• Nenhum resultado encontrado

Search for jet extinction in the inclusive jet-$p_t$ spectrum from proton-proton collisions at $\sqrt s =$ 8 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Search for jet extinction in the inclusive jet-$p_t$ spectrum from proton-proton collisions at $\sqrt s =$ 8 TeV"

Copied!
29
0
0

Texto

(1)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2013-037 2014/08/22

CMS-EXO-12-051

Search for jet extinction in the inclusive jet-p

T

spectrum

from proton-proton collisions at

s

=

8 TeV

The CMS Collaboration

Abstract

The first search at the LHC for the extinction of QCD jet production is presented, us-ing data collected with the CMS detector correspondus-ing to an integrated luminosity

of 10.7 fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The

ex-tinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the stan-dard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.

Published in Physical Review D as doi:10.1103/PhysRevD.90.032005.

c

2014 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license ∗See Appendix A for the list of collaboration members

(2)
(3)

1

1

Introduction

The scattering of high-energy particles in theories of quantum gravity is fundamentally differ-ent from that expected by the local quantum field theories of the standard model (SM) [1]. The Planck scale, the threshold at which quantum gravity becomes strong, is therefore a fundamen-tal boundary beyond which some modification to the SM is required. The Planck scale differs from the electroweak scale by 16 orders of magnitude, creating what is commonly known as the hierarchy problem. There are many models that propose a mechanism by which these two scales are related to one another through the hypothesized existence of extra spatial di-mensions. Propagation of gravitons through these extra dimensions could explain the relative weakness of gravity compared to the strong and electroweak interactions. Depending on the model, a variety of striking signatures of physics beyond the SM may be observed. As a re-sult, models that predict terascale gravity have been the subject of numerous searches at the CERN LHC [2–11]. Some of these searches are designed to look for effects such as resonant production and decay of new states, e.g. Randall–Sundrum gravitons [12], as well as for con-tinuum enhancements to SM processes from both virtual and direct graviton production [13]. Direct searches for production of microscopic black holes consider events with high transverse

momentum (pT) and multiple objects from the decay of possible high-entropy intermediate

states [1, 14, 15].

As of yet, no signal indicative of terascale gravity has been found. Nevertheless, it has been suggested that evidence of terascale gravity could also be found through more subtle effects

on the jet-pT spectrum manifesting themselves as a deviation from the predictions of

quan-tum chromodynamics (QCD) [1, 14, 16, 17]. While the production of black holes or particles indicative of non-perturbative quantum gravity can have a rapidly increasing total cross sec-tion beyond some energy scale, their decay to isolated jets or other low-multiplicity final states

could be suppressed, leading to a full suppression of high-pT SM scattering processes (jet

ex-tinction). Because jet production is the leading SM process at high pT, such effects would be

initially noticeable as a jet extinction signature [17]. In this sense, the search for jet extinction is complementary to searches for black holes in high-multiplicity final states. These final states arise in the asymptotic limit, where black holes are expected to behave classically [15]. The ex-tinction search explores an intermediate regime, where a high-multiplicity signature may not be readily observable.

There are several models that include extinction phenomena [16, 17]. In this, the first search for extinction effects at the LHC, we consider a model with a large-width Veneziano form fac-tor modification of QCD processes with an extinction mass scale M equivalent to the modified Planck scale [17]. This form factor is discussed in greater detail in Section 3. Beyond the scale

M, the predominance of intermediate high-entropy string states will suppress high-pT SM jet

production. This search exploits techniques developed for the measurement of the differential

jet production cross section as a function of pTat the CMS [18] experiment to search for a

mod-ification of the jet-pTspectrum consistent with extinction phenomena, in which there are fewer

high-pTjets than expected from the SM. This analysis is especially sensitive to the correlations

of the systematic uncertainties between bins in jet-pT, so a detailed evaluation of the systematic

uncertainties associated with the jet energy scale (JES) and the parton distribution functions (PDFs) is performed.

(4)

2 3 Modeling of the SM and extinction hypotheses

2

The CMS detector

The central feature of the CMS detector [19] is a superconducting solenoid of 6 m internal di-ameter, providing a field of 3.8 T. Within the field volume are silicon pixel and strip trackers, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle, θ, is measured from the positive z axis and the azimuthal angle, φ,

is measured in the xy plane. The pseudorapidity is defined as η= −ln[tan(θ/2)].

The first level of the CMS trigger system is composed of customized hardware and uses in-formation from the calorimeters and muon detectors to select events of interest within a 4 µs interval following each beam crossing. The high-level trigger [20] (HLT) processor farm further decreases the event rate from about 100 kHz to about 400 Hz before the data are recorded for analysis.

3

Modeling of the SM and extinction hypotheses

The SM prediction for the jet-pTspectrum is calculated at next-to-leading order (NLO) with the

NLOJET++ program within the FASTNLO framework [21–23]. The CT10 PDF set [24] is used

in this calculation. The renormalization and factorization scales, µRand µF, are set equal to the

jet-pT. The NLO jet spectra do not include non-perturbative (NP) effects or any modeling of

the detector response. The NP effects, which account for hadronization and multi-parton

in-teractions, are incorporated as corrections determined from thePYTHIA6.424 [25] Monte Carlo

(MC) generator. The generator is used to simulate QCD events with and without NP effects.

The corrections are derived from the ratio of the resulting pT spectra. The NP correction

de-creases monotonically as a function of jet-pT, from 1.03 at 592 GeV to 1.01 at 2500 GeV. This

process is repeated using theHERWIG2.4.2 [26] generator. The difference between the

correc-tions derived from these generators is found to be negligible in the phase space of this analysis. The corrected NLO jet spectra are convolved with a function that models the jet energy res-olution (JER) in the CMS detector [27]. These smeared spectra can be compared directly to

the observed spectrum. The smeared NLO jet spectrum is referred to as dσQCD/dpT,NLO. This

procedure is repeated to produce a smeared leading-order (LO) jet-pT spectrum, labeled as

QCD/dpT,LO. The predicted spectrum does not include weak radiative corrections [28], but

the impact of these corrections on our sensitivity to an extinction signature is evaluated during the limit-setting procedure.

The effects of extinction at LO are also modeled using thePYTHIA MC generator. The matrix

elements of each color channel are modified by Veneziano-type form factors [17, 29], which

affect all 2 → 2 scattering amplitudes. The input parameters for these form factors are the

extinction mass scale M and a dimensionless width parameter related to the strength of the string coupling. For small values of the width parameter, these form factors are similar to those that describe string resonances [29, 30]. This is referred to as the weak-coupling limit. The regime where the width parameter is close to unity is known as the strong-coupling limit. In this limit, extinction physics rapidly overwhelms LO SM processes as well as any resonant string production. Beyond the scale M, scattering processes are dominated by a continuum of high-entropy intermediate states, which results in suppression of SM jet production [17].

(5)

3

This search assumes a width parameter of one, the absolute strong-coupling limit of the string model. Values of the width above one represent a very different phenomenology where the form factors no longer monotonically decrease as a function of jet momentum. This range of the width parameter has not been studied in this analysis.

The effects of extinction are predominantly found in 2→2 scattering processes. Such processes

are dominated by the LO calculation at a given pT scale. The signal is approximated with a

LO generator. The extinction process is assumed to have a very weak effect on higher-order interactions. A sigmoid function provides a good functional fit of the effect of the Veneziano

form factors on the LO jet-pTspectrum [17]:

F(pT, M) =

1

1+exp pT−pT,1/2(M)

pT,0(M)

. (1)

Here, pT,1/2 describes the pT threshold at which LO jet production is reduced to half the SM

expectation, while pT,0indicates how quickly the LO cross section exponentially falls relative to

the SM prediction. This relation yields the following equation for the jet-pTspectrum assuming

extinction at LO, where σExtis the jet production cross section assuming extinction:

Ext dpT,LO = QCD dpT,LO F(pT, M) (2) and at NLO: Ext dpT,NLO = QCD dpT,NLO − QCD dpT,LO + Ext dpT,LO . (3)

Several simulations of LO jet production are performed, assuming values of M between 2 and

5 TeV in increments of 500 GeV. The jet-pT spectrum is produced at NLO for each sample

us-ing NP corrections and resolution smearus-ing as described above. The values of pT,1/2(M)and

pT,0(M)are extracted from a fit of F(pT, M)to the expected pTdistribution for each value of M.

The intermediate values of pT,1/2(M)and pT,0(M)are interpolated between these fitted points.

The fitted value of pT,0(M)is nearly independent of M and ranges between 260 and 330 GeV,

while pT,1/2(M)is about half of M. The systematic uncertainty associated with the choice of fit

is negligible.

For finite values of M, the predicted jet-pTspectrum is suppressed in systems with an invariant

mass above M. At very large values of M, the SM and extinction spectra become identical.

4

Event reconstruction and selection

A particle-flow algorithm [31, 32] is used to reconstruct the events. Jets are formed by

clus-tering the reconstructed particle-flow objects using the anti-kT algorithm [33] with a distance

parameter R of 0.7. This value is larger than the usual distance parameter of 0.5 used in most CMS analyses. The larger cluster size reduces the likelihood that jets will be lost because of

detector effects. The jet transverse momentum resolution is typically 15% at pT= 10 GeV, 8% at

100 GeV, and 4% at 1 TeV. Jet energy corrections are derived from simulation and are confirmed with measurements of energy balance in recorded dijet and photon+jet events. The combined

(6)

4 4 Event reconstruction and selection

suppress spurious signals from detector noise [34], jets are required to satisfy stringent selec-tion criteria [35]. Specifically, each jet must contain at least two particles, one of which is a charged hadron. Additionally, each of the jet energy fractions carried by neutral hadrons, pho-tons, electrons, and muons must be less than 90%. This analysis is conducted in a regime where the purity and acceptance of the jets in data are both close to unity, and therefore no systematic uncertainty is attributed to the selection criteria.

The data used in this analysis were collected from an HLT trigger that accepted events

contain-ing at least one jet with pT > 320 GeV. An offset is applied to trigger-selected jets to subtract

the energy deposited as a result of additional interactions per beam crossing (pileup); this offset does not affect the trigger efficiency. Events with objects originating from an interaction within an LHC beam crossing are selected by requiring the presence of at least one primary vertex within 24 cm of the detector center along the z axis. The primary event vertex is chosen from

all reconstructed vertices by selecting the one with the largest sum of the p2T of all associated

tracks. For the purpose of additional noise suppression, the missing transverse energy, defined

as the magnitude of the vector sum pT of all reconstructed particle-flow objects, must be less

than 30% of the total transverse energy deposited in the detector. All jets in each event that

pass the selection criteria are binned as a function of jet-pT, following a convention adopted by

other inclusive-jet analyses in CMS. The bin widths are variable, increasing with jet-pTand

cor-responding approximately to the jet-pT resolution [18]. Jets are required to have pT >592 GeV

and pseudorapidity|η| < 1.5 to ensure that the trigger is at least 99% efficient in all pT bins

used. This search is performed in 18 pTbins between 592 and 2500 GeV.

[GeV] T Inclusive jet p 1000 1500 2000 2500 ] -1 [GeV T /dp jets dN -2 10 -1 10 1 10 2 10 3 10 4 10 CMS L = 10.7 fb-1, jets, R = 0.7 T Anti-k | < 1.5 η | T = p R µ = F µ = 8 TeV s Observed Systematic uncertainty

NLO QCD (CT10 normalized to data) Extinction scale M = 4 TeV Extinction scale M = 3 TeV Extinction scale M = 2 TeV

Figure 1: Inclusive jet-pT spectrum (points) for |η| < 1.5, as observed in data. The SM NLO

simulation with non-perturbative corrections, convolved with the detector response and nor-malized to the total number of jets observed in data, is shown by the solid line. The spectra predicted by the extinction model are defined relative to the SM prediction as described by Eq.

3 for the values of M=2, 3, and 4 TeV and shown by the dashed lines. The colored band shows

the magnitude of the sources of systematic uncertainty added in quadrature. These sources in-clude the JES, JER, PDFs, and scale variations. An additional source of systematic uncertainty is attributed to the integrated luminosity during all formal comparisons between the data and models, but has little impact on the sensitivity to an extinction signature. The renormalization

scale (µR) and factorization scale (µF) are set to the pT of the hard-scattered parton.

(7)

5 [GeV] T Inclusive jet p 1000 1500 2000 2500 QCD /N jets N 0 0.5 1 1.5 2CMS , -1 L = 10.7 fb jets, R = 0.7 T Anti-k | < 1.5 η | = 8 TeV s T = p R µ = F µ Observed

NLO QCD (CT10 normalized to data) Systematic uncertainty

Extinction scale M = 4 TeV Extinction scale M = 3 TeV Extinction scale M = 2 TeV

Figure 2: The ratio of the inclusive jet pT spectrum to the NLO QCD prediction with

non-perturbative corrections and convolved with the detector resolution. The horizontal bars on

the data indicate the width of each bin in pT. The colored band shows the quadratic sum of the

sources of systematic uncertainty, including JES, JER, PDFs, and scale variations. The uncer-tainty in the integrated luminosity is excluded, as the model predictions have been normalized to the number of jets observed in data. The dashed lines indicate the effects of extinction at

three different values of the extinction mass scale, M=2, 3, and 4 TeV.

NLO with the CT10 PDF set is shown in Figs. 1 and 2. The predicted spectrum includes non-perturbative corrections and smearing by the detector response, and is normalized to the total number of jets in data that pass all selection criteria. However, in the comparison of the model to the data as described in Section 5, the SM distribution is instead normalized to the number of

jets expected given an integrated luminosity of 10.7 fb−1. The number of jets observed in data

is 3% lower than the number expected assuming the CT10 PDF set at NLO. This discrepancy is attributed to uncertainty in the PDF parameters, scale variations in the cross section calcula-tion, or uncertainty in the total integrated luminosity. As the search for an extinction signature

is only concerned with the shape of the jet-pTspectrum, a small shift in the absolute

normaliza-tion has little impact on the sensitivity. In Figs. 1 and 2 the data and the extincnormaliza-tion model are compared after any differences in the normalization have been resolved. In these figures, the quadratic sum of all sources of systematic uncertainty is shown. The total systematic uncer-tainty includes contributions from both theoretical and experimental sources. The theoretical uncertainty is composed of the uncertainty from the PDFs as well as the uncertainty obtained by varying the renormalization and factorization scales. The experimental uncertainty is de-rived from the uncertainties in the JES and JER. During the formal comparison of the model to data where the predicted spectrum is not normalized to the number of jets observed, an addi-tional source of uncertainty is attributed to the integrated luminosity. Figure 2 shows the ratio of the inclusive spectrum to the SM NLO expectation and includes the predicted spectra from the extinction model for three different values of the extinction mass scale M.

5

Statistical method and systematic uncertainties

To distinguish between SM NLO jet production and the alternative hypothesis (jet extinction), a profile-likelihood ratio test statistic [36] is constructed as a function of a signal strength

pa-rameter, β ≡ M−2. The variable β is chosen so that as β →0 the extinction model approaches

(8)

6 5 Statistical method and systematic uncertainties

We set limits using the modified-frequentist criterion CLs [37, 38]. All sources of systematic

uncertainty are treated as nuisance parameters with log-normal prior constraints and are

con-structed in the likelihood to have the same value across all jet-pT bins. This construction

im-plicitly assumes that the systematic uncertainties are completely correlated in jet pT.

To account for correlations in the JES and PDF uncertainties between pTbins, the uncertainties

are subdivided into their underlying components. These individual components are strongly

correlated across all pTbins and tend to be dominant at different values of jet-pT. As an

exam-ple, uncertainties in the gluon PDF will be dominant at low pTcompared to uncertainties in the

quark PDFs. The JES uncertainty is decomposed into each of its orthogonal sources. For the PDF uncertainty, the contributions from each of the eigenvectors in the CT10 [24] PDF set are evaluated separately. As a crosscheck, the search is repeated with respect to the MSTW2008 [39] PDF set. Among the PDF sets in common use, the CT10 set predicts the highest inclusive jet

cross section at high pT, while the MSTW2008 set gives one of the lowest. The results derived

with respect to these two PDF sets serve as bounds on the result expected when using other sets, including those which are used in comparison to dedicated measurements of the inclusive jet production cross section [18], such as NNPDF [40], HERA [41], or ABKM [42].

The CT10 PDF set comprises a central prediction and 26 eigenvectors. The central prediction assumes all PDF input parameters are set to their central values. Each eigenvector pair cor-responds to the upward and downward uncertainty in one of those input parameters. The difference between the predictions of each eigenvector pair and the central prediction is taken

as a source of systematic uncertainty at±1σ. A source of systematic uncertainty is defined as

non-trivial if, at one standard deviation in either direction, it produces a shift in any pT bin

greater than 1% of the occupancy given by the central prediction. Under this definition, 15 of the 26 CT10 eigenvectors are found to be non-trivial.

The relative uncertainty described by the combined variation of these eigenvector sets in

quadra-ture and the scale variations are shown in Fig. 3 as a function of jet-pT. The uncertainties

as-sociated with the renormalization and factorization scales are computed by varying the scales

coherently up and down by a factor of 2. As the effect of extinction on the jet-pT spectrum is

expressed relative to the SM prediction, by construction the PDF variations do not affect any of the extinction parameters.

Given the exponentially falling nature of the inclusive jet-pT spectrum, the JES is one of the

dominant sources of systematic uncertainty. The JES uncertainty is composed of 19 orthogonal sources. Of these, seven are found to be non-trivial according to the criterion defined above:

the absolute pT scale; the single pion response in the ECAL; the single pion response in the

HCAL; the flavor composition correction; the time dependence; the pileup pT scale; and the

extrapolation of the absolute scale into the high-pT regime [27]. The effects of JER are also

included as nuisance parameters. The uncertainty in luminosity is taken as a constant scale factor with a 2.6% relative uncertainty [43]. The relative uncertainty of all non-trivial detector-related sources of systematic uncertainty (JES, JER, and integrated luminosity) is shown in

Fig. 4 as a function of jet-pT.

Including systematic uncertainties, the best-fit value of β is (0.008±0.033)TeV−2, which is

consistent with the SM expectation.

The dependence of CLs on the parameter β is shown in Fig. 5. The observed upper limit on

βis 0.090 TeV−2 at 95% confidence level (CL), translating to an observed lower limit on M of

3.3 TeV. The expected upper limit on β is 0.088 TeV−2at 95% CL, corresponding to an expected

(9)

7 [GeV] T Inclusive jet p 1000 1500 2000 2500 Fractional uncertainty -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 Variations in CT10 PDF eigenvalues Scale variations in CT10 CMS Simulation s = 8 TeV

Figure 3: Uncertainty at ±1 standard deviation described by the combined variations of all

CT10 PDF eigenvectors added in quadrature (solid lines), as well as the scale variations (dotted

lines). The uncertainty is expressed as a fraction of the central occupancy of each pT bin. For

the fit of the model to data and the limit setting procedure, the PDF uncertainty is subdivided into individual sources for each eigenvector pair.

[GeV] T Inclusive jet p 1000 1500 2000 2500 Fractional uncertainty -0.1 -0.05 0 0.05 0.1 0.15 0.2

0.25 JES high pT extrapolation

JES single pion response in ECAL JES single pion response in HCAL

scale

T

JES absolute p JES flavor correction JES time dependence JER lumi dependence T JES pileup p CMS Simulation s = 8 TeV

Figure 4: Systematic uncertainty from all experimental sources at±1 standard deviation,

ex-pressed as a fraction of the central occupancy of each pT bin. The luminosity uncertainty is

constant in jet-pT, while the JES and JER uncertainties are modelled as transfer matrices

(10)

8 6 Summary ] -2 [TeV β 0.07 0.08 0.09 0.1 0.11 0.12 ) β (s CL -1 10 1 CMS L = 10.7 fb-1,s = 8 TeV M [TeV] 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 s Observed CL s Expected CL σ +/- 1 s Expected CL σ +/- 2 s Expected CL

Figure 5: The results of a CLs scan in the extinction mass scale, β = M−2. The observed

dependence of CLson β is shown by the solid line. The observed upper limit on β is 0.090 TeV−2

at 95% CL (indicated by the horizontal dotted line), corresponding to a lower limit of 3.3 TeV on the extinction mass scale M. The dashed line indicates the expected median of results for the SM hypothesis, while the green (dark) and yellow (light) bands indicate the quantiles, which contain 68% and 95% of the expected results, respectively.

agreement between the observed data and the null hypothesis.

As an additional check, the limit setting procedure is repeated using the MSTW2008 PDF set [39] to derive the SM hypothesis. The limits obtained using the CT10 and MSTW2008 PDFs

agree to within 10%. As the MSTW2008 PDFs predict a lower cross section at very high jet-pT

compared to CT10, the limit produced in this check is less conservative.

Finally, the limits have been calculated including weak radiative corrections to the SM predic-tion, with a decrease of less than 100 GeV to the exclusion region.

6

Summary

The first search for the extinction of jet production has been performed at the LHC using

proton-proton collision data at√s = 8 TeV collected by the CMS detector and corresponding

to an integrated luminosity of 10.7 fb−1. The extinction model studied in this analysis is

mo-tivated by the search for signatures of terascale gravity at the LHC and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts

sup-pression of high-pTjet production beyond an extinction mass scale M. A detailed comparison

between the measured pTspectrum and the theoretical prediction is conducted. No significant

deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale M.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent perfor-mance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully

(11)

References 9

acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Re-public of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation `a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie

(IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

References

[1] T. Banks and W. Fischler, “A Model for High Energy Scattering in Quantum Gravity”, (1999). arXiv:hep-th/9906038.

[2] CMS Collaboration, “Search for microscopic black holes in pp collisions at√s = 7 TeV”,

JHEP 04 (2012) 061, doi:10.1007/JHEP04(2012)061, arXiv:1202.6396.

[3] CMS Collaboration, “Search for microscopic black holes in pp collisions at√s = 8 TeV”,

JHEP 07 (2013) 178, doi:10.1007/JHEP07(2013)178, arXiv:1303.5338. [4] CMS Collaboration, “Search for Signatures of Extra Dimensions in the Diphoton Mass

Spectrum at the Large Hadron Collider”, Phys. Rev. Lett. 108 (2012) 111801,

doi:10.1103/PhysRevLett.108.111801, arXiv:1112.0688.

[5] CMS Collaboration, “Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS”, Phys. Lett. B 704 (2011) 123,

doi:10.1016/j.physletb.2011.09.015, arXiv:1107.4771.

[6] CMS Collaboration, “Search for resonances in the dilepton mass distribution in pp

collisions at√s=7 TeV”, JHEP 05 (2011) 093, doi:10.1007/JHEP05(2011)093,

(12)

10 References

[7] ATLAS Collaboration, “Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC”, Phys. Lett. B 709 (2012) 322,

doi:10.1016/j.physletb.2012.02.049, arXiv:1111.0080.

[8] ATLAS Collaboration, “Search for extra dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector”, Phys. Lett. B 710 (2012) 538, doi:10.1016/j.physletb.2012.03.022, arXiv:1112.2194.

[9] ATLAS Collaboration, “Search for new particles decaying to ZZ using final states with

leptons and jets with the ATLAS detector in√s = 7 TeV proton-proton collisions”, Phys.

Lett. B 712 (2012) 331, doi:10.1016/j.physletb.2012.05.020,

arXiv:1203.0718.

[10] CMS Collaboration, “Search for dark matter and large extra dimensions in monojet

events in pp collisions at√s = 7 TeV”, JHEP 09 (2012) 094,

doi:10.1007/JHEP09(2012)094, arXiv:1206.5663.

[11] CMS Collaboration, “Search for Dark Matter and Large Extra Dimensions in pp

Collisions Yielding a Photon and Missing Transverse Energy”, Phys. Rev. Lett. 108 (2012) 261803, doi:10.1103/PhysRevLett.108.261803, arXiv:1204.0821.

[12] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83 (1999) 3370, doi:10.1103/PhysRevLett.83.3370,

arXiv:hep-ph/9905221.

[13] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”, Phys. Rev. D 59 (1999) 086004, doi:10.1103/PhysRevD.59.086004,

arXiv:hep-ph/9807344.

[14] S. B. Giddings and S. D. Thomas, “High energy colliders as black hole factories: The end of short distance physics”, Phys. Rev. D 65 (2002) 056010,

doi:10.1103/PhysRevD.65.056010, arXiv:hep-ph/0106219.

[15] S. Dimopoulos and G. Landsberg, “Black Holes at the LHC”, Phys. Rev. Lett. 87 (2001) 161602, doi:10.1103/PhysRevLett.87.161602, arXiv:hep-ph/0106295. [16] P. Meade and L. Randall, “Black holes and quantum gravity at the LHC”, JHEP 05 (2008)

003, doi:10.1088/1126-6708/2008/05/003, arXiv:0708.3017.

[17] C. Kilic, A. Lath, K. Rose, and S. Thomas, “Jet extinction from non-perturbative quantum gravity effects”, Phys. Rev. D 89 (2014) 016003, doi:10.1103/PhysRevD.89.016003, arXiv:1207.3525.

[18] CMS Collaboration, “Measurement of the Inclusive Jet Cross Section in pp Collisions at

s = 7 TeV”, Phys. Rev. Lett. 107 (2011) 132001,

doi:10.1103/PhysRevLett.107.132001, arXiv:1106.0208.

[19] CMS Collaboration, “The CMS experiment at the CERN LHC”, J. Instrum. 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[20] CMS Collaboration, “The CMS high level trigger”, Eur. Phys. J. C 46 (2006) 605,

(13)

References 11

[21] Z. Nagy, “Three-jet cross sections in hadron hadron collisions at next-to-leading order”, Phys. Rev. Lett. 88 (2002) 122003, doi:10.1103/PhysRevLett.88.122003,

arXiv:hep-ph/0110315.

[22] Z. Nagy, “Next-to-leading order calculation of three-jet observables in hadron-hadron collision”, Phys. Rev. D 68 (2003) 094002, doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268.

[23] D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch, “New features in version 2 of the fastNLO project”, (2012). arXiv:1208.3641.

[24] P. M. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, Phys. Rev. D 78 (2008) 013004, doi:10.1103/PhysRevD.78.013004,

arXiv:0802.0007.

[25] T. Sj ¨ostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175. [26] M. B¨ahr et al., “Herwig++ physics and manual”, Eur. Phys. J. C 58 (2008) 639,

doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.

[27] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, J. Instrum. 6 (2011) P11002,

doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[28] S. Dittmaier, A. Huss, and C. Speckner, “Weak radiative corrections to dijet production at hadron colliders”, JHEP 11 (2012) 095, doi:10.1007/JHEP11(2012)095,

arXiv:1210.0438.

[29] D. Lust, S. Stieberger, and T. R. Taylor, “The LHC string Hunter’s companion”, Nucl. Phys. B 808 (2009) 1, doi:10.1016/j.nuclphysb.2008.09.012,

arXiv:0807.3333.

[30] E. A. Mirabelli, M. Perelstein, and M. E. Peskin, “Collider signatures of new large space dimensions”, Phys. Rev. Lett. 82 (1999) 2236, doi:10.1103/PhysRevLett.82.2236, arXiv:hep-ph/9811337.

[31] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009. [32] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the

First LHC Collisions Recorded in the CMS Detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[33] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet clustering algorithm”, JHEP 04

(2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189. [34] CMS Collaboration, “Identification and filtering of uncharacteristic noise in the CMS

hadron calorimeter”, J. Instrum. 5 (2010) T03014,

doi:10.1088/1748-0221/5/03/T03014, arXiv:0911.4881.

[35] CMS Collaboration, “Calorimeter Jet Quality Criteria for the First CMS Collision Data”, CMS Physics Analysis Summary CMS-PAS-JME-09-008, 2010.

(14)

12 References

[36] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Euro. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.

[37] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[38] A. L. Read, “Presentation of search results: The CLstechnique”, J. Phys. G 28 (2002) 2693,

doi:10.1088/0954-3899/28/10/313.

[39] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189, doi:10.1140/epjc/s10052-009-1072-5,

arXiv:0901.0002.

[40] NNPDF Collaboration, “A first unbiased global NLO determination of parton distributions and their uncertainties”, Nucl. Phys. B 838 (2010) 136,

doi:10.1016/j.nuclphysb.2010.05.008, arXiv:1002.4407.

[41] H1 and ZEUS Collaboration, “Combined measurement and QCD analysis of the

inclusive e±p scattering cross sections at HERA”, JHEP 01 (2010) 109,

doi:10.1007/JHEP01(2010)109, arXiv:0911.0884.

[42] S. Alekhin, J. Bl ¨umlein, S. Klein, and S. Moch, “3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders”, Phys. Rev. D 81 (2010) 014032, doi:10.1103/PhysRevD.81.014032, arXiv:0908.2766.

[43] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2012.

(15)

13

A

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f ¨ur Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Er ¨o, C. Fabjan1, M. Friedl, R. Fr ¨uhwirth1, V.M. Ghete,

C. Hartl, N. H ¨ormann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Kn ¨unz, M. Krammer1,

I. Kr¨atschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Sch ¨ofbeck,

J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Universit´e Libre de Bruxelles, Bruxelles, Belgium

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk,

A. L´eonard, A. Mohammadi, L. Perni`e2, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer,

J. Wang

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, B. Klein, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira,

C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, P. Jez,

M. Komm, V. Lemaitre, J. Liao, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov5,

L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Universit´e de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W.L. Ald´a J ´unior, W. Carvalho, J. Chinellato6, A. Cust ´odio, E.M. Da Costa, D. De Jesus Damiao,

C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli

Manganote6, A. Vilela Pereira

Universidade Estadual Paulistaa, Universidade Federal do ABCb, S˜ao Paulo, Brazil

C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb,

(16)

14 A The CMS Collaboration

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov,

M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, R. Plestina8,

J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Bodlak, M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran9, S. Elgammal10, M.A. Mahmoud11, A. Radi10,12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. H¨ark ¨onen, V. Karim¨aki, R. Kinnunen, M.J. Kortelainen, T. Lamp´en, K. Lassila-Perini, S. Lehti, T. Lind´en, P. Luukka, T. M¨aenp¨a¨a, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov

(17)

15

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Min´e, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Universit´e de Strasbourg, Universit´e de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram13, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte13,

J.-C. Fontaine13, D. Gel´e, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Universit´e de Lyon, Universit´e Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucl´eaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, G. Boudoul2, S. Brochet, C.A. Carrillo Montoya, J. Chasserat,

R. Chierici, D. Contardo2, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch,

B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze14

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber,

B. Wittmer, V. Zhukov5

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. G ¨uth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Th ¨uer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Fl ¨ugge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,

B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth,

A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz15, A. Bethani,

K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Kr ¨ucker, W. Lange, J. Leonard, K. Lipka,

A. Lobanov, W. Lohmann15, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer,

J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, E. Ntomari,

H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, E. Ron, M. ¨O. Sahin,

J. Salfeld-Nebgen, P. Saxena, R. Schmidt15, T. Schoerner-Sadenius, M. Schr ¨oder, S. Spannagel,

(18)

16 A The CMS Collaboration

University of Hamburg, Hamburg, Germany

M. Aldaya Martin, V. Blobel, M. Centis Vignali, J. Erfle, E. Garutti, K. Goebel, M. G ¨orner, M. Gosselink, J. Haller, R.S. H ¨oing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander,

H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille16, V. Sola, H. Stadie,

G. Steinbr ¨uck, D. Troendle, E. Usai, L. Vanelderen

Institut f ¨ur Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, C. Baus, J. Berger, C. B ¨oser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,

M. Feindt, F. Hartmann2, T. Hauth2, U. Husemann, I. Katkov5, A. Kornmayer2, E. Kuznetsova,

P. Lobelle Pardo, M.U. Mozer, Th. M ¨uller, A. N ¨urnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. R ¨ocker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece

L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Io´annina, Io´annina, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath17, F. Sikler, V. Veszpremi, G. Vesztergombi18,

A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi19, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

S.K. Swain

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty2, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

(19)

17

M. Guchait, A. Gurtu20, G. Kole, S. Kumar, M. Maity21, G. Majumder, K. Mazumdar,

G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage22

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshiansohi, H. Behnamian, S.M. Etesami23, A. Fahim24, R. Goldouzian, A. Jafari,

M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh25,

M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Baria, Universit`a di Barib, Politecnico di Baric, Bari, Italy

M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De

Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, S. Mya,c, S. Nuzzoa,b,

A. Pompilia,b, G. Pugliesea,c, R. Radognaa,b,2, G. Selvaggia,b, L. Silvestrisa,2, G. Singha,b,

R. Vendittia,b, P. Verwilligena, G. Zitoa

INFN Sezione di Bolognaa, Universit`a di Bolognab, Bologna, Italy

G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b,

R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia,

L. Guiduccia,b, S. Marcellinia, G. Masettia,2, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa,

F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b, R. Travaglinia,b

INFN Sezione di Cataniaa, Universit`a di Cataniab, CSFNSMc, Catania, Italy

S. Albergoa,b, G. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa,c,2, R. Potenzaa,b,

A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenzea, Universit`a di Firenzeb, Firenze, Italy

G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, E. Galloa, S. Gonzia,b,

V. Goria,b,2, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genovaa, Universit`a di Genovab, Genova, Italy

F. Ferroa, M. Lo Veterea,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicoccaa, Universit`a di Milano-Bicoccab, Milano, Italy

M.E. Dinardoa,b, S. Fiorendia,b,2, S. Gennaia,2, R. Gerosa2, A. Ghezzia,b, P. Govonia,b,

M.T. Lucchinia,b,2, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, B. Marzocchi, D. Menascea,

L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Universit`a di Napoli ’Federico II’ b, Universit`a della Basilicata (Potenza)c, Universit`a G. Marconi (Roma)d, Napoli, Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,2, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa,

S. Meolaa,d,2, M. Merolaa, P. Paoluccia,2

INFN Sezione di Padovaa, Universit`a di Padovab, Universit`a di Trento (Trento)c, Padova, Italy

P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Brancaa,b, R. Carlina,b, M. Dall’Ossoa,b,

T. Dorigoa, M. Galantia,b, F. Gasparinia,b, P. Giubilatoa,b, A. Gozzelinoa, K. Kanishcheva,c,

S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, F. Montecassianoa, M. Passaseoa, J. Pazzinia,b,

N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, P. Zottoa,b,

(20)

18 A The CMS Collaboration

INFN Sezione di Paviaa, Universit`a di Paviab, Pavia, Italy

M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugiaa, Universit`a di Perugiab, Perugia, Italy

M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fan `oa,b, P. Laricciaa,b, G. Mantovania,b,

M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b,2

INFN Sezione di Pisaa, Universit`a di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy

K. Androsova,26, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,

M.A. Cioccia,26, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Fo`aa,c, A. Giassia, M.T. Grippoa,26,

F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,27, F. Pallaa,2, A. Rizzia,b,

A. Savoy-Navarroa,28, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,26, R. Tenchinia, G. Tonellia,b,

A. Venturia, P.G. Verdinia, C. Vernieria,c,2

INFN Sezione di Romaa, Universit`a di Romab, Roma, Italy

L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b,

F. Margarolia,b, P. Meridiania, F. Michelia,b,2, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia,

S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b,2, P. Traczyka,b

INFN Sezione di Torino a, Universit`a di Torino b, Universit`a del Piemonte Orientale (No-vara)c, Torino, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b,2, M. Arneodoa,c, R. Bellana,b, C. Biinoa,

N. Cartigliaa, S. Casassoa,b,2, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia,

S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c,2, G. Ortonaa,b,

L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b,

M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

INFN Sezione di Triestea, Universit`a di Triesteb, Trieste, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La

Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b,2, T. Umera,b, A. Zanettia

Kangwon National University, Chunchon, Korea

S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea

M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, Y.K. Choi, J. Goh, E. Kwon, J. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

(21)

19

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz29, R. Lopez-Fernandez,

A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H.A. Salazar Ibarguen

Universidad Aut ´onoma de San Luis Potos´ı, San Luis Potos´ı, Mexico

E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. G ´orski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laborat ´orio de Instrumenta¸c˜ao e F´ısica Experimental de Part´ıculas, Lisboa, Portugal

P. Bargassa, C. Beir˜ao Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, V. Karjavin, V. Konoplyanikov, A. Lanev,

A. Malakhov, V. Matveev30, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov,

S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kim31, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov,

L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

(22)

20 A The CMS Collaboration

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin7, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova,

I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic32, M. Dordevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energ´eticas Medioambientales y Tecnol ´ogicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas2, N. Colino, B. De La

Cruz, A. Delgado Peris, D. Dom´ınguez V´azquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fern´andez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. P´erez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Aut ´onoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Troc ´oniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de F´ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodr´ıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney,

A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet8, G. Bianchi, P. Bloch, A. Bocci,

A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen,

S. Colafranceschi33, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De

Roeck, S. De Visscher, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenc¸o, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimi¨a, D. Piparo, M. Plagge,

A. Racz, G. Rolandi34, M. Rovere, H. Sakulin, C. Sch¨afer, C. Schwick, S. Sekmen, A. Sharma,

P. Siegrist, P. Silva, M. Simon, P. Sphicas35, D. Spiga, J. Steggemann, B. Stieger, M. Stoye,

D. Treille, A. Tsirou, G.I. Veres18, J.R. Vlimant, N. Wardle, H.K. W ¨ohri, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. K ¨onig, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

(23)

21

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. B¨ani, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Doneg`a, M. D ¨unser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr,

C. N¨ageli36, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane,

F.J. Ronga, M. Rossini, A. Starodumov37, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universit¨at Z ¨urich, Zurich, Switzerland

C. Amsler38, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, M. Ivova Rikova,

B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan

M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-W.-S. Lu, D. Majumder, E. Petrakou, X. Shi, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Bangkok, Thailand

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci39, S. Cerci40, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis,

G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut41, K. Ozdemir,

S. Ozturk39, A. Polatoz, K. Sogut42, D. Sunar Cerci40, B. Tali40, H. Topakli39, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar43, K. Ocalan, U.E. Surat, M. Yalvac,

M. Zeyrek

Bogazici University, Istanbul, Turkey

E. G ¨ulmez, B. Isildak44, M. Kaya45, O. Kaya45

Istanbul Technical University, Istanbul, Turkey

H. Bahtiyar46, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Y ¨ucel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath,

H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold47, S. Paramesvaran, A. Poll,

S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev48, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,

S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert,

(24)

22 A The CMS Collaboration

G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas47, L. Lyons,

A.-M. Magnan, S. Malik, J. Marrouche, B. Mathias, J. Nash, A. Nikitenko37, J. Pela, M. Pesaresi,

K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp†, A. Tapper, M. Vazquez

Acosta, T. Virdee

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA

R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA

W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, F. W ¨urthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

(25)

23

Carnegie Mellon University, Pittsburgh, USA

V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, W. Hopkins, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Gr ¨unendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra,

S. Mrenna, Y. Musienko30, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E.

Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA

D. Acosta, P. Avery, D. Bourilkov, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos,

J.F. Low, K. Matchev, P. Milenovic49, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska,

N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA

V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA

E.A. Albayrak46, B. Bilki50, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo,

H. Mermerkaya51, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok46,

Imagem

Figure 1: Inclusive jet-p T spectrum (points) for | η | &lt; 1.5, as observed in data
Figure 2: The ratio of the inclusive jet p T spectrum to the NLO QCD prediction with non- non-perturbative corrections and convolved with the detector resolution
Figure 4: Systematic uncertainty from all experimental sources at ± 1 standard deviation, ex- ex-pressed as a fraction of the central occupancy of each p T bin
Figure 5: The results of a CL s scan in the extinction mass scale, β = M − 2 . The observed dependence of CL s on β is shown by the solid line

Referências

Documentos relacionados

No que respeita à distribuição das diferentes populações de ungulados presentes verificou-se que o javali encontra os requisitos ecológicos necessários em toda a

A Educação Física como práxis educativa deve levar em consideração o desenvolvimento pessoal e a questão social, possuindo como objetivo a formação da personalidade do

Art. 26 - É isento de pena o agente que, por doença mental ou desenvolvimento mental incompleto ou retardado, era, ao tempo da ação ou da omissão, inteiramente incapaz

Figure 5.1 shows the electric motor rotational speed measurements where two cycles of lifting and lowering the crane without reaching the final position of the actuator were

O presente trabalho apresenta diferentes padrões de ocorrência do fungo Bd na Mata Atlântica e Amazônia brasileiras, e abre portas para o desenvolvimento de diversos

Começa um movimento de retomada da cultura e das tradições por parte do povo Xukuru. O Toré sagrado, antes proibido pelos fazendeiros, voltou a ser dançado nos terreiros

7KLV SDSHU LV VWUXFWXUHG LQWR ILYH VHFWLRQV LQWURGXFWLRQ OLWHUDWXUH UHYLHZ PHWKRGRORJ\ UHVXOWV DQG GLVFXVVLRQ DQG ILQDO UHPDUNV 7KH SUHVHQW VHFWLRQ