• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.39 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.39 número3"

Copied!
7
0
0

Texto

(1)

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Review

article

Thrombin

generation

assays

for

global

evaluation

of

the

hemostatic

system:

perspectives

and

limitations

Rita

Carolina

Figueiredo

Duarte

a

,

Cláudia

Natália

Ferreira

a

,

Danyelle

Romana

Alves

Rios

b

,

Helton

José

dos

Reis

a

,

Maria

das

Grac¸as

Carvalho

a,∗ aUniversidadeFederaldeMinasGerais(UFMG),BeloHorizonte,MG,Brazil

bUniversidadeFederaldeSãoJoãodel-Rei(UFSJ),Divinópolis,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15April2016 Accepted30March2017 Availableonline9May2017

Keywords:

Thrombingeneration CATmethod Hemostasis

a

b

s

t

r

a

c

t

Theexistingtechniquestoevaluatehemostasisinclinicallaboratoriesarenotsensitive enoughtodetecthypercoagulableandmildhypocoagulablestates.Underdifferent exper-imental conditions, the thrombin generation test maymeet these requirements. This techniqueevaluatestheoverallbalancebetweenprocoagulantandanticoagulantforcesand hasprovidednewinsightsinourunderstandingofthecoagulationcascade,aswellasof thediagnosisofhypocoagulabilityandhypercoagulabilityconditions.Thrombingenerated inthethrombingenerationtestcanbequantifiedasplatelet-richorplatelet-poorplasma usingthecalibratedautomatedthrombogrammethod,whichmonitorsthecleavageofa fluorogenicsubstratethatissimultaneouslycomparedtotheknownthrombinactivityin anon-clottingplasmasample.Thecalibratedautomatedthrombogrammethodisanopen system,inwhichdifferentantibodies,proteins,enzymesandpeptidescanbeintroducedto answerspecificquestionsregardinghemostaticprocesses.Thethrombingenerationtesthas greatclinicalpotential,suchasinmonitoringpatientstakinganticoagulantsandantiplatelet drugs,screeningforgeneticoracquiredthromboticdisorders,andevaluatingbleedingrisk controlinpatientswithhemophiliausingbypassagentsorreplacementtherapy.Different toconventionalcoagulationtests,thethrombingenerationtestcanbeusedforanoverall evaluationofhemostasis,theresultsofwhichcanthenbeusedtoevaluatespecific char-acteristicsofhemostasis,suchasprothrombintime,activatedpartialthromboplastintime, andlevelsoffibrinogenandothercoagulationfactors.Theintroductionofthismethod willcontributetoabetterunderstandingandevaluationofoverallhemostaticprocesses; however,thismethodstillrequiresstandardizationandclinicalvalidation.

©2017Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:ClinicalandToxicologicalDepartment,UniversidadeFederaldeMinasGerais(UFMG),Av.AntônioCarlos,6627,

31270-910Pampulha,BeloHorizonte,Brazil.

E-mailaddress:mgcarvalho@farmacia.ufmg.br(M.G.Carvalho). http://dx.doi.org/10.1016/j.bjhh.2017.03.009

(2)

Introduction

Different aspects of hemostasis can be studied using the methods that are currently available to researchers and clinicallaboratories.These includecoagulometryand chro-mogenic methods, which assess separate aspects of the hemostaticprocess.However,thesemethodsdonotprovide anoverall evaluationof hemostasis.1 The method of

eval-uation is chosen depending on the patient’s clinical data, andmayseparatelyprovideimportantinformationabout pri-mary,secondaryandtertiaryphasesofhemostasis,inaddition tonatural inhibitors such asprotein C (PC)protein S (PS), antithrombin(AT)andtissuefactorpathwayinhibitor(TFPI). Molecular methods also contribute to the investigation of hemostaticdisorders,inparticular,incasesofgenetic resis-tancetoactivatedPC(aPC),whichisprimarilycausedbyfactor VLeidenand other uncommonmutations,and incasesof hyperprothrombinemiacausedbytheG20210Aprothrombin mutation.2Despitethediversityoflaboratorymethodsused

toevaluatehemostaticprocesses,noneofthecurrently avail-ablemethodsisabletoassessallthephasesofhemostasis. Thus,theresultsobtainedusingtheseconventionalmethods arenotalwaysassociatedwithclinicalmanifestations.2

Traditionallyusedmethodshavesatisfactorysensitivityfor moderateandseverehypocoagulability,butnotfor hyperco-agulableormildhypocoagulablestates.Suchmethodsonly provideinformationaboutthebeginning ofthecoagulation process, and therefore, the resultof the test is not repre-sentativeoftheentireclotformationprocess,asmeasured using the total thrombin generation capacity.2–4 The

typi-calcoagulometricmeasurements,suchasprothrombintime (PT)andactivatedpartialthromboplastintime(aPTT), mea-sure onlythe clottingtime corresponding to the initiation phaseofthecoagulationprocess.Furthermore,theend-point ofthesetestsoccursaftertheformationofonly5%oftotal thrombin.2,4 Therefore, PTand aPTTreflectonlythe initial

coagulation process while the formation of thrombin and fibrin isstill occurring.2,5 A greater amount ofthrombin is

generatedduringtheamplificationandpropagationphases, resulting in an exponential increase in thrombin, which becomesinactivatedbyphysiologicalanticoagulantssuchas alpha-2-macroglobulin,AT,PCandPS.1,2 Therefore,

conven-tionaltestsdonotprovideinformationabouttheamplification andpropagationphasesofthehemostaticsystem.1,2

Theintroductionofamethodabletoevaluatetheentire coagulation process is highly desirable, as this could bet-ter reflect bleeding and thrombotic risks. Many attempts havebeen madeto achieve this goal,which would ideally accuratelyreflectallcomponentsandconditionsofthe hemo-staticprocess,includingplatelets,coagulationfactors,natural inhibitors, theendotheliumand its interactions,aswell as fibrinolysisandbloodflow.Severalauthorshavesuggestedthe needtointroduceinvitromethodsrepresentativeofthemain physiologicalaspectsofhemostasisasapossiblesolution.3,6–8

Attemptstodevelopamethodtocomprehensivelyevaluate hemostasisbeganseveraldecadesago.In1953,MacFarlane and Biggs9 were the first toreport thrombin generation in

thebloodusingalaboriousandtime-consumingtechnique, whichrendereditinapplicableforuseintheclinicalpractice.

Inthesameyear,PitneyandDacie10reportedthe

measure-ment of thrombin generation inplasma. Many years later, convincedoftheneedforacomprehensivetestforthebroader assessmentofhemostasis,theillustriousProfessorCoenraad Hemkeretal.attheUniversityofMaastricht(Netherlands)1,11

improvedandsemi-automatedthethrombingeneration tech-nique,initiallyemployingachromogenicmethod,andlatera fluorogenicmethod.12Thisimprovementcontributedgreatly

tothesuccessfuluseofthistechniqueinnumerousstudies. Duetothelackofinformationaboutglobaltestsof throm-bingeneration,wepresentashortdiscussionofthistechnique withemphasisonthecalibratedautomatedthrombogram® (CAT) method. Inthis concise review,we present method-ological aspectsofthe thrombin generation test(TGT), the evaluationofhemostaticcomponentsundersomeanalytical conditions,theuseofthetestinexperimentalstudies, poten-tialclinicalapplicationsasaglobalcoagulationtest,aswellas itslimitationsandfutureperspectives.

Thrombin

generation

assays

and

the

calibrated

automated

thrombogram

method

Thrombinisakeyproteininvolvedintheregulationof hemo-staticprocesses;ithasbothprocoagulantandanticoagulant properties.13Whileinvivothrombingenerationcanbe

evalu-atedbymeasuringthethrombin-antithrombincomplex(TAT) andprothrombinfragments1+2(F1+2),exvivoTGTaimsto evaluatetheendogenouscapacityoftheoverallhemostatic potential.Therefore,whilehighlevelsofTATandF1+2 rep-resent thepathological activation ofin vivocoagulation,ex vivo thrombin generation reflects the endogenous capacity ofthe hemostaticsystem, and canbeindicative of throm-botic or hemorrhagic risk. TGTcontinuouslymeasures the proteolyticactivityofthrombinformedinplasmausing chro-mogenic or fluorogenic substrates following the activation ofclottingusingatriggeringagent,aswascomprehensively shownbyLecutetal.1Thesyntheticsubstrate,whichis

cou-pledtoachromogenorfluorophore,isselectivelycleavedby thrombin,releasingthechromogenorfluorophore.The out-putsignaliscontinuouslymeasured,andisproportionalto theamountofthrombinpresentinthereaction,thekinetics ofwhichcomprisetwostages.Thefirst,theinitiationstage, correspondingtothecoagulationtimemeasuredusingtests suchasPTandaPTT,canbeinhibitedbyTFPI.Thesecond,the amplification/propagation stage,isfollowedbyaresolution phaseresultingfromtheactionofvariousinhibitorspresent inplasma,suchasaPC,ATandalpha-2-macroglobulin.

TheCAT method,developed byHemkeret al.12 enables

thequantificationofthrombinconcentrationsinplatelet-rich (PRP) or platelet-poor plasma (PPP) bymonitoring the sep-aration ofafluorogenic substrate,whichis simultaneously compared to known thrombin activity in a non-clotting plasmasample.12Thisthrombincalibratorcontainsaknown

(3)

Plasma (PPP/PRP)

Thrombin

Cleavage of the fluorescent substrate (Z-Gly-Gly-Arg-7-amino-4methylcoumarin)

Reading of the fluorescence intensity Releasing of

fluorophore

TF + phospholipids + calcium

Figure1–Schematicofthethrombinformationreaction andcleavageofthefluorescentsubstrate.

(TF),phospholipids(amplifytheeffectofTF)andcalciumin theplasma,resultsincoagulationactivationandsubsequent generation of thrombin. Thrombin cleaves the fluorescent substrate(Z-Gly-Gly-Arg7-amino-4-methylcoumarin)thatis addedtothereactioninalaterstep,releasingafluorophore whosefluorescenceintensityovertimeisproportionaltothe concentrationofthrombinformed(Figure1).12,14

Aftermeasurementsaretakenina96-wellplateusinga fluorimeter(Fluoroscan,ThermoScientific),Thrombinoscope BVsoftwareisusedtoconvertfluorescenceunits(RFU)into thrombin concentrations(nM).Thesoftwarealsocalculates thrombogramparameterssuchaspeakandendogen throm-bin potential(ETP) from the area under the curve and the peakthrombinconcentration,respectively.Thefluorescence intensityisconvertedtothrombinconcentration(nM)usinga referencecurvepreparedbymeasuringtheconversionrateof thesubstratewithaknownconcentrationofthrombin.12,14,15

Comparisonofthetwosignals(testandcalibrationsamples) allows a calculation of the thrombin concentration in the plasma(Figure2).

Well (sample)

Fluca

Fluca

PPP HNBSA

Low/High TF

10 min

37ºC 10 min

37ºC Plasma

Plasma

PPP HNBSA

Well (calibrator)

Calibrator

400 700

600 500 400 300 200

Fluorescence (RFU) Fluorescence (RFU) 100

0 300

200

100

0

0 10

Time (min)

Thrombin (nM)

Thrombin generation curve

Time (min)

0 5 10 15 20 25

20

250

200

Peak time

Peak

Leg time

ETP

150

100

50

0

30 40 0 10

Time (min)

20 30 40

(4)

Peak

ETP Lag time

0 100

Thrombin (nM)

200 300

10 20

Time (min)

30

Figure3–Parametersofthethrombingenerationcurve usingthecalibratedautomatedthrombogram(CAT) method.

Thethrombingenerationcurve(Figure3)ischaracterized byaninitiationphase (lag-time) followedbythe formation oflargeamountsofthrombin(propagation),culminatingina peakthrombinconcentration,andfinallyinhibitionof throm-bin generation by natural anticoagulants.15 The ETP (area

underthecurve),representstheamountofthrombinformed over60min.11Clotformationisknowntooccurattheendof

thelag-time,therefore,thedurationofthisparameter corre-spondstotheclottingtime.14 Thecoagulationstatecanbe

inferredfromanalysisoftheseparametersfromthe throm-bingeneration curve.A prolongedlag-time and reductions inbothETP andpeak valuesindicate astate of hypocoag-ulability,characterizedbylessthrombin generation.Onthe otherhand,higherthrombingenerationischaracterizedby reducedlag-time,andincreasedETPandpeakvalues, indicat-ingahypercoagulablestate.1

Asmentionedpreviously,theCATmethodisbasedonthe useofasyntheticfluorogenicsubstrate that issensitive to theactionofthrombin.16 However,this syntheticsubstrate

canbecleavednotonlybyfreethrombin,butalsoby throm-binboundtoalpha-2-macroglobulin,potentiallyresultingin highervaluesforthrombingeneration.Toaccountforthis, theCATmethodusesanalgorithmthatnullifiestheactivity ofthrombinlinkedtoalpha-2-macroglobulin.12Similartothe

CATmethod,thereagentsforthisareavailablefrom Diagnos-ticaStago(France).Severalversionsofthistestarecurrently commerciallyavailableforchromogenic(Innovance Endoge-nousThrombinPotential assay,Siemens; Pefakit Thrombin Dynamics Test,Pentapharm, Switzerland) and fluorimetric (TechnothrombinTGA,Germany)techniques.Theadvantages anddisadvantagesofthesemethods,aswellascomparisons, includingthereagentconcentrationsanduseoffluorogenic orchromogenicsubstrates,havebeenreportedelsewhere.1,17

AnadvantageofTGTisthattheoperationmodesarevery flexible, and the experimentalconditions are designed for specificpurposes.Theflexibilityofthismethodallows numer-ous investigations using various types and concentrations ofreagents thatactivatecoagulation,withandwithoutthe additionofdifferentsubstances(e.g.,aPCand thrombomodu-lin),cells(e.g.,platelets)ordifferentbuffers.Anadvantageof thefluorogenicmethodoverthechromogenicmethodisthat

fibrinogendoesnotinfluencetheresults.Asinvivoactivation ofcoagulationoccursinthepresenceofbloodcells,therehas beenmuchresearchintothedevelopmentofthistechnique forusewithwholeblood.18

As mentioned by Lipets and Ataullakhanov,5 although

otherstimulicanbeused,thethrombingenerationreaction isgenerallytriggeredbytheadditionofloworhigh picomo-lar (pM)concentrations ofTF, inaddition to phospholipids andCa2+ions,inordertomeasurethebleedingorthrombotic

potential.Dependingontheintendedpurposeofthetest,the amountofTFaddedmaybetterreflectparticularaspectsofthe hemostaticmechanism.Forexample,whenhighamountsof TF(≥10pM)areadded,thereactionisveryfastwithreduced

sensitivityforfactorsoftheintrinsicpathway.However,atTF concentrationsbetween2and5pM,thereactionismore sen-sitivetodeficienciesoffactor(F)VIII,FIXandFXI.19Therefore,

inPPPsamples,the CATmethodissufficientlysensitiveto detectalldeficienciesofcoagulationfactors(withthe excep-tion ofFXIII)andthe effectofallanticoagulants, including vitaminKantagonists,heparinoids,and directinhibitorsof FXa and thrombin, as previously reported by Brinkman.20

WithPRPsamples,thismethodissensitiveforcasesofvon Willebranddisease,andisabletoshowtheeffectofplatelet inhibitorssuchasaspirinandabciximab.Furthermore, throm-bin generation may beinhibited bythe addition ofaPC or thrombomodulin,reflectingcongenitaloracquireddisorders oftheaPC/PSpathway.12,17,21

Application

of

the

thrombin

generation

test

as

a

potential

tool

for

experimental

and

clinical

studies

Manythrombingenerationassayshavebeencreatedto eval-uatetheclinicalpotentialofthistechnique,particularlythe correlationbetweenTGTparametersandriskofbleeding,and venous andarterialthrombosis.1,18 Ofall thethrombogram

parameters, ETPappearstobe themostwidely used,as it is bettercorrelated tothe clinical phenotype, as described byLipetsandAtaullakhanov.5Anumberofpotentialclinical

applicationsofTGThavebeen identified,suchastoassess treatmentfailureofpatientswhohavethromboticdisorders and are receiving oralanticoagulants, heparin, antiplatelet drugsoracombinationofsuchdrugsandtocomprehensively evaluatethethromboticorhemorrhagicstatusofat-risk indi-viduals.Someofthemostimportantreportsarepresented inTable1.Inthe researchfield,TGThasbeenwidelyused in various parts of the world. Briefly, TGT has been used to help elucidate new hemostatic mechanisms by explor-ing variousplasmacomponents, suchasthosereportedby Peraramelli et al.,22 Spronk et al.,23 Omarova et al.24 and

Zamolodchikovetal.25Thesestudieshaveexploredtherole

ofPSinTFPIactivity,22providednewinsightsintothrombin

formation23 and reporteda novelmechanism forthe

inhi-bitionofthrombin-mediatedFVactivationbythefibrinogen

␥′ peptide.24 Furthermorestudieshaveinvestigatedtherole

(5)

Table1–Potentialclinicalapplicationsofthethrombingenerationtest.

Author Mainobjectivesofthestudy

Kesselsetal.,26Arachchillageetal.27and

Zabczyketal.28

Tomonitortreatmentwithoralanticoagulantsandantiplateletdrugs.

AlDierietal.29 ToassessbleedingriskinpatientswithvonWillebranddisease.

Simionietal.,30Castoldietal.,31Alhenc-Gelas

etal.32andCastoldiatal.33

ToevaluatehypercoagulablestatesinpatientswiththeprothrombinG20210A mutation,factorVLeiden,andantithrombinorproteinSdeficiency. Tripodietal.34andHronetal.35 Tousethethrombingenerationtesttopredicttherecurrenceofvenous

thromboembolism.

Lewisetal.36andMatsumotoetal.37 ToestimatebleedingriskinpatientswithhemophiliausingfactorVIIIorfactorVIIa.

vanHylckamaetal.38 Toassessriskofdeepvenousthrombosis.

Brummel-Ziedinsetal.39 Todiscriminatebetweenacuteandstablecoronaryarterydisease.

Segersetal.40 Tousethethrombingenerationtesttoidentifynovelgeneticriskfactorsforvenous

thromboembolism.

Carcaillonetal.41 Tocorrelatethrombingenerationwithcoronaryheartdiseaseandacuteischemic

strokeintheelderly.

Tchaikovskietal.42 Toinvestigatechangesanddeterminantsofthrombingenerationandactivatedprotein

Cresistanceinthefirst16weeksofgestationinwomenwithahistoryofpreeclampsia. Boschetal.43 Toevaluatepatientsundergoingcardiacsurgery.

Orsietal.44 Toevaluatepossiblepathophysiologicalmechanismsthatmaycontributetothe

bleedingtendencyobservedinpatientswithdenguefever. Kamphuisenetal.45 Toevaluatecardiovascularriskinpatientswithhemophilia.

Gouldetal.46 Toassessprocoagulantpotentialofintactneutrophilextracellulartrapsreleasedfrom

activatedneutrophils.

Picoli-Quainoetal.47 Toinvestigatehypercoagulabilityduringtheveryearlyphasesofthehostresponseto

aninfectionovertheclinicalcourseofsepsisandsepticshock.

Loeffenetal.48 Toevaluatethehypercoagulableprofileofpatientswithstentthrombosis.

Ziaetal.49andGlintborgetal.50 Toevaluatehypercoagulabilityinwomenusingoralcontraceptives.

Dargaudetal.51 Toidentifyanautosomaldominantbleedingdisorderinafamily,causedbya

thrombomodulinmutation.

Barcoetal.52andHonickeletal.53 Toevaluatetheeffectofprothrombincomplexconcentrateinreversingthe

anticoagulanteffectofrivaroxabananddabigatran.

contributedtoourunderstandingofhemostaticmechanisms, howeverthesearebeyondthescopeofthisreport.

Limitations

and

perspectives

AlthoughTGThasmany potentialclinicalapplicationsand considerableadvantagesoveralmostallothertechniques,it alsohassomelimitationsthatneedtobeovercomebeforeits useinclinicallaboratories.Althoughthis techniquecanbe performedusingPPPorPRP,thisinvolvesatime-consuming process,whichpreventsitsuseforrapiddiagnosis.Anideal technique would be performed using whole blood sam-plescontaining all blood cells,whichwould reproduce the

invivoconditionsbetter.18Itshouldbenotedthatthereare

other teststhat can beused forthe overall assessmentof hemostasis, such as thromboelastography (TEG® systems, Haemonetics Corporation,Braintree, MA, USA) and throm-boelastometry (ROTEM®-Analyser, Tem Innovations GmbH, Munich,Germany),bothofwhichareperformedusingwhole blood. Thromboelastography, a global test widely used in the management ofacute hemorrhages, is alsocapable of detecting hypercoagulable states.54 However, according to

Lancé,13thismethoddoesnotfullyreflecttheeffectsofusing

low-molecular-weightheparinorthedirectuseoforal antico-agulants,northeeffectsofinheritedordrug-inducedplatelet dysfunction.TGTpresents awider rangeofpotential clini-calapplicationscomparedtothromboelastography.Thus,the applicationofTGTonwholeblood(containingallbloodcells)

mayoutweightheadvantagesofTGTonplasma,asthisassay maybetterreflecttheinvivoconditions.

ThelackofreferencevaluesforspecificTGTconditions, suchasthetypeandconcentrationofthetriggeringagent, orwhether ornotacontactinhibitorfactor isused,makes theuseofTGTdifficultinclinicallaboratories,asitrequires appropriateinterpretationoftheresults.AsstatedbySpronk etal.,55thereisnoconsensusastowhetheracontact

path-wayactivationinhibitorshouldbeused,forexample,whether corn trypsin inhibitor is required. These reference values shouldideallybeestablishedforeachcenteraccordingtothe adoptedprotocol,andwouldrequireidenticalconditionsfor patientandcontrolsamples,includingbloodcollection, sam-plepreparationandstorage.Anotherimportantlimitationof TGTisthelackofsensitivitytochangesintheendothelium. Althoughitisincreasinglybeingrecognizedasamoreprecise testthatreplicatestheinvivohemostaticconditions,TGTstill lacksofficialstandardization,despiteseveralstudieshaving beenconducted.55–57Therefore,itismandatoryto

(6)

characteristics andconditions toensurethereproducibility and accuracyofTGTare required.54 Inline withthis,

Dar-gaudetal.8evaluatedastandardizedprotocolformeasuring

thrombin generation usingthe CATmethod inan interna-tionalmulti-centerstudy.Theseauthorsdemonstratedthat theuseofstandardconditions,suchasidenticalequipment, standardizedreagents,referenceplasmaforthe normaliza-tionofresults,andthesametestprocedure,showedagreat reductionin assay variability comparedto previously pub-lisheddata.Their datademonstrated thatthestandardized TGTmethodologyevaluatedinthisreporteffectivelyreduces thevariabilityofthisassaytoacceptablelimits.

Inshort,weagreewithOthman58ontheneedfora

stan-dardized global test that can reliably detect, predict and monitorhemostaticstatusforcliniciansandresearchers,in bothclinicalandexperimentalstudies.

Conclusions

Basedonthecurrent literatureTGTaimstogloballyassess hemostasis,providinginformationabouttheinitiation, ampli-fication/propagationandresolutionphases.Theresultsfrom thistestare morerepresentativeofthephysiological state, whichmaybetterreflectthehemostaticphenotypecompared toroutinetests,andhasgreatpotentialfortheevaluationof therisksofbleedingandthrombosis.However,TGTisnotyet availableforclinicaluse,asitstillrequiresstandardizationand validation.Theuseofastandardizedmethodmayreducethe variabilityofthisassaytoacceptablelimits.Finally,anideal coagulationtestdoes notexistyet. However,new develop-mentsarecontinuouslyemergingaimedatimprovingexisting testsinordertogloballyassesshemostasis,particularlyTGT usingtheCATmethod.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WethanktheBrazilianagenciesFAPEMIG/SESandMS/CNPq forfundingthisstudy.

r

e

f

e

r

e

n

c

e

s

1. BerntorpE,SalvagnoGL.Standardizationandclinicalutility ofthrombin-generationassays.SeminThrombHemost. 2008;34(7):670–82.

2. LecutC,PetersP,MassionPB,GothotA.Isthereaplacefor thrombingenerationassayinroutineclinicallaboratory?Ann BiolClin(Paris).2015;73(2):137–49.

3. MannKG,ButenasS,BrummelK.Thedynamicsofthrombin formation.ArteriosclerThrombVascBiol.2003;23(1):17–25. 4. WolbergAS.Thrombingenerationandfibrinclotstructure.

BloodRev.2007;21(3):131–42.

5. LipetsEN,AtaullakhanovFI.Globalassaysofhemostasisin thediagnosticsofhypercoagulationandevaluationof thrombosisrisk.ThrombJ.2015;13(1):4.

6.Brummel-ZiedinsKE,WolbergAS.Globalassaysof hemostasis.CurrOpinHematol.2014;21(5):395–403. 7.vanGeffenM,vanHeerdeWL.Globalhaemostasisassays,

frombenchtobedside.ThrombRes.2012;129(6):681–7. 8.DargaudY,WolbergAS,LuddingtonR,RegnaultV,SpronkH,

BaglinT,etal.Evaluationofastandardizedprotocolfor thrombingenerationmeasurementusingthecalibrated automatedthrombogram:aninternationalmulticenterstudy. ThrombRes.2012;130(6):929–34.

9.MacfarlaneRG,BiggsR.Athrombingenerationtest;the applicationinhaemophiliaandthrombocytopenia.JClin Pathol.1953;6(1):3–8.

10.PitneyWR,DacieJV.Asimplemethodofstudyingthe generationofthrombininrecalcifiedplasma;applicationin theinvestigationofhaemophilia.JClinPathol.1953;6(1):9–14. 11.HemkerHC,WieldersS,KesselsH,BéguinS.Continuous

registrationofthrombingenerationinplasma,itsuseforthe determinationofthethrombinpotential.ThrombHaemost. 1993;70(4):617–24.

12.HemkerHC,GiesenP,AlDieriR,RegnaultV,deSmedtE, WagenvoordR,etal.Calibratedautomatedthrombin generationmeasurementinclottingplasma.Pathophysiol HaemostThromb.2003;33(1):4–15.

13.LancéMD.Ageneralreviewofmajorglobalcoagulation assays:thrombelastography,thrombingenerationtestand clotwaveformanalysis.ThrombJ.2015;13:1.

14.HemkerHC,AlDieriR,DeSmedtE,BéguinS.Thrombin generation,afunctiontestofthehaemostatic–thrombotic system.ThrombHaemost.2006;96(5):553–61.

15.CastoldiE,RosingJ.Thrombingenerationtests.ThrombRes. 2011;127Suppl.3:S21–5.

16.IgnjatovicV,GreenwayA,SummerhayesR,MonagleP. Thrombingeneration:thefunctionalroleof

alpha-2-macroglobulinandinfluenceofdevelopmental haemostasis.BrJHaematol.2007;138(3):366–8.

17.TenCateH.Thrombingenerationinclinicalconditions. ThrombRes.2012;129(3):367–70.

18.NinivaggiM,Apitz-CastroR,DargaudY,deLaatB,Hemker HC,LindhoutT.Whole-bloodthrombingenerationmonitored withacalibratedautomatedthrombogram-basedassay.Clin Chem.2012;58(8):1252–9.

19.KeulartsIM,ZivelinA,SeligsohnU,HemkerHC,BéguinS.The roleoffactorXIinthrombingenerationinducedbylow concentrationsoftissuefactor.ThrombHaemost. 2001;85(6):1060–5.

20.BrinkmanHJ.Globalassaysandthemanagementoforal anticoagulation.ThrombJ.2015;13:9.

21.DielisAW,CastoldiE,SpronkHM,vanOerleR,HamulyákK, TenCateH,etal.CoagulationfactorsandtheproteinC systemasdeterminantsofthrombingenerationinanormal population.JThrombHaemost.2008;6(1):125–31.

22.PeraramelliS,RosingJ,HackengTM.TFPI-dependent activitiesofproteinS.ThrombRes.2012;129(2): S23–6.

23.SpronkHM,BorissoffJI,tenCateH.Newinsightsinto modulationofthrombinformation.CurrAtherosclerRep. 2013;15(11):363.

24.OmarovaF,UitteDeWilligeS,AriënsRA,RosingJ,BertinaRM, CastoldiE.Inhibitionofthrombin-mediatedfactorV

activationcontributestotheanticoagulantactivityof fibrinogen␥′.JThrombHaemost.2013;11(9):1669–78.

25.ZamolodchikovD,RennéT,StricklandS.TheAlzheimer’s diseasepeptide␤-amyloidpromotesthrombingeneration throughactivationofcoagulationfactorXII.JThromb Haemost.2016;14(5):995–1007.

(7)

27.ArachchillageDR,EfthymiouM,MackieIJ,LawrieAS,Machin SJ,CohenH.Rivaroxabanandwarfarinachieveeffective anticoagulation,asassessedbyinhibitionofTGandin-vivo markersofcoagulationactivation,inpatientswithvenous thromboembolism.ThrombRes.2015;135(2):388–93.

28.Z ˛abczykM,MajewskiJ,KarkowskiG,MalinowskiKP,UndasA. VitaminKantagonistsfavourablymodulatefibrinclot propertiesinpatientswithatrialfibrillationasearlyasafter3 daysoftreatment:relationtocoagulationfactorsand thrombingeneration.ThrombRes.2015;136(4):832–8. 29.AlDieriR,PeyvandiF,SantagostinoE,GiansilyM,Mannucci

PM,SchvedJF,etal.Thethrombograminrareinherited coagulationdisorders:itsrelationtoclinicalbleeding. ThrombHaemost.2002;88(4):576–82.

30.SimioniP,CastoldiE,LunghiB,TormeneD,RosingJ,Bernardi F.Anunderestimatedcombinationofoppositesresultingin enhancedthrombotictendency.Blood.2005;106(7):2363–5. 31.CastoldiE,SimioniP,TormeneD,ThomassenMC,SpieziaL,

GavassoS,etal.Differentialeffectsofhighprothrombin levelsonthrombingenerationdependingonthecauseofthe hyperprothrombinemia.JThrombHaemost.2007;5(5):971–9. 32.Alhenc-GelasM,CanonicoM,PicardV.Influenceofnatural

SERPINC1mutationsonexvivothrombingeneration.J ThrombHaemost.2010;8(4):845–8.

33.CastoldiE,MaurissenLF,TormeneD,SpieziaL,GavassoS, RaduC,etal.Similarhypercoagulablestateandthrombosis riskintypeIandtypeIIIproteinS-deficientindividualsfrom familieswithmixedtypeI/IIIproteinSdeficiency.

Haematologica.2010;95(9):1563–71.

34.TripodiA,MartinelliI,ChantarangkulV,BattaglioliT,Clerici M,MannucciPM.Theendogenousthrombinpotentialand theriskofvenousthromboembolism.ThrombRes. 2007;121(3):353–9.

35.HronG,KollarsM,BinderBR,EichingerS,KyrlePA. Identificationofpatientsatlowriskforrecurrentvenous thromboembolismbymeasuringthrombingeneration.JAMA. 2006;296(4):397–402.

36.LewisSJ,StephensE,FlorouG,MacartneyNJ,HathawayLS, KnippingJ,etal.Measurementofglobalhaemostasisin severehaemophilia:afollowingfactorVIIIinfusion.BrJ Haematol.2007;138(6):775–82.

37.MatsumotoT,ShimaM,TakeyamaM,YoshidaK,TanakaI, SakuraiY,etal.ThemeasurementoflowlevelsoffactorVIII orfactorIXinhemophiliaAandhemophiliaBplasmabyclot waveformanalysisandthrombingenerationassay.JThromb Haemost.2006;4(2):377–84.

38.vanHylckamaVA,ChristiansenSC,LuddingtonR, CannegieterSC,RosendaalFR,BaglinTP.Elevated endogenousthrombinpotentialisassociatedwithan increasedriskofafirstdeepvenousthrombosisbutnotwith theriskofrecurrence.BrJHaematol.2007;138(6):769–74. 39.Brummel-ZiedinsK,UndasA,OrfeoT,GisselM,ButenasS,

ZmudkaK,etal.Thrombingenerationinacutecoronary syndromeandstablecoronaryarterydisease:dependenceon plasmafactorcomposition.JThrombHaemost.

2008;6(1):104–10.

40.SegersO,vanOerleRV,tenCateHT,RosingJ,CastoldiE. Thrombingenerationasanintermediatephenotypefor venousthrombosis.ThrombHaemost.2010;103(1):114–22. 41.CarcaillonL,Alhenc-GelasM,BejotY,SpaftC,DucimetièreP,

RitchieK,etal.Increasedthrombingenerationisassociated withacuteischemicstrokebutnotwithcoronaryheart diseaseintheelderly:theThree-Citycohortstudy. ArteriosclerThrombVascBiol.2011;31(6):1445–51.

42.TchaikovskiSN,ThomassenMC,CostaSD,PeetersLL,Rosing J.RoleofproteinSandtissuefactorpathwayinhibitorinthe developmentofactivatedproteinCresistanceearlyin

pregnancyinwomenwithahistoryofpreeclampsia.Thromb Haemost.2011;106(5):914–21.

43.BoschY,AlDieriR,tenCateH,NelemansP,BloemenS, HemkerC,etal.Preoperativethrombingenerationis predictivefortheriskofbloodlossaftercardiacsurgery:a researcharticle.JCardiothoracSurg.2013;8:154.

44.OrsiFA,AngeramiRN,MazettoBM,QuainoSK, Santiago-BassoraF,CastroV,etal.Reducedthrombin formationandexcessivefibrinolysisareassociatedwith bleedingcomplicationsinpatientswithdenguefever:a case–controlstudycomparingdenguefeverpatientswithand withoutbleedingmanifestations.BMCInfectDis.2013;13:350. 45.KamphuisenPW,tenCateH.Cardiovascularriskinpatients

withhemophilia.Blood.2014;123(9):1297–301.

46.GouldTJ,VuTT,SwystunLL,DwivediDJ,MaiSH,WeitzJI, etal.Neutrophilextracellulartrapspromotethrombin generationthroughplatelet-dependentand

platelet-independentmechanisms.ArteriosclerThrombVasc Biol.2014;34(9):1977–84.

47.Picoli-QuainoSK,AlvesBE,FaiottoVB,MontalvaoSA,De SouzaCA,Annichino-BizzacchiJM,etal.Impairmentof thrombingenerationintheearlyphasesofthehostresponse ofsepsis.JCritCare.2014;29(1):31–6.

48.LoeffenR,GodschalkTC,vanOerleR,SpronkHM,Hackeng CM,tenBergJM,etal.Thehypercoagulableprofileofpatients withstentthrombosis.Heart.2015;101(14):1126–32.

49.ZiaA,CallaghanMU,CallaghanJH,SawniA,BartlettH, BackosA,etal.Hypercoagulabilityinadolescentgirlsonoral contraceptives–globalcoagulationprofileandestrogen receptorpolymorphisms.AmJHematol.2015;90(8):725–31. 50.GlintborgD,SidelmannJJ,AltinokML,MummH,AndersenM.

Increasedthrombingenerationinwomenwithpolycystic ovarysyndrome:apilotstudyontheeffectofmetforminand oralcontraceptives.Metabolism.2015;64(10):1272–8.

51.DargaudY,ScoazecJY,WieldersSJ,TrzeciakC,HackengTM, NégrierC,etal.Characterizationofanautosomaldominant bleedingdisordercausedbyathrombomodulinmutation. Blood.2015;125(9):1497–501.

52.BarcoS,WhitneyCheungY,CoppensM,HuttenBA,Meijers JC,MiddeldorpS.Invivoreversaloftheanticoagulanteffect ofrivaroxabanwithfour-factorprothrombincomplex concentrate.BrJHaematol.2016;172(2):255–61.

53.HonickelM,MaronB,vanRynJ,BraunschweigT,tenCateH, SpronkHM,etal.Therapywithactivatedprothrombin complexconcentrateiseffectiveinreducing

dabigatran-associatedbloodlossinaporcinepolytrauma model.ThrombHaemost.2016;115(2):271–84.

54.KashukJL,MooreEE,SabelA,BarnettC,HaenelJ,LeT,etal. Rapidthrombelastography(r-TEG)identifies

hypercoagulabilityandpredictsthromboemboliceventsin surgicalpatients.Surgery.2009;146(4):764–72.

55.SpronkHM,DielisAW,DeSmedtE,vanOerleR,FensD,Prins MH,etal.AssessmentofthrombingenerationII:validationof thecalibratedautomatedthrombograminplatelet-poor plasmainaclinicallaboratory.ThrombHaemost. 2008;100(2):362–4.

56.DargaudY,LuddingtonR,GrayE,LecompteT,SiegemundT, BaglinT,etal.Standardisationofthrombingenerationtest– whichreferenceplasmaforTGT?Aninternational

multicentrestudy.ThrombRes.2010;125(4):353–6. 57.PerrinJ,DepassecF,LecompteT.Largeexternalquality

assessmentsurveyonthrombingenerationwithCAT:further evidencefortheusefulnessofnormalisationwithanexternal referenceplasma.ThrombRes.2015;136:125–30.

Imagem

Figure 2 – Steps of the calibrated automated thrombogram (CAT) method and thrombin generation parameters
Figure 3 – Parameters of the thrombin generation curve using the calibrated automated thrombogram (CAT) method.
Table 1 – Potential clinical applications of the thrombin generation test.

Referências

Documentos relacionados

The present study aimed to investigate a method of double centrifugation to obtain platelet-rich plasma (PRP) in order to evaluate the effective increase of platelet con

Tendo em conta que este estudo foi realizado com indivíduos sem disfunção no ombro, destaca-se que o facto de os dispositivos para análise cinemática 3D atualmente existentes serem

To evaluate the coagulation system, we determined the serum levels of TAT (thrombin-antithrombin complex) and fibrinogen; to evaluate the platelet activation, we

Os caracteres epidérmicos, tais como a forma e as dimensões das células epidérmicas na superfície foliar, o índice estomático, a distribuição de tricomas e a espessura

Effect of autologous platelet rich plasma on persistent corneal epithelial defect after infectious keratitis. Alio JL, Pastor S, Ruiz-Colecha J, Rodriguez A,

Ao observar valor da probabilidade das questões relativas ao questionário sobre Autoestima, existe uma probabilidade de p<0.05, assim, rejeitamos a hipótese nula (H0) e

Este artigo ira ́ apresentar a implantação da filosofia Seis Sigma, o ciclo PDSA, o diagrama de Ishikawa, os cincos porquês, entre outras ferramentas, para analisar o processo

Com o primordial objetivo de contribuir para o desenvolvimento sustentável, com foco em atividades chave cruciais para o bem estar social e competividade econômica na Europa, o