• Nenhum resultado encontrado

Reissner-Nordstrom black holes with non-Abelian hair

N/A
N/A
Protected

Academic year: 2021

Share "Reissner-Nordstrom black holes with non-Abelian hair"

Copied!
7
0
0

Texto

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Reissner–Nordström

black

holes

with

non-Abelian

hair

Carlos Herdeiro

a

,

Vanush Paturyan

b

,

Eugen Radu

a

,

,

D.H. Tchrakian

b

,

c

aDepartamentodeFísicadaUniversidadedeAveiroandCIDMA,CampusdeSantiago,3810-183Aveiro,Portugal bDepartmentofComputerScience,NationalUniversityofIrelandMaynooth,Ireland

cSchoolofTheoreticalPhysicsDIAS,10BurlingtonRoad,Dublin4,Ireland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received1June2017

Receivedinrevisedform11June2017 Accepted14June2017

Availableonline16June2017 Editor: M.Cvetiˇc

We consider d4 Einstein–(extended-)Yang–Mills theory, where the gauge sector is augmented by higherorderterms. Linearising the(extended)Yang–Millsequations onthe backgroundoftheelectric Reissner–Nordström(RN)blackhole,weshowtheexistence ofnormalisable zeromodes, dubbed non-Abelianmagneticstationaryclouds. The non-linear realisation of theseclouds bifurcates the RNfamily into abranchof static,spherically symmetric,electrically charged and asymptotically flat blackholes with non-Abelian hair. Generically, the hairy black holes are thermodynamically preferred over the RN solution, which, inthis model, becomes unstable against the formation of non-Abelian hair, for sufficientlylargevaluesoftheelectriccharge.

©2017PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

According to the uniqueness theorems [1], the Kerr–Newman solution [2]is the most general asymptotically flat, non-singular (on and outside the event horizon), single black hole (BH) so-lution in electro-vacuum General Relativity (GR). Such theorems haveshaped the appealingworldview that the multitude of BHs in the Cosmos is well described by the Kerr metric [3], when nearequilibrium(assumingtheirelectricchargeisnegligible).This worldview,however,reliesdeeplyonanotheringredient:the cele-bratedBHperturbationtheory,developedinthe1970s.This frame-work allowed establishing that uncharged rotating[charged non-rotating] BHs, described by the Kerr [Reissner–Nordström (RN)] metric, are stable against vacuum [4] [electro-vacuum [5,6]] lin-earperturbations,inamodeanalysis.1

Afollow-upquestionisifKerrorRNBHsarestill stablewhen

other matter fields are considered (beyond electro-vacuum). The relevanceofthisquestionisillustratedbythesuperradiant instabil-ity ofKerrBHs,triggeredbymassivebosonicfields,whicharemost commonlytakentobescalarorProcafields(see[10]forareview). Inthe presenceof appropriate seeds ofthese fields,the instabil-itydevelops,extractingrotationalenergyandangularmomentum

*

Correspondingauthor.

E-mailaddress:eugen.radu@ua.pt(E. Radu).

1 ExtremalBHs(bothKerrandRN)wereoutsidethescopeoftheseproofsand havebeenrecentlyshowntobeunstableagainstlinearperturbations[7].The sta-bilityoftheKerr–NewmanBHisstillunderstudy–seee.g.[8,9].

fromtheBH, that pilesup intoa bosoniccloud around the hori-zon.Fora single superradiant mode, thisgrowthstopswhen the BH’s angular velocity decreases sufficiently to synchronise with the phase angular velocity of the superradiant mode [11], form-ing aKerrBHwithsynchronisedbosonichair [12–15].Theexistence ofthese newBH solutions,that bifurcate fromthe Kerrsolution, couldbeinferredpriortothisdynamicalanalysis,byanalysingthe linearisedbosonicwave equationaroundtheKerrBHand observ-ing theexistence ofzeromodes,dubbedstationarybosonicclouds,

precisely atthe thresholdofthe unstable modes[12,16–21].The hairyBHs arethenon-linearrealisationofthesezeromodes[22]

andtheyarethermodynamicallyfavouredoverKerrBHs[12]. The above considerations for the Kerr case can be extended tothegenericKerr–Newmancase:thesuperradiantinstability ex-ists[23],therearezero-modes[17,18]andKerr–NewmanBHswith scalarhairhavebeenconstructed[24].Butthesamedoesnot

ap-plyintheparticularcaseoftheRNBH.Eventhoughsuperradiant

scattering exists aroundRNBHs,thesearenotafflictedbythe su-perradiant instability ofmassive bosonic fields.2 As such, massive bosonichairdoesnotgrowaroundtheasymptotically flatRNBH, incontrasttotheKerrcase,andinagreementwithknownno-hair theorems[31].Thepurposeofthispaperistopointoutthatinthe presenceofaclassofnon-Abelianfields,itispossibletogrowhair

2 Thishasbeenprovenforscalarfieldsin[25,26].Still,aninstabilitycanbe ob-tainedbyconfining thebosonic fieldina boxaroundthe RNBH [27,28],with ananalogous dynamicaldevelopmentofthe instabilitytothatseen inthe Kerr case[29,30].

http://dx.doi.org/10.1016/j.physletb.2017.06.041

(2)

around theasymptotically flat RN BH,andthe process resembles theaforementioneddiscussionoftheKerrsuperradiantinstability. BHs withnon-Abelian hair were initially discovered in d

=

4 Einstein–Yang–Mills (EYM) SU

(

2

)

theory [33]. These so called

coloured BHsare asymptoticallyflatandtheirglobalYMchargeis completelyscreened,endowingthemwithasingle global“charge” –theADMmass.Sinceforagivenvalueofthemasstherecanbe infinitelymany different solutions, the no-hair conjecture is vio-lated.ThisdiscoverytriggeredanextensivesearchforhairyBHsin variousothermodels–see[32,34,39,40]forreviews.3

ThecolouredBHsin[33] are,however,unstableagainst spher-ical linear perturbations within the EYM model [41,42]. This in-stability canbe (partly)attributedtothefact that theypossessa purely magnetic gauge field and to the absence of a global YM charge (a

.

k

.

a ‘baldness’ theorem[43–45]). Thisalso signifies that the (EYM embedded, Abelian) RN BHs and the coloured BHs in

[33]formdisconnected‘branches’oftheEYMSU

(

2

)

model.4 AnalogouscolouredBHs,withapurelymagneticfield, perturba-tivelyunstable andwithasolitonic limit,existinmorethanfour spacetimedimensions[47–49].Ford

>

4,however,aDerrick-type virialargumentimpliesthatnofinitemasssolutionscanbefound in standard EYM theory. The path taken in [47–49], was to ex-tendtheYMactionwithparticularhigherordertermswhichyield a YM version of Lovelock’s gravity [50]. The resulting

Einstein-extended-YM (EeYM) model [52] has the desirable property that equationsofmotionarestillsecondorderandOstrogradsky insta-bilities[51]areavoided.

In d



4 EeYM,it turns out to be possibleto circumvent the no-goresultsin [43–45]andobtain coloured,electrically charged BHs continuously connectedto theRNsolution (embedded in this model) [53].Moreover, aswe shall show:1) the RN solution be-comesunstable againsteYMperturbations;2) thresholdeYM lin-earperturbationscorrespondtostaticeYMcloudsontheRN back-ground(as testfields); and 3)the non-linear realisationof these cloudscorresponds tocoloured, electrically chargedBH solutions inEeYM theory,which are thermodynamically favoured overthe RNBHs.Thus,weargue,eYM“matter”triggersaninstabilityofRN BHsthatparallelsthefamiliarsuperradiantinstabilityofKerrBHs, likelyleadingto asimilaroutcome: thedynamicalformationofa RNBHwithnon-Abelianhair,ofthetypewepresentbelow.

2. Themodel

2.1. Thegeneralframework

Thed



4,EeYMactionreads:

S

= −

1 16

π

G



M ddx

g

R

P



p=1

τ

(p)Tr

{

F

(

2p

)

2

}

⎠ ,

(1)

where G,that willbe setto unity,is Newton’sconstantand

τ

(p)

areasetof P -inputconstantswhosevaluesarenotconstraineda priori.

The 2p-form F

(

2p

)

is the p-fold antisymmetrised product

F

(

2p

)

=

F

F

∧ ...

F of the YM curvature 2-form Fμν

=

3 The original examples of BHs with non-Abelian hair [33] are not known inclosedform.More recentinvestigationsofsupersymmetricmodelswith non-Abelianfieldshaveledtoclosedformexamplesofd=4 asymptoticallyflathairy BHs–see

[35–38]

.

4 This ‘baldness’ result can be circumvented by considering a larger gauge group[46],whichallowsforelectrically chargedcolouredBHsinEYMtheory.These solutionsare,however,superpositionsofaRNBHandthe SU(2)BHsin

[33]

,the electricchargebeingcarriedbytheU(1)subgroupofthelargergaugegroup. Con-sequently, theydo notviolatethespirit ofthe‘baldness’ theoremand arealso perturbativelyunstable.

μ Aν

− ∂

ν Aμ. The always present p

=

1 term corresponds to

the usual YM action, F

(

2

)

2

=

Fμν F μν , with

τ

(1)

=

1

/

e2 (e

be-ing the gauge coupling constant). For p

=

2 one finds5 F

(

4

)

2

=

6



(

Fμν Fρσ

)

2

4

(

Fμρ Fρν

)

2

+ (

Fμν2

)

2

, which for d

=

4 can be written inthesimpler form F

(

4

)

2

= −

12

(



μνρσ Fμν F ρσ

)

2. Similar

results are found for higher p, with increasingly longer expres-sions.Ind spacetimedimensions,requiringantisymmetryofF

(

2p

)

impliesthatthehighestordercurvaturetermF

(

2P

)

hasP

= [

d

/

2

]

(i.e. infourandfivedimensionsonlythefirsttwoYMterms con-tribute, thep

=

3 termstartscontributingind

=

6,etc.).Areview oftheseaspectscanbefoundin[54].

Apart from providing a natural YM counterparts to Lovelock gravity and its mathematical elegance, another reason of inter-est forthis EeYMmodelis the occurrenceofsuch F

(

2p

)

2 terms innon-AbelianBorn–Infeldtheory [55] orinthehigherloop cor-rections tothed

=

10 heterotic stringlowenergyeffectiveaction

[56].Here,however,weadopta‘phenomenological’viewpointand choosethebasicaction(1)primarilyforthepurposeofidentifying thenewfeaturesinducedbysuchterms.

Thefieldequationsareobtainedbyvaryingtheaction(1)with respecttothefieldvariablesgμν and

Rμν

1 2R gμν

=

1 2 P



p=1

τ

(p)T(μνp)

,

(2) DμPμν

=

0

,

with Pμν

=

P



p=1

τ

(p)

Fμν Tr

{

F

(

2p

)

2

},

(3)

wherewedefinethep-stresstensorpertainingtoeachterminthe matterLagrangianas T(μνp)

=

Tr

{

F

(

2p

)

μλ1λ2...λ2p−1F

(

2p

)

ν λ1λ2...λ2p−1

1 4pgμν F

(

2p

)

λ1λ2...λ2pF

(

2p

)

λ1λ2...λ2p

}.

(4)

The solutions reported herein are spherically symmetric, ob-tainedwiththemetricAnsatz

ds2

=

dr 2 N

(

r

)

+

r 2d

2 d−2

N

(

r

)

σ

2

(

r

)

dt2

,

with N

(

r

)

=

1

2m

(

r

)

rd−3

,

(5)

the function m

(

r

)

being relatedto thelocal mass-energy density uptosomed-dependentfactor.r

,

t aretheradialandtime coordi-nate,respectively,whiled

2d2isthelineelementofaunitsphere. Thechoiceofgaugegroupcompatiblewiththesymmetriesofthe lineelement (5)is somewhat flexible.In thisworkwe choose to employchiralrepresentations,witha S O

(

d

+

1

)

gaugegroup.Then asphericallysymmetricgaugefieldAnsatzis[57,58]:

A

=

w

(

r

)

+

1 r

i j xi r dx j

+

V

(

r

)

d,d+1dt

,

with i

,

j

=

1

, . . . ,

d

1

,

(6)

i j being the chiral representation matrices of S O

(

d

1

)

, and

d,d+1 ofthe S O

(

2

)

,subalgebras in S O

(

d

+

1

)

,while xi are the

usual Cartesiancoordinates,beingrelatedtothespherical coordi-natesin(5)asinflatspace.

5 NotetheanalogywiththecorrespondingexpressionfortheGauss–Bonnet den-sityinLovelockgravity.

(3)

2.2.Theequationsandknownsolutions

Plugging(5)and(3)intotheequationsofmotion(2)resultsin6

m

=

1 2

(

d

2

)

r d−2 P



p=1

τ

(p)Wp−1

(

2p

1

)(

d

2p

)

2pNw 2 r2

+(

d

− [

2p

+

1

])

W

+

2pV 2

σ

2

,

(7)

σ



σ

=

2

(

d

2

)

w2 r P



p=1 p

(

2p

1

)(

d

2p

)

τ

(p)Wp−1

,

(8) P



p=1

τ

(p)p

(

d

2p

)(

2p

1

)



d dr



rd−4

σ

Wp−1N w



1 2

(

p

1

)

r d−2

σ

Wp−2

N w2 r2

+

(

d

2p

1

)

2

(

p

1

)

W

1

(

d

2p

)(

2p

1

)

V2

σ

2

2w

(

w2

1

)

r4



=

0

,

(9) P



p=1

τ

(p)p d dr



rd−2Wp−1V 

σ



=

0

,

(10)

whereweusetheshorthandnotation

W

=

w2

1 r2

2

.

(11)

Thed-dimensionalRN BHisa solutionofthemodelfora purely electricfield, in whichcase onlythe p

=

1 YM termin (1) con-tributes.Ithas: w

= ±

1

,

σ

=

1

,

m

=

m(R N)

=

M0

4

(

d

3

)

d

2

τ

(1)q2 rd−3

,

V

=

V(R N)

=

q rdh−3

q rd−3

,

(12)

withM0 andq twointegrationconstantsfixingthemassand

elec-triccharge, M

=

1

2

(

d

2

)

V

d−2M0

,

Q

=

4

(

d

3

)

τ

(1)

V

(d−2)q

,

(13)

where

V

(d−2)istheareaoftheunit

(

d

2

)

-sphere.Thesesolutions

possessanoutereventhorizonatr

=

rh,withrhthelargestrootof

theequation N

(

r

)

=

0,aconditionwhichimposesanupperbound onthechargeparameter, q



q(max)

=

rdh−3

/(

8

τ

(1)dd−−32

)

1/2.

Saturat-ingthisconditionresultsinanextremalBH.

The electrically uncharged, coloured BHs of [33,47–49] are a secondsetofsolutions. Theypossessnontrivialmagneticfield on andoutsidethehorizon,whiletheelectricfieldvanishesV

(

r

)

=

0. Their mass is finite being the only global charge, since the YM fieldsleavenoimprintatinfinity.Thesesolutionsdonottrivialise inthelimitofzerohorizonsize,becominggravitatingnon-Abelian solitons.

Thed

=

4 BHs in[46] are yetanother set ofsolutions of the above equations, being found for

τ

(2)

=

0 and an S O

(

3

)

×

U

(

1

)

gaugegroup.Theypossessanonzeromagneticfield,andapproach the limit (12) in the far field. Similar to Ref. [33], the magnetic

6 Thereisalsoaconstraint Einsteinequationwhichis, however,adifferential consequenceof

(7)

–(10)andweshallnotdisplayithere.Also,tosimplifythe ex-pressions,some(d,p)-factorswereabsorbedintheexpressionofτ(p).

potential w

(

r

)

possessesatleastanode,withtheabsenceof solu-tionswhereitbecomesinfinitesimallysmall.

We also note that the eqs. (7)–(10) are not affected by the transformation:

r

→ λ

r

,

m

(

r

)

→ λ

d−3m

(

r

),

V

V

/λ,

τ

(p)

→ λ

4p−2

τ

(p)

,

(14)

while

σ

andw remain unchanged.Thus, inthiswayonecan al-waystakeanarbitrarypositivevalueforoneoftheconstants

τ

(p).

Inthisworkthissymmetryisusedtoset

τ

(1)

= (

d

2

)/

2.Also,to

simplifysomerelations,weshallintroduce

τ

≡ ((

d

2

)/

8

)

2

τ

2

/

τ

13.

3. ZeroandunstableEeYMmodesontheRNBH

IncontrasttotheEYM modelin[46],thepresence ofa p

>

1 termintheEeYMactionleadstoadirectinteractionbetweenthe electricandmagneticfields,afeature whichholdsalreadyinthe

d

=

4 versionofthemodel.This,asweshallsee,makestheRNBH

unstable when considered asa solution ofthe full model. Atthe threshold ofthe unstable modes, a set ofzero modesappear, as wenowshow.

Let us investigate the existence of a perturbative solution around the RN BH background, with w

(

r

)

= ±

1

+



w1

(

r

)

+ . . .

(



being a small parameter). Similar perturbative expression are writtenalso form

,

σ

and V ;however,tolowest order,the equa-tionforw1

(

r

)

decouples,takingthesimpleform

d dr



rd−4N w1



2

(

d

3

)

rd−6

1

4

τ

(

d

2

)(

d

3

)

V 2 (R N)

w1

=

0

,

(15)

withN

=

1

2m(R N)

/

rd−3.Observethatonlythe p

=

1 and p

=

2

termsenter thisequation;other termsonly starttocontribute at higherorderinperturbationtheory.7

Thesecond termin(15)canbe seenasprovidingan effective massterm,

μ

2

(e f f)

=

1

4(d−3

d−2 q2

r2(d−2) forthegauge potential

per-turbationw1.Thismasstermbecomesstrictlypositiveforlarger,

μ

2

(e f f)

1 whileitpossessesnodefinitesignnearthehorizon.In

fact,

μ

2

(e f f) becomesnegative forlargeenoughvaluesofthe

elec-triccharge,andthisturnsouttobe anecessaryconditionforthe existenceof w1 solutionswiththecorrectasymptoticbehaviour.8

Requiring

μ

2

(e f f)

<

0 at the horizon, together with the existence

ofahorizon(which putsanupperbound ontheelectriccharge), actually implies the existence of a maximal value of the electric chargeforagiven

τ

,ifonewishesnormalisable zeromode pertur-bationstoexist: Q(max)

τ

(d−3)/2

=

1 8

π

2d−3

d

3

(

d

2

)

(d−5)/2

V

(d−2)

.

(16)

For charges smaller than Q(max), we have found that the

equa-tion (15)possesses nontrivialsolutions,with w1

(

r

)

starting from

some nonzero value at the horizon andvanishing at infinity. In

7 More specifically, due tothe presence ofthe factor Wp−2 multiplying the (squareofthe)electricchargein

(9)

, thecontributionofa p>1 YMtermina perturbativeexpansionisoforderO(2p−3

).

8 Multiplyingbyw1theeq.(15),resultsintheequivalentform d dr  rd−4N w 1w1  =rd−4N w2 1 +2(d−3)rd−6μ2(e f f)w21.

Normalisable modeshavew1vanishingatinfinity.Then,integratingthisequation betweenhorizonandinfinity,thelefthandsidevanishesandthefirstterminthe righthandsideisstrictlypositive.Thus,onefindsthatμ2

(e f f)isnecessarilynegative

(4)

thisstudy,eq.(15)impliestheexistenceofthenaturalcontrol pa-rameterQ

/

τ

(d−3)/2,otherquantitiesbeingalsoexpressedinunits

setby

τ

. Then,fora givenvalue ofthisparameter betweenzero and(16),thesolutionsexistforasubsetofRNbackgrounds, spec-ifiede.g. bytheratioM

/

τ

(d−3)/2,whichresultfromthenumerical

analysis.Thissetofsolutionscanbeindexedbyanintegern, cor-respondingtothenodenumberofw1

(

r

)

.Theresultsdisplayed in

thiswork correspond to then

=

0 (i.e. fundamental) set of solu-tions.

Following the terminology for scalar fields, [12,16,18], these configurations with infinitesimally small magnetic fields are dubbed non-Abelian stationary clouds around RN BHs. The corre-spondingsubsetofRNBHsspananexistenceline intheparameter space of solutions.9 This set is shown below, in Figs. 3, 4 (the bluedotted line); the plottedresults are ford

=

4

,

5 but a simi-larpicturehasbeenfoundford

=

6

,

. . . ,

9 andweexpectasimilar patterntooccurforanyd.

Eventhougheq.(15)doesnotappeartobesolvableintermsof knownfunctions, an approximateexpression ofthesolutions can befoundbyusingthemethodofmatchedasymptoticexpansions. For example, for d

=

4, the solution in the near horizon region [w(1h)] andin the far field [w(1inf)], asexpressed in terms ofthe compactifiedcoordinatex

=

1

rh

/

r,reads

w(1h)

(

x

)

=

b

+

2b

(

r 4 h

2Q2

τ

)

x r2h

(

r2h

Q2

)

+

O

(

x 2

),

w(1inf)

(

x

)

=

J rh

(

1

x

)

+

O

[(

1

x

)

2

],

(17)

whereb and J are free parameters.These approximatesolutions togetherwiththeirfirstderivativesarematchedatsome interme-diatepoint,whichresultsintheconstraint3r4h

Q2

(

r2h

+

4

τ

)

=

0. Thiscondition canbe expressed asa relation betweenthe event horizonarea and the electriccharge of the RN BHs on the exis-tenceline: AH

=

2 3

π

Q 2



1

+



1

+

48

τ

Q2



,

(18)

a result which provides a good agreement with the numerical data.10

TheRNsolutionssupportingthesezeromodes ormarginally sta-blemode separate differentdomains of dynamical stability inthe parameter space. We have investigatedthis issue for the (physi-cally mostinteresting) d

=

4 case. Starting with a more general Ansatzthan(5),(6)withadependenceofbothtimeandradial co-ordinate, which includes more gauge potentials andan extra grt

metriccomponent,oneconsidersagainfluctuationsaroundtheRN BH, with a value of non-Abelian magnetic gauge potential close tothevacuumvalue everywhere, w

= ±

1

+



w1

(

r

)

et

+ . . .

,and

real

.Again, itturnsout that,tolowest orderin



,thecoupled equationsseparate, w1

(

r

)

beingasolutionoftheequation

d2w 1 d

ρ

2

2

+

2N r2

1

2

τ

Q 2 r4

w1

=

0

,

(19)

wherewe haveintroduced a new ‘tortoise’coordinate

ρ

defined by ddrρ

=

N,suchthatthehorizonappearsat

ρ

→ −∞

.

This eigenvalue problem has been solved by assuming again that w1 is finiteeverywhere andvanishes at infinity. Restricting

9 Arigorousexistenceprooffortheexistenceofsolutionsoftheeqs.(15)fora numberd=4 ofspacetimedimensionscanbefoundin[59].

10 Thecorrespondingexpressionsford=5

,6 aremuchmorecomplicatedandnot soaccurate.

Fig. 1. Thesquareof2isplottedasafunctionofthescaledmassford=4 solu-tions,andforseveralvaluesoftheparameterQ/τ–blacksolidlines–between 0.1414 (left)and0.577 (right).AcurvewithconstantQ/τ interpolatesbetween anextremalRNsolutionandapointonintheexistenceline,=0.RNBHswith 2>0 areunstable.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

againtothefundamentalmode,wedisplayinFig. 1thesquareof the frequencyasafunction ofthe massparameter M forseveral valuesofQ .Onenoticesthat,givenQ ,theRNBHbecomes unsta-bleforallvaluesofM belowacriticalvalue,orequivalently,when the horizonissufficientlysmall.Also, the solutionswith

2

0 correspondspreciselytothed

=

4 existenceline discussedabove.

4. ThehairyBHsolutions

The instability ofthe RN solutionfound above can be viewed asanindication fortheexistenceofanewbranchofBHsolutions within the EeYM model, having nontrivial magnetic non-Abelian fieldsoutside thehorizon, andcontinuously connectedtothe RN solution.11Thisisconfirmedbynumericalresultsobtainedfor4



d



8,thatwenowillustrate.

Let us start our discussion by noticing that the total deriva-tivestructureoftheequationfortheelectricpotential(10)allows treating the value of the electric charge as an input parameter. However, the same equation excludes the existence of particle-likeconfigurationswitharegularoriginandQ

=

0.Thus,theonly physicallyinterestingsolutionsofthismodeldescribeBHs,withan eventhorizonatr

=

rh

>

0,locatedatthelargestrootofN

(

rh

)

=

0.

The metric and the gauge field must be regular at the horizon, which, inthenon-extremal caseimpliesan approximatesolution aroundr

=

rh oftheform

N

(

r

)

=

N1

(

r

rh

)

+ . . . ,

σ

(

r

)

=

σ

h

+

σ

1

(

r

rh

)

+ . . . ,

(20) w

(

r

)

=

wh

+

w1

(

r

rh

)

+ . . . ,

V

(

r

)

=

v1

(

r

rh

)

+ . . . ,

allcoefficientsbeingdeterminedby wh and

σ

h.Itisalso

straight-forwardtoshowthattherequirementoffiniteenergyimpliesthe followingasymptoticbehaviour atlarger

m

(

r

)

=

M0

(

d

3

)

q2 2rd−3

+ . . . ,

σ

(

r

)

=

1

(

d

3

)

2J2 2r2(d−2)

+ . . . ,

(21) w

(

r

)

= ±

1

+

J rd−3

+ . . . ,

V

(

r

)

= −

q rd−3

+ . . . .

11 Thisbranchingoffofafamilyofsolutionsattheonsetofaninstabilityisa recurrentpatterninBHphysics.ExamplesincludetheGregory–Laflammeinstability ofd5 blackstrings

[60,61]

,thed=4 BHswithsinchronyzedhairdiscussedin theIntroductionorthebumpyBHsind6 dimensions

[62,63]

.

(5)

Fig. 2. Theprofilesofatypicald=5 non-Abeliansolution(blackline)isshown togetherwiththecorrespondingRNBH(redline)withthesamemassandelectric chargeparameters,M=4.186 and Q=2,respectively.Onenoticesthatthehairy solutionisentropicallyfavoured,itshorizonradiusbeinglargerthanintheRNcase. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

Once the parameters

σ

h

,

wh and J

,

M

,

q are specified, all

other coefficients in (20), (21) can be computed order by or-der. The mass and electric charge of the solutions are given by

M

=

V

(d−2)

(

d

2

)

M0

/

8

π

, Q

=

V

(d−2)q

/

8

π

.Otherquantitiesof

in-terestaretheHawkingtemperatureTH

=

41π

σ

(

rh

)

N

(

rh

)

,theevent

horizonarea AH

=

V

(d−2)rdh−2 andthe chemical potential

. The

constant J in(21)isan orderparameterdescribingthedeviation fromtheAbelianRNsolution.

Thesolutions ofthe fieldequations interpolatingbetweenthe asymptotics (20), (21) were constructed numerically, by employ-ingashootingstrategy. Fora F

(

2

)

2

+

F

(

4

)

2 model(the onlycase shownhere),the inputparameters are Q

,

rh and

τ

.Then the

so-lutionsarefoundfordiscretevaluesoftheparameterwh,labeled

by the number of nodes, n, of the magnetic YM potential w

(

r

)

. However,asmentionedabove,inthisworkweshallrestricttothe fundamentalsetofsolutionswhichpossessamonotonicbehaviour ofthemagneticgaugepotential w

(

r

)

.

Theprofileofatypicald

=

5 solutionisshowninFig. 2(a sim-ilarpatternhasbeenfoundforotherspacetimedimensions).This figure shows that, for the same values of the mass and electric charge, the RN solution has a smaller eventhorizon radius (and thus a smaller entropy), than the non-Abelian BH. Consequently, asexpected,thehairysolutionsareentropicallyfavoured.

In Figs. 3, 4 the mass andhorizon area of all set of d

=

4

,

5 hairyBHsolutionsareshownasfunctionsoftheelectriccharge.12 Intheseplots, the regionwhere the hairyBHs exist isdelimited by i) thesubsetofRNsolutionsthatsupportthefundamental ex-istenceline ofnon-Abelianclouds13(bluedottedline); ii) thesetof

extremal (i.e.,zerotemperature)hairyBHs(greendashedline).For

d

=

4,theextremalsolutionsare constructeddirectly;ford

=

5

,

6 theywere foundbyextrapolating thedatafornear-extremal con-figurations.Infourdimensionsthereisoneextraboundaryformed by iii) thesetofcritical solutions.Thesed

=

4 solutionsarefound by extrapolating the numerical data. They possess zero horizon

12 TheshadedhairyBHsregionisobtainedbyextrapolatingtothecontinuumthe resultsfromalargesetofnumericalsolutions.Thepictureford=6 (theonlyother casewhereweinvestigatedextensivelythedomainofexistenceofhairyBHs)is verysimilartothatfoundford=5.

13 ThisdemonstratesthatthesehairyBHsarethenon-linearrealisation of non-Abelianclouds.

sizeandappeartobesingular,asfounde.g. byevaluatingthevalue oftheRicciscalaratthehorizon.

Thisspecialbehaviourcanbepartiallyunderstoodby studying thenearhorizonlimitoftheextremalhairyBHs.Theconditionof extremalityimpliesN

(

r

)

=

N2

(

r

rh

)

2

+ . . .

,asr

rh,whilethe

expansionof w

(

r

)

,

σ

(

r

)

and V

(

r

)

issimilartothat in(20).Then, restricting forsimplicity to a F

(

2

)

2

+

F

(

4

)

2 model, eqs. (7)–(10)

reducetotwoalgebraicrelations14

(

d

2

)(

d

3

)

+

2

(

5d2

37d

+

72

)

Y

4

(

d

3

)

X

+

18

(

d

4

)(

d

5

)

Y2

=

0

,

(22)



d

2 d

3 1

+

2Y 2

X



1

+

6Y

(

d

4

)(

d

5

)

(

d

2

)(

d

3

)

q rdh−3

=

0

,

with X

=

τ

r2h

,

Y

=

τ

(

1

w

(

rh

)

2

)

2 r4h

.

After eliminating the w

(

rh

)

parameter, one finds15 that the

ex-tremalBHssatisfythefollowingcharge-arearelations: Q

τ

=

1

2

1

+

AH 8

π τ

,

for d

=

4

,

(23) Q

τ

=

3 16

π



3 2



AH

τ

3/2

+

4 32 2/3

π

4/3A 1/3 H

τ



,

for d

=

5

,

Q

τ

3/2

=

AH 6

2

π τ

2



13

+

8

6

π τ

AH

2









1

+



13

+

8

6

π τ

AH

,

for d

=

6

.

Therefore, the d

=

4 extremal hairy BHs are special,stopping to exist fora minimal value of Q

=

τ

/

2,where the horizonarea vanishes.AsseeninFigs. 3,4,thesetofcritical solutionsconnect thispoint withthelimitingconfiguration withvanishing(scaled) quantities.Nosimilarsolutionsarefoundford

>

4,sincethelimit

Q

0 isallowedinthatcase.

Let usremark that the domains ofexistence forRN BHs and hairy BHs overlap in a region, see Figs. 3, 4. Therein, we have foundthatthefreeenergy F

=

M

THAH

/

4 ofahairysolutionis

lowerthanthatoftheRNconfigurationswiththesamevaluesfor temperatureandelectriccharge.Finally,wenoticetheexistenceof overchargednon-Abeliansolutions,i.e. withelectricchargetomass ration greater than unity, which do not possess RN counterparts (e.g. for d

=

5 those betweenthe extremal RN and the extremal hairyBHlines).Thesesolutionscannotarisedynamicallyfromthe instabilityofRNBHs.

5. Furtherremarks

The paradigmatic coloured BHs are disconnectedfrom theRN solution andare unstable against linear perturbations.16 By con-sideringasimplemodelwithhigherordercurvaturetermsofthe

14 Asexpected,thenearhorizonstructureoftheextremalhairysolutionscanbe extendedtoafullAdS2×Sd−2exactsolutionofthefieldequations,theirproperties beingessentiallyfixedby

(22)

.

15 Althoughonecanwriteageneral(Q,A

H)-relationvalidford6,its

expres-sionisverycomplicated;however,onefindsQ→0 asAH→0.

16 Strictlyspeaking,eveninthesimplestSU(2)case,thisholdsforthestaticcase only.Thespinningsolutionsnecessarilypossessanelectric charge

[39,64,65]

but theirinstabilityhasneverbeenestablished.

(6)

Fig. 3. Thedomainofexistenceford=4 andd=5 hairyBHs(HBHs,shadeddarkblueregion)inamassvs. electricchargediagram.(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 4. Thedomainofexistenceford=4 andd=5 hairyBHs(shadeddarkblueregion)inaeventhorizonareavs. electricchargediagram.(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

gauge field (dubbed EeYM model), we have constructed here a qualitativelydifferentsetofelectricallycharged,colouredBHs.The extended YM terms can provide a tachyonic mass for the eYM magnetic perturbations around the embedded RN BH. This leads totheexistence ofunstablemodes.Atthethresholdofthe unsta-blespectrumliesazeromode,whosenon-linearrealisation isthe familyofhairyBHs.Thesimilaritywiththemorefamiliar superra-diantinstabilityofKerrBHsisclear,and,asinthatcase,weexpect a dynamical evolution to drive the unstable modesinto forming condensate ofnon-Abelianmagneticfieldaround theRN BH,and saturatingwhenanappropriatehairyBHforms.

We remark that, for d

=

5, a rather similar picture is found when considering instead solutions in a Einstein–Yang–Mills– Chern–Simons model [66], the Chern–Simons term providing an alternativeto thehigherordercurvature termsoftheYM hierar-chyemployedhere. Again,thehairyBHsemergeasperturbations of the RN solution, being thermodynamically favoured over the Abelianconfigurations.

Asapossibleavenueforfutureresearch,itwouldbeinteresting toconsiderthestability ofthehairysolutionsinthiswork.Since they maximise the entropy for given global charges, we expect them tobe stable. This isindeed confirmedby the d

=

4 results reportedin[53],which werefound, however,foran SU(3)gauge group.The correspondingprobleminthe S O

(

d

+

1

)

caseappears tobemorechallengingandweleaveitforfuturestudy.

Letusclosebyremarkingonsomesimilaritieswithyetanother classofsolutions:thecoloured,electricallychargedBHsinAnti-de

Sitter(AdS)spacetime.As foundin[67],theRN-AdSBHbecomes unstable when considered asa solution ofthe pure EYM theory, the‘box’-typebehaviouroftheAdSspacetimeproviding the mech-anismfortheappearanceofamagneticnon-Abeliancloudcloseto thehorizon.Similarlytothesituationhere, thisfeatureoccursfor a particularsetofRN-AdSconfigurationswhichforman existence line intheparameterspace.Again,thehairyBHsarethenonlinear realisation of thenon-Abelianclouds. Theirstudyvia gauge/grav-ity dualityhas received aconsiderable attentionin the literature (see e.g. thereview[68])leading tomodelsofholographic super-conductors.Itwouldbeinteresting toexplorethepossibilitythat, despite the different asymptotic structure, the hairy BHs in this work could also provide connections to phenomena observed in condensedmatterphysics.

Acknowledgements

C.H.andE.R.acknowledgefundingfromtheFCT-IFprogramme. Thiswork wasalsopartiallysupported bythe H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904, and by the CIDMA project UID/MAT/04106/2013.

References

[1]P.T.Chrusciel, J. Lopes Costa, M. Heusler,Living Rev.Relativ. 15 (2012) 7, arXiv:1205.6112[gr-qc].

[2]E.T.Newman, R. Couch, K. Chinnapared, A. Exton,A.Prakash, R. Torrence, J. Math.Phys.6(1965)918.

(7)

[3]R.P.Kerr,Phys.Rev.Lett.11(1963)237.

[4]B.F.Whiting,J. Math.Phys.30(1989)1301.

[5]V.Moncrief,Phys.Rev.D9(1974)2707.

[6]V.Moncrief,Phys.Rev.D10(1974)1057.

[7]S.Aretakis,Adv.Theor.Math.Phys.19(2015)507,arXiv:1206.6598[gr-qc].

[8]P. Pani, E. Berti, L. Gualtieri, Phys. Rev. Lett. 110 (24) (2013) 241103, arXiv:1304.1160[gr-qc].

[9]M.Zilho,V.Cardoso,C.Herdeiro,L.Lehner,U.Sperhake,Phys.Rev.D90 (12) (2014)124088,arXiv:1410.0694[gr-qc].

[10]R.Brito,V.Cardoso,P.Pani,Lect.NotesPhys.906(2015)1,arXiv:1501.06570 [gr-qc].

[11]W.E.East,F.Pretorius,arXiv:1704.04791[gr-qc].

[12]C.A.R.Herdeiro,E.Radu,Phys.Rev.Lett.112(2014)221101,arXiv:1403.2757 [gr-qc].

[13]C.Herdeiro,E.Radu,Class.Quantum Gravity32 (14)(2015)144001, arXiv: 1501.04319[gr-qc].

[14]C.A.R.Herdeiro,E.Radu,H.Rnarsson,Phys.Rev.D92 (8)(2015)084059,arXiv: 1509.02923[gr-qc].

[15]C.Herdeiro, E.Radu,H. Runarsson,Class. Quantum Gravity33 (15)(2016) 154001,arXiv:1603.02687[gr-qc].

[16]S. Hod, Phys. Rev. D 86 (2012) 104026, Phys. Rev. D 86 (2012) 129902, arXiv:1211.3202[gr-qc].

[17]S.Hod,Eur.Phys.J.C73 (4)(2013)2378,arXiv:1311.5298[gr-qc].

[18]C.L.Benone,L.C.B.Crispino,C.Herdeiro,E.Radu,Phys.Rev.D90 (10)(2014) 104024,arXiv:1409.1593[gr-qc].

[19]S.Hod,Phys.Rev.D90 (2)(2014)024051,arXiv:1406.1179[gr-qc].

[20]S.Hod,Class.QuantumGravity32 (13)(2015)134002,arXiv:1607.00003 [gr-qc].

[21]S.Hod,J. HighEnergyPhys.2017(2017)030,arXiv:1612.00014[hep-th].

[22]C.A.R.Herdeiro,E.Radu,Int.J.Mod.Phys.D23 (12)(2014)1442014,arXiv: 1405.3696[gr-qc].

[23]H. Furuhashi, Y. Nambu, Prog. Theor. Phys. 112 (2004) 983, arXiv:gr-qc/ 0402037.

[24]J.F.M.Delgado,C.A.R.Herdeiro,E.Radu,H.Runarsson,Phys.Lett.B761(2016) 234,arXiv:1608.00631[gr-qc].

[25]S.Hod,Phys.Lett.B713(2012)505,arXiv:1304.6474[gr-qc].

[26]S.Hod,Phys.Lett.B718(2013)1489.

[27]C.A.R.Herdeiro,J.C.Degollado,H.F.Rnarsson,Phys.Rev.D88(2013)063003, arXiv:1305.5513[gr-qc].

[28]J.C.Degollado,C.A.R.Herdeiro,Phys.Rev.D89 (6)(2014)063005,arXiv:1312. 4579[gr-qc].

[29]N.Sanchis-Gual,J.C.Degollado,P.J.Montero,J.A.Font,C.Herdeiro,Phys.Rev. Lett.116 (14)(2016)141101,arXiv:1512.05358[gr-qc].

[30]N.Sanchis-Gual,J.C.Degollado,C.Herdeiro,J.A.Font,P.J.Montero,Phys.Rev.D 94 (4)(2016)044061,arXiv:1607.06304[gr-qc].

[31]A.E.Mayo,J.D.Bekenstein,Phys.Rev.D54(1996)5059,arXiv:gr-qc/9602057.

[32]C.A.R.Herdeiro,E.Radu,Int.J.Mod.Phys.D24 (09)(2015)1542014,arXiv: 1504.08209[gr-qc].

[33]M.S.Volkov,D.V.Galtsov,JETPLett.50(1989)346;

H.P.Kuenzle,A.K.Masood-ul-Alam,J. Math.Phys.31(1990)928; P.Bizon,Phys.Rev.Lett.64(1990)2844.

[34]M.S.Volkov,D.V.Gal’tsov,Phys.Rep.319(1999)1,arXiv:hep-th/9810070.

[35]M.Huebscher,P.Meessen,T.Ortin,S.Vaula,Phys.Rev.D78(2008)065031, arXiv:0712.1530[hep-th].

[36]P.Meessen,Phys.Lett.B665(2008)388,arXiv:0803.0684[hep-th].

[37]M.Huebscher,P.Meessen,T.Ortin,S.Vaula,J. HighEnergyPhys.0809(2008) 099,arXiv:0806.1477[hep-th].

[38]P.Bueno,P.Meessen,T.Ortin,P.F.Ramirez,J. HighEnergyPhys.1412(2014) 093,arXiv:1410.4160[hep-th].

[39]B.Kleihaus,J.Kunz,F.Navarro-Lerida,Class.QuantumGravity33 (23)(2016) 234002,arXiv:1609.07357[hep-th].

[40]M.S.Volkov,arXiv:1601.08230[gr-qc].

[41]N.Straumann,Z.H.Zhou,Phys.Lett.B243(1990)33.

[42]M.S. Volkov,O.Brodbeck, G.V.Lavrelashvili,N.Straumann,Phys.Lett.B349 (1995)438,arXiv:hep-th/9502045.

[43]D.V.Galtsov,A.A.Ershov,Phys.Lett.A138(1989)160.

[44]A.A.Ershov,D.V.Galtsov,Phys.Lett.A150(1990)159.

[45]P.Bizon,O.T.Popp,Class.QuantumGravity9(1992)193.

[46]D.V.Galtsov,M.S.Volkov,Phys.Lett.B274(1992)173.

[47]Y. Brihaye,A.Chakrabarti,D.H.Tchrakian,Class.QuantumGravity20(2003) 2765,arXiv:hep-th/0202141.

[48]Y.Brihaye,A.Chakrabarti,B.Hartmann,D.H.Tchrakian,Phys.Lett.B561(2003) 161,arXiv:hep-th/0212288.

[49]E.Radu,D.H.Tchrakian,Phys.Rev.D73(2006)024006,arXiv:gr-qc/0508033.

[50]D.Lovelock,J. Math.Phys.12(1971)498.

[51]M.Ostrogradsky,Mem.Acad.St.Petersbourg6 (4)(1850)385.

[52]D.H.Tchrakian,Phys.Lett.B150(1985)360.

[53]E.Radu,D.H.Tchrakian,Phys.Rev.D85(2012)084022,arXiv:1111.0418[gr-qc].

[54]T.Tchrakian,J. Phys.A44(2011)343001,arXiv:1009.3790[hep-th].

[55]A.A.Tseytlin,Nucl.Phys.B501(1997)41,arXiv:hep-th/9701125.

[56]J.Polchinski,StringTheory.Vol.2:SuperstringTheoryandBeyond,Cambridge UniversityPress,Cambridge,1998.

[57]E.Radu,D.H.Tchrakian,J. Phys.A45(2012)345401,arXiv:1204.3512[hep-th].

[58]Y. Brihaye, E.Radu,D.H. Tchrakian,Phys. Rev. D84 (2011) 064015,arXiv: 1104.2830[hep-th].

[59]E.Radu,D.H.Tchrakian,Y.Yang,Phys.Rev.D93 (12)(2016)124069,arXiv: 1603.06377[gr-qc].

[60]R.Gregory,R.Laflamme,Phys.Rev.Lett.70(1993)2837,arXiv:hep-th/9301052.

[61]S.S.Gubser,Class.QuantumGravity19(2002)4825,arXiv:hep-th/0110193.

[62]O.J.C. Dias,P.Figueras,R.Monteiro,J.E.Santos,R.Emparan,Phys. Rev.D80 (2009)111701,arXiv:0907.2248[hep-th];

O.J.C.Dias,P.Figueras,R.Monteiro,J.E.Santos,Phys.Rev.D82(2010)104025, arXiv:1006.1904[hep-th].

[63]J.C.Dias,J.E.Santos,B.Way,J. HighEnergyPhys.1407(2014)045,arXiv:1402. 6345[hep-th];

R.Emparan,P.Figueras,M.Martinez,J. HighEnergyPhys.1412(2014)072, arXiv:1410.4764[hep-th].

[64]B.Kleihaus,J.Kunz,Phys.Rev.Lett.86(2001)3704,arXiv:gr-qc/0012081.

[65]J.J. Vander Bij, E.Radu,Int. J. Mod. Phys. A 17(2002) 1477, arXiv:gr-qc/ 0111046.

[66]Y.Brihaye,E.Radu,D.H.Tchrakian,Phys.Rev.Lett.106(2011)071101,arXiv: 1011.1624[hep-th].

[67]S.S.Gubser,Phys.Rev.Lett.101(2008)191601,arXiv:0803.3483[hep-th].

[68]R.G.Cai,L.Li,L.F.Li,R.Q.Yang,Sci.China,Phys.Mech.Astron.58 (6)(2015) 060401,arXiv:1502.00437[hep-th].

Referências

Documentos relacionados

Consideramos que houve mudanças em relação aos ditames europeus, como nos mostrou Toni Tornado interpretando a canção “Sou Negro” (1970), mas, também, podemos observar os

Além do Clube Recreativo Chico Alves, o Itararé contou com outro espaço bastante importante no qual podiam –se praticar o lazer, o CSU (Centro Social Urbano), desenvolvido no

As formas clínicas de apresentação foram diversas: um rapaz com macrocrânea após o período de RN, esteve sempre assintomático até aos 8 meses, altura em que o diagnóstico

lows: “The al ve o lar area re quired for gas ex change A, the vol ume al lo cated to the re spi ra - tory sys tem V, and the length of the re spi ra tory tree L, which are con

As relações diplomáticas entre o Barão de Caxias, os farroupilhas e os governos platinos e provincianos durante a Revolução Farroupilha – por Jéferson Mendes1. AS

(A) foi a microalga que proporcionou o maior rendi- mento em ésteres metílicos de ácidos graxos, correspondendo a 422,9 mg de ésteres por grama de biomassa seca, o que é 115% maior

Isso ocorre porque os direitos de defesa po- dem ser considerados destituídos de sua dimensão econômica, já que o objeto de sua proteção (vida, intimidade, liberdades, etc.) pode

computador e caixa de som. Também responderam que não utilizam vídeos cinematográficos em suas aulas. Questionados sobre os reais motivos que levam a não utilização de filmes em suas