1.6 40.7 21.9 64.4 4.81 14.85 0.000 9.7 47.9 31.0 63.5 4.96 11.10 0.000

Huangk 4.1 40.8 23.9 58.9 5.16 11.98 0.000 6.5 44.5 22.7 67.3 4.70 19.47 0.000

8---17years n=85

%BFDXA 11.3 47.2 25.1

Equation1 11.6 44.0 25.6 91.6 2.59 −0.64 0.478

Equation2 12.2 44.6 25.7 90.7 2.72 −0.49 0.603

Equation3 10.6 43.3 25.2 91.5 2.59 0.25 0.776

Stevensl 20.6 49.2 31.8 83.4 3.63 10.89 0.000

%BFDXA,percentageofbodyfatestimatedbydual-energyX-rayabsorptiometry;Min,minimum;Max,maximum;SE,standarderror;

r2,coefficientofdetermination;˛,intercept;T-SF,tricepsskinfold;B-SF,bicepsskinfold;SS-SF,subscapularskinfold;SI-SF,supra-iliac

skinfold;C-SF,calfskinfold.

Theestimationsweremadebasedon: a T-SFandC-SF.

b T-SFandSS-SF. c T-SFandB-SF.

d T-SF,B-SFSI-SF,andSS-SF. e Weight.

f WeightandT-SF. g Weight,T-SF,andgender.

h Weight,T-SF,gender,andethnicity. i Age.

j Ageandgender. k Age,gender,andheight.

(6)

Equation 1 for boys

Difference = 2080 – 0.060 average

p of β : 0.012

Difference = 2198 – 0.057 average

p of β : 0.013

Difference = 3564 – 0.106 average

p of β : 0.028 Difference = 1201 – 0.040 average

p of β : 0.144

Equation 2 for boys Equation 1 for girls Equation 3 for boys

7.50

10.00

5.00

0.00

–5.00

–10.00 5.00

2.50

0.00

–2.50

Diff

erence in %BF (predicted-measured)

Diff

erence in %BF (predicted-measured)

Diff

erence in %BF (predicted-measured)

–5.00

10.00

5.00

0.00

–5.00 Diff

erence in %BF (predicted-measured)

10.00

5.00

0.00

–5.00

–10.00

–15.00 10.00 20.00 30.00

Average %BF by DXA and equation 1 (boys)

40.00 50.00 10.00 20.00 30.00

Average %BF by DXA and equation 3

40.00 50.00

10.00 20.00 30.00

Average %BF by DXA and equation 2

40.00 50.00 10.00 20.00 30.00

Average %BF by DXA and equation 1 (girls)

40.00 50.00

A

C

B

D

Figure1 Bland---Altmangraphsforthedifferencein%BFmeasuredbyDXAandestimated%BFbynewpredictionequationsbased onanthropometryinthevalidationsampleofMexicanchildrenandadolescents.%BFbyDXA,percentageofbodyfatestimatedby dual-energyX-rayabsorptiometry.

over- or under-estimate %BF. Finally, the Bland Altman plots weregraphed(Fig. 1and SupplementaryFig. S1) to verify whether bias existed in the estimations according toadipositylevels.Differencesbetweenthemeasuredand estimated %BF were plotted against the average of mea-suredand estimated %BF. Onlyequations whose intercept wasnot different from the origin were plotted. The sta-tisticalanalyses wereperformed usingSPSSsoftware(IBM Corp.2010.IBMSPSSStatisticsforWindows,version20.0. NY,USA)

Statistical power analysis for different scenarios was completed using the G*Power software.27 For the

devel-opment of equations (Table 2) given a significance level (˛) of 0.050, a sample size of 207, an effect of 85.8% (r2), and seven predictors (scenario for the girls’

equa-tion),thestatisticalpowerwas1.00.Thesameresultwas obtainedwiththescenarioforthethreeequationsforboys. Forthe validation analysis (Table 3), the power obtained underthe different scenarios withrespect to the sample size(n from29to93), theeffect(r2 from51.0to91.6%)

andthenumberofpredictors(1---7)wasalwayssatisfactory (i.e.,≥0.80).

Results

Adescriptiveanalysisoftheanthropometricvariablesinthe development and validation samples is shown in Table 1. Themeanageofthedevelopmentsamplewas11.88years, which is higher than thatof the validation sample (11.32 years,p=0.019).Inboth samples,halfof theparticipants were girls (development sample: 52%, validation sample: 50.7%).Althoughmostparticipantswerepre-pubescent,the proportionwashigherinthevalidationsamplethaninthe developmentsample(58.6%vs.47.7%,p<0.050).

Foreachsexgroup,differentanthropometric character-isticswererelatedto%BF(SupplementaryTableS1).Inboys, thevariablesthatbetterpredicted%BFwereage,stature, BMI,circumferencesof arm andwaist, bitrochantericand elbowbreadth,sittingstature,weight,sittingstatureindex, and five skinfolds. Among girls, the best predictors were age,stature,weight,sittingstature,sittingstatureindex, BMI, circumference of arm and waist, five skinfolds, and bitrochantericandelbowbreadth.

(7)

option,thefollowingvariableswereincludedinthemodel (calledEquation(1)):stature,BMI,arm andwaist circum-ferences,bodyweight,andtriceps,subscapular,suprailiac, and calf skinfolds (r2=93%, SE=2.5%). With the forward

option, the model (called Equation (2)) included the fol-lowing variables: stature, arm and waist circumferences, andtriceps,subscapular,andsuprailiacskinfolds(r2=92%,

SE=2.5%). In boys, manual selection produced a model (Equation (3)) that included age, stature, waist circum-ference, andtriceps, subscapular,and suprailiacskinfolds (r2=92%, SE=2.0%). In girls, both of the automated

pro-cedures produced the samesolution (called Equation (1)) withthefollowingvariables:sittingstature,BMI,waist cir-cumference, triceps, elbowbreadth, and subscapularand calfskinfolds(r2=85%,SE=2.5%).Amonggirls,themanual

selectionmodeldidnotadequatelypredict%BF(r280.0%).

Table3showsthedifferentestimationsof%BFobtained by equations in the validation sample. In all of the age groups, the newly developed equations in Mexican schoolchildren and adolescents had high coefficients of determination(r285%in boysand78%in girls)andthe

lowestSE(≤3.05%inboysand≤3.52%ingirls);inaddition, their intercepts didnot differ fromthe origin (p>0.050). Although with the Dezenberg equations the intercept did notdifferfromtheorigin(p>0.050),theirpredictive capac-ity (r277.7 in boys and <79.8 in girls) was lower than

that of the equations developed here (r288 and 82%,

respectively).TheStevensequationsinboysexplaineda sig-nificantproportionofvariance(r2=85%),buttheintercept

differedfromtheorigin.Inbothsexes,theSlaughter equa-tionsoverestimated%BF(positiveintercept,p<0.050).The Deurenbergequationsunderestimated%BFinboys(negative intercept,p<0.050)andoverestimatedingirls.TheHuang equationsoverestimated%BFinbothsexes.

TheBland---Altmanplots(Fig.1A,BandD)revealedthat developedequationsthroughautomaticproceduresproduce biasedestimations of %BF.These equations overestimated values in children withlow adiposity,while in thosewith high adiposity,valueswereunderestimated. The equation developedbymanualselectioninboysyieldedestimations withoutsystematicbias(Fig.1C).

Discussion

Themainaimofthisstudywastodevelopequationsbased onanthropometricmeasurementstopredict%BFforMexican schoolchildrenandadolescents.Thefourdeveloped equa-tionsrequiremeasuresrelatedtoadiposity,lineargrowth, and body frame. For boys, three equations explained a highproportionofthe%BFvariance(r292%).Althoughthe equation for girls explainedahigh proportion of variance (85%),thiswaslowerthanthatforboys.Anotheraimofthe study wastoanalyze thevalidity of previouslydeveloped equations. With the exception of Dezenberg’s equations, none of previously published equations were valid in the sampleofMexicanschoolchildrenandadolescents.

In itsoriginalpopulation,5the Slaughterequations had

acceptable predictive capacity (r2 from 75% to 78% in

thetotalsample).However,intheMexican schoolchildren and adolescents, these equations overestimated the %BF. The same trend was observed Indian children,9 Chinese

childrenwithobesity,8andBritishchildren.6TheDeurenberg

equations26weredevelopedin379Dutchchildrenand

ado-lescentsfrom7to20yearsofageandhadlowtomoderate predictivecapacity(r2=41%to69%inthetotalsample).In

theMexicanpediatricpopulation,theseequations underes-timated%BFinboysandoverestimateditingirls.However, theopposite effect occurred in Britishchildren.6 Physical

differences of Mexican children and adolescents in com-parison with those who participated in the Slaughter25

and Deurenberg26 studies could explain the results found

in the present study. Participants in the Slaughter25 and

Deurenberg26 samples were taller(155.2cmand 164.3cm

vs.144.2cm,respectively)andheavier(47.4kgand53.9kg

vs.42kg, respectively) than childrenin the Mexican sam-ple but had lower %BF (16.7% and 15.1% vs. 25.8%, respectively).

InMexican schoolchildrenandadolescents,the estima-tionsobtainedwiththeDezenberg equations didnottend to systematically over- or underestimate %BF (i.e., the interceptdidnotdifferfromtheorigin).However,the pre-dictivecapacityof the Dezenberg equations(r2=68.1% to

77.4%in boysand62.9% to79.8% in girls)waslowerthan thoseoftheequationsdevelopedinthisstudy(88.5%---90.2% and82.1%,respectively).Similarfindingswereobtainedin Cubanschoolchildren.28Nevertheless,inLatino10andIndian

schoolchildren,9 the Dezenberg equations underestimated

%BF;whereasinBritishschoolchildrenthesesequationshad abiasof13%intheestimationof%BFmeasuredbydeuterium dilution.29

The Huang equations10 were developed in 96 Latino

schoolchildrenfrom7to13yearsofagefromtheUSAand hadanacceptablepredictivecapacity(r2=86%---97%inthe

totalsample).IntheMexicansampletheseequations over-estimated %BF. Although participants of the Huang study wereLatino,theywereheavierthantheMexican schoolchil-dreninthecurrentsample.Thesedifferencescouldreflect thedifferentenvironmentswherechildrenfromtheUSAand Mexicolive.

The Stevens equations19 were developed with a

multi-ethnicsampleof5374subjects8---17yearsofageandhada predictivecapacityupto85%inboysusingDXAasthegold standard.Thisequationtendedtounderestimatethe%BFin Mexicanschoolchildrenandadolescents.

TheLatinAmericanpopulationhascertainphysical char-acteristics such aslower height, short lowerextremities, higherlevelsofbodyfatinthetrunkandabdominalregions, andlargerbodyframe.14---16 Forthisreason,inthepresent

study,body characteristics related tolinear growth (i.e., stature or sitting stature) and body frame (i.e., elbow or bitrochanteric breadth) were measured in addition to those related to adiposity (i.e., skinfolds and waist cir-cumference).Intheequationsdevelopedfor boys,stature hadanegativeregressioncoefficient;whereasingirls,the coefficientsforelbowbreadthandsittingstatureindexwere alsonegative.Thisshowsthatchildrenoradolescentswith higherstatureorlargerbodyframestendtohaveless adi-posity.In addition,in the newequation measurementsof abdominal and trunk fat were predictors of %BF, includ-ing waist circumference and subscapular and suprailiac skinfolds.

(8)

should be done with caution. Another limitation is that althoughDXAisconsideredanadequatemethodtomeasure adiposity,30itsvalidityinaMexicanpopulationhasnotbeen

established.Inthedevelopmentoftheequationsfor Mexi-canchildrenandadolescents,lesspredictivecapacitywas observedingirlsthanboys.Thisdifferencebysexhasbeen observedinothersamples.19,26Inthefuture,measurements

shouldbe identifiedthat increase the predictive capacity ofequations in girls. Amain limitation ofthis researchis thataconveniencesampleofchildrenandadolescentsfrom Mexico City was used, and, therefore, the sample had a specificethniccomposition.Inthisway,althoughthe devel-opedequationsprovideanimprovedestimationof%BFinthe sample understudy,their usein other populationsshould beextended withcaution.In other words, the validityof theseequationsshouldbeevaluatedinothersamplesof chil-drenfromotherregionsofMexicoandotherLatinAmerican countries.ThisisnecessarybecausetheLatinAmerican pop-ulationisdiverseintermsofethnicancestry.Forexample,in thesoutheastregionofMexico,thereisapredominanceof AmerindianancestryoverEuropean,whereasinthe North-ern region the opposite trend is observed.11 Finally, the

predictivecapacity of the estimated %BF(with the equa-tionspublishedhere)toidentifyclinicallyrelevantoutcomes (i.e.,cardiovascularrisk)shouldbedetermined.

In conclusion, the findings indicate that the equa-tions developed based on anthropometric measurements appropriatelypredict%BFinaheterogeneousgroupof Mex-icanschoolchildrenandadolescents.Incontrast,equations developed in other populations (even with similarethnic characteristics) have reduced predictive capacity to esti-mate%BF.Therefore,theequationsdevelopedinthisstudy canbeusedtoassessthe%BFinMexicanschoolchildrenand adolescents,astheydemonstrategreatervalidityandlower errorcomparedwiththepreviouslypublishedequations.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors are grateful for the support of Magdalena Rodriguez-Magallanes --- from the Nutrition, Body Compo-sition, and Energy Expenditure Unit --- who standardized theobserverswhocarriedouttheanthropometric measure-ments.

Appendix

A.

Supplementary

data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jped. 2016.08.008.

References

1.GutiérrezJP,Rivera-DommarcoJ,Shamah-LevyT, Villalpando-HernándezS,FrancoA,Cuevas-NasuL,etal.Encuestanacional desaludynutrición2012,Resultadosnacionales.Cuernavaca. México:InstitutoNacionaldeSaludPública;2012.

2.MustA,AndersonSE.Effectsofobesityonmorbidityinchildren andadolescents.NutrClinCare.2003;6:4---12.

3.Rtveladze K, Marsh T, Barquera S, Sanchez Romero LM, Levy D, Melendez G, et al. Obesity prevalence in Mexico: impacton health and economic burden. PublicHealth Nutr. 2014;17:233---9.

4.FrignaniRR,PassosMA,FerrariGL,NiskierSR,FisbergM,Cintra IdeP.Referencecurvesofthebodyfatindexinadolescentsand theirassociationwithanthropometricvariables.JPediatr(Rio J).2015;91:248---55.

5.SlaughterMH,LohmanTG,BoileauRA.Relationshipof anthro-pometricdimensionstoleanbodymassinchildren.AnnHum Biol.1978;5:469---82.

6.ReillyJJ,WilsonJ,DurninJV.Determinationofbody composi-tionfromskinfoldthickness:avalidationstudy.ArchDisChild. 1995;73:305---10.

7.DezenbergCV,NagyTR,GowerBA,JohnsonR,GoranMI. Pre-dictingbodycompositionfromanthropometryinpre-adolescent children.IntJObesRelatMetabDisord.1999;23:253---9. 8.ChanDF,LiAM,SoHK,YinJ,NelsonEA.Newskinfold-thickness

equationforpredictingpercentagebodyfatinChineseobese children.HKJPaediatr(NewSeries).2009;14:96---102. 9.KehoeSH,KrishnaveniGV,LubreeHG,WillsAK,GuntupalliAM,

VeenaSR,etal.Predictionofbody-fatpercentagefromskinfold andbio-impedancemeasurementsinIndianschoolchildren.Eur JClinNutr.2011;65:1263---70.

10.HuangTT,WatkinsMP,GoranMI.Predictingtotalbodyfatfrom anthropometryinLatinochildren.ObesRes.2003;11:1192---9. 11.Rubi-Castellanos R, Martínez-Cortés G, Mu˜noz-Valle JF,

González-MartínA, Cerda-FloresRM,Anaya-Palafox M,et al. Pre-hispanic mesoamerican demography approximates the present-dayancestry ofMestizos throughoutthe territoryof Mexico.AmJPhysAnthropol.2009;139:284---94.

12.UrrejolaP,HernándezI,IcazaG,VelandiaS,ReyesM,Hodgson I.Estimacióndemasagrasaenni˜noschilenos:ecuacionesde plieguessubcutáneosvsdensitometríadedoblefotón.RevChil Pediatr.2011;82:502---11.

13.ConliskEA, Haas JD, Martinez EJ, Flores R, Rivera JD, Mar-torellR.Predictingbodycompositionfromanthropometryand bioimpedance in marginally undernourished adolescents and youngadults.AmJClinNutr.1992;55:1051---60.

14.FernándezJR,ReddenDT,PietrobelliA,AllisonDB.Waist cir-cumferencepercentilesinnationallyrepresentativesamplesof African-American,European-American,andMexican-American childrenandadolescents.JPediatr.2004;145:439---44. 15.MartorellR, MendozaFS,Castillo RO, PawsonIG,Budge CC.

ShortandplumpphysiqueofMexican-Americanchildren.AmJ PhysAnthropol.1987;73:475---87.

16.Ortiz-HernándezL, López OlmedoNP, Genis GómezMT, Mel-chorLópezDP,ValdésFloresJ.Applicationofbodymassindex to schoolchildren of Mexico City. Ann Nutr Metab. 2008;53: 205---14.

17.BouttonTW, Trowbridge FL,Nelson MM, WillsCA,Smith EO, LopezdeRomanaG,etal.BodycompositionofPeruvian chil-dren with short stature and high weight-for-height, I.Total body-watermeasurementsandtheirpredictionfrom anthropo-metricvalues.AmJClinNutr.1987;45:513---25.

18.TrowbridgeFL,MarksJS,LopezdeRomanaG,MadridS,Boutton TW,KleinPD.BodycompositionofPeruvianchildrenwithshort statureandhighweight-for-height,II.Implicationsforthe inter-pretationfor weight-for-height asanindicator ofnutritional status.AmJClinNutr.1987;46:411---8.

19.StevensJ,CaiJ,TruesdaleKP,CuttlerL,RobinsonTN,Roberts AL.Percentbodyfatpredictionequationsfor8-to17-year-old Americanchildren.PediatrObes.2014;9:260---71.

(9)

21.Habicht JP. Standardization of quantitative epidemiological methodsinthefield.BolOficinaSanitPanam.1974;76:375---84. 22.deOnisM,OnyangoAW,BorghiE,SiyamA,NishidaC,Siekmann J.DevelopmentofaWHOgrowthreferenceforschool-aged chil-drenandadolescents.BullWorldHealthOrgan.2007;85:660---7. 23.MirwaldRL,Baxter-JonesAD,BaileyDA,BeunenGP.An assess-mentofmaturityfromanthropometricmeasurements.MedSci SportsExerc.2002;34:689---94.

24.HangartnerTN,WarnerS,BraillonP,JankowskiL,ShepherdJ. TheofficialpositionsoftheInternationalSocietyfor Clinical Densitometry:acquisition ofdual-energy X-ray absorptiome-trybodycompositionandconsiderationsregardinganalysisand repeatabilityofmeasures.JClinDensitom.2013;16:520---36. 25.SlaughterMH,LohmanTG,BoileauRA,HorswillCA,StillmanRJ,

VanLoanMD,etal.Skinfoldequationsforestimationofbody fatnessinchildrenandyouth.HumBiol.1988;60:709---23.

26.Deurenberg P, Pieters JJ, Hautvast JG. The assessment of thebodyfat percentagebyskinfoldthicknessmeasurements in childhood and young adolescence. Br J Nutr. 1990;63: 293---303.

27.FaulF,ErdfelderE,LangAG,BuchnerA.G*Power3:aflexible statisticalpoweranalysisprogramfor thesocial,behavioral, andbiomedicalsciences.BehavResMethods.2007;39:175---91. 28.Fernández-VieitezJA. Estimacióndelacomposición corporal pordosdelasecuacionesdeDezenbergparani˜nosde5a10 a˜nos.RevCubanaSaludPública.2003;29:37---41.

29.WellsJC. PredictingfatnessinUS vsUKchildren. IntJObes RelatMetabDisord.1999;23:1103.

Imagem

Table 1 Descriptive statistics of the anthropometric measures in the development and validation samples of Mexican children and adolescents.
Table 3 Cross-validation of new and previously published prediction equations in validation sample of Mexican children and adolescents.
Figure 1 Bland---Altman graphs for the difference in %BF measured by DXA and estimated %BF by new prediction equations based on anthropometry in the validation sample of Mexican children and adolescents

Referências

Documentos relacionados

Amélia, que uma noiva freqüente assiduamente uma casa onde não tem entrada o homem com quem vai casar-se; acha natural que essa moça tenha em tais reuniões um par efetivo, que

Assim, o grande desafio colocado à educação artística consistirá, então, em definir o que hoje deverá ser considerado fundamental de entre os conteúdos tradicionais

The objectives of this study were to estimate the inbreeding depression and the genetic effects involved in the control of the agronomic and fiber quality traits in F 1 and F 2

Desta forma, diante da importância do tema para a saúde pública, delineou-se como objetivos do es- tudo identificar, entre pessoas com hipertensão arterial, os

An analysis of the retrospective cohort of all renal transplants performed at Botucatu Medical School University Hospital between June 17, 1987, when the first renal transplant

[r]

Contudo, o sujeito ativo poderá ser tanto o homem quanto a mulher, devendo a análise do caso concreto atentar-se à existência ou não de motivação de gênero e utilização

Entende-se a preocupação da igreja católica, como também, dos demais seguimentos religiosos, quando se percebe as controvérsias existentes entre a ciência, a religião e o