• Nenhum resultado encontrado

Non-enzymatic assay for glucose by using immobilized whole-cells of E. coli containing glucose binding protein fused to fluorescent proteins

N/A
N/A
Protected

Academic year: 2021

Share "Non-enzymatic assay for glucose by using immobilized whole-cells of E. coli containing glucose binding protein fused to fluorescent proteins"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ourn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Non-enzymatic

assay

for

glucose

by

using

immobilized

whole-cells

of

E.

coli

containing

glucose

binding

protein

fused

to

fluorescent

proteins

Ana

Charneca

a

,

Amin

Karmali

a,∗

,

Manuela

Vieira

b

aChemicalEngineeringandBiotechnologyResearchCenterandDepartmentalAreaofChemicalEngineeringofInstitutoSuperiordeEngenhariadeLisboa,

R.ConselheiroEmídioNavarro,1,1959-007Lisboa,Portugal

bElectronicsTelecommunication&ComputerDepartmentofInstitutoSuperiordeEngenhariadeLisboa,R.ConselheiroEmídioNavarro,1,

1959-007Lisboa,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23June2014

Receivedinrevisedform5June2015 Accepted5June2015

Availableonline20June2015 Keywords:

Fluorescentindicatorproteins Onionmembranes

Geneticallyencodednanosensor3.2mM Highthroughputglucoseassay

Immobilizationon96-wellmicrotiterplates FRET

a

b

s

t

r

a

c

t

Glucosemonitoringinvivoisacrucialissueforgainingnewunderstandingofdiabetes.Glucosebinding protein(GBP)fusedtotwofluorescentindicatorproteins(FLIP)wasusedinthepresentstudysuchas FLIP-glu-3.2mM.RecombinantEscherichiacoliwhole-cellscontaininggeneticallyencodednanosensors aswellascell-freeextractswereimmobilizedeitheroninnerepidermisofonionbulbscaleoron 96-wellmicrotiterplatesinthepresenceofglutaraldehyde.GlucosemonitoringwascarriedoutbyFörster ResonanceEnergyTransfer(FRET)analysisduethecyanoandyellowfluorescentproteins(ECFPand EYFP)immobilizedinboththesesupports.

TherecoveryoftheseimmobilizedFLIPnanosensorscomparedwiththefreewhole-cellsandcell-free extractwasintherangeof50–90%.Moreover,thedatarevealedthattheseFLIPnanosensorscanbe immobilizedinsuchsolidsupportswithretentionoftheirbiologicalactivity.Glucoseassaywasdevised byFRETanalysisbyusingthesenanosensorsinrealsampleswhichdetectedglucoseinthelinearrange of0–24mMwithalimitofdetectionof0.11mMglucose.Ontheotherhand,storageandoperational stabilitystudiesrevealedthattheyareverystableandcanbere-usedseveraltimes(i.e.atleast20times) withoutanysignificantlossofFRETsignal.Toauthor’sknowledge,thisisthefirstreportontheuseof suchimmobilizationsupportsforwhole-cellsandcell-freeextractcontainingFLIPnanosensorforglucose assay.Ontheotherhand,thisisanovelandcheaphighthroughputmethodforglucoseassay.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Glucoseisanimportantphysiologicalanalyteinvolvedinmajor catabolic pathwayssuch as glycolysis and oxidative phosphor-ylation. Therefore, the maintenance and regulation of glucose concentrationarecriticalissuesforproperphysiologicalfunction [1].Continuousbloodglucosemonitoringisakeyissueof mod-erndiabetestreatment,particularlyintype1diabetesaswellas insulin-dependenttype2diabetes[2].Thesearchfortheideal glu-cosesensorhasbeena long-timegoalofmany researchersand asaresult,manyglucosesensorshavebeendevelopedinthelast few decades[3].Although many glucose sensing systems have foundinvivo applications,theneedfora reliable,specific, sen-sitiveandstableglucosesensorishighlyrequired[4].Thereare many parameters that affect thedevelopment of an optimized glucosesensorsuchasselectivity,linearrange,biocompatibility,

∗ Correspondingauthor.Tel.:+351218317052;fax:+351218317267. E-mailaddress:akarmali@deq.isel.ipl.pt(A.Karmali).

responsetime,reproducibilityandreversibilityofsignal[5]. More-over,theseenzymeelectrodesarebasedonachemicalconversion [6]withaconsumptionofglucoseandO2andproductionof

hydro-genperoxideandd-gluconicacidinvivo.Apromisingalternative to electrochemistry has been investigated by several research groupswhichisfluorescence-basedglucosesensing[2,7,8].This isapowerfulmethodsuitableforfast,sensitive,reagentless,and non-invasivedetectionofneutralanalytessuchasglucose[7–9].

Glucosebindingprotein(GBP)hasbeenusedforglucosesensing by severalresearchworkers [8]. Maturegenetically engineered GBPwasfusedtoenhancedyellowfluorescentprotein(EYFP)and enhanced cyanofluorescent protein (ECFP)containing histidine affinitytagforglucosesensingin plants[10].Thelevelsof glu-cosewerequantifiedbyFluorescenceResonanceEnergyTransfer (FRET)measurementswhich allowthedeterminationofratioof emissionintensityofEYFP/ECFP[11].Althoughseveralresearch workershaveusedthesegeneticallyencodednanosensorsfor glu-coseassay,theywereusedinasolubleandpurifiedform[10].Inthe lastdecade,thereisanincreasinginterestonwhole-cellbiosensors [12–14]sincemicrobialcellscanbegeneticallymanipulatedtobe http://dx.doi.org/10.1016/j.snb.2015.06.037

(2)

usedaswhole-cellbiosensorsforawiderangeofbiomoleculesin ordertooptimizethesensitivity,selectivityandrobustness.Onthe otherhand,thenatureofimmobilizationsupportsusedandthe highthroughputassaymethodarealsocriticalissuesforagood glucosebiosensor.

Therefore, the present work involves the immobilization of recombinantwhole-cells andcell-free extractcontaining genet-ically encoded biosensors on onion membranes and 96-well microtiterplates.Thesenanosensorswillbeusedforglucoseassay eitherinfreeorimmobilizedforms.

2. Materialsandmethods

2.1. Chemicals

Glutaraldehyde, Coomassie Blue dye, 96-well tissue culture microtiterplates(polystyrene),imidazole,ampicillin,glucose oxi-daseandperoxidasewerepurchasedfromSigma–Aldrich(St.Louis, MO, USA). LB medium components were supplied by HiMedia Laboratories(Mumbai,India).Onionswereobtainedfromalocal supermarket.Allotherchemicalsusedwereofanalyticalgrade. 2.1.1. Recombinantplasmidscontaininggeneticallyencoded glucosenanosensors

Recombinant plasmids containing FLIP-glu- 3.2mM was obtainedfromAddgene,USA.Thisnanosensorhadadissociation constant(Kd)of3.2mMforglucose[15].

2.2. Methods

2.2.1. Maintenanceandgrowthconditionsofrecombinant Escherichiacolistrains

RecombinantplasmidcontainingFLIP-glu-3.2mMwasusedto transformE.colistrainsandtherecombinantstrainsweregrownin solidLuriaBertani(LB)mediumcontaining100␮g/mlampicillinof culturemediumat37◦Cfor24hinordertoobtainsinglecolonies. 2.2.2. Productionoffluorescentindicatorprotein(FLIP)

nanosensors

TheproductionandextractionofFLIPnanosensorsfrom recom-binantE.coliwascarriedoutasdescribedpreviouslywithmajor modifications[10].Briefly,singlecoloniesofrecombinantE.coli containingFLIP-glu-3.2mMweregrowninLBmediumcontaining 100␮g/mlampicillininthedarkat21◦C,150rpmfor2–3days.The cellswereharvestedbycentrifugationat10,000rpmfor5minat 4◦C,washedwithsalineandcentrifugedagainatsamespeed.The supernatantwasdiscardedandthepelletwasstoredat−20◦C.

Thecells werethawed,resuspendedin 2volumesof 20mM Tris–HClbufferpH8.0containing1mMbenzamidineandsonicated at4◦Cfor30s,forthreetimesandcentrifugedat19,000rpmfor1h. Thesupernatantwasrecoveredandusedasthecell-freeextract whichwasasourceofFLIPnanosensors.

2.2.3. ImmobilizationofFLIPglucosenanosensors

Asfarasimmobilizationoninnerepidermisofonionbulbscale isconcerned,itwascarriedoutaspublishedpreviouslywithmajor modifications[16].Preliminaryexperimentswerecarriedoutin ordertooptimizeseveralparameterssuchastheamountof whole-cells,cell-freeextract,concentrationofglutaraldehydeanddrying timeonthesupport.Briefly,circularmembraneoftheepidermis werecut(5–10mmdiameter)and suitablealiquotsof recombi-nantE.colicellsandcell-freeextractsin20mMTris–HClbufferpH 8.0containing1mMbenzamidineweretransferredtothese mem-branes,driedfor1hatroomtemperature.Asuitableamountof glutaraldehyde(8␮l)wasaddedtothemembraneandincubated atroomtemperaturefor45min.Subsequently,membraneswere

washedseveraltimeswith20mMTris–HClbufferpH8.0 contain-ing1mMbenzamidineandstoredinthesamebufferat4◦C.Asfar asfluorescencemeasurementsareconcerned,thesemembranes weretransferredtoa96-wellmicrotiterplatecontaining200␮l of50mMphosphatebufferpH7.0containing1mMbenzamidine perwellandreadingswerecarriedoutinamicrotiterplatereader. Thesemembraneswerestoredat4◦Cinthesamebuffersystem andtheywerere-usedseveraltimes.Regardingthe immobiliza-tionofwhole-cellsandcell-freeextractsontissueculture96-well microtiterplates,suitablealiquotsofthesebiosensorswere trans-ferredtotheseplatesanddriedovernightatroomtemperature. Subsequently,appropriateconcentrationofglutaraldehyde(20␮l) wasaddedtothewellsandthesameprocedurewasfollowedas describedabove.Thesemicrotiterplateswerestoredat4◦Cinthe samebuffersystemandtheywerere-usedseveraltimes.

2.2.4. Spectrameasurementoffreeandimmobilizedglucose nanosensors

Fluorescent measurements were carried out eitheron spec-trofluorimeter(JASCOFP-8300inaquartzcuvette)oronFluorstar Optimamicrotiterplatereader(excitation:433nmandemission: 485nmand528nm)in100␮lof50mMphosphatebufferpH7.0 containing1mMbenzamidine per wellasdescribed previously withmajormodifications[10].Briefly,measurementswerecarried outintheSpectrofluorimeter(Jasco)and spectrawereobtained in50mMphosphatebufferpH7.0containing1mMbenzamidine (100␮l)asthebackground.Increasingconcentrationsofglucose (0.01,0.1,1.0e10mM)inthesamebuffersystemwereaddedto thesolubleformsofcell-freeextractorwhole-cells(100␮l) con-tainingtheglucosenanosensor.Thesameprocedurewascarried outfortheimmobilizedglucosenanosensoroncircularmembrane andon96-wellmicrotiterplatesandspectraweremeasuredeither inthewavelengthrangeof400–600nm(Spectrofluorimeter)orin microtiterplatereader(excitation:433nmandemission:485nm and528nm).

2.2.5. Glucoseassay

FRETanalysiswascalculated astheratioofthefluorescence intensityat528nmdividedbythefluorescenceintensityat485nm. Spectrameasurementswerecarriedoutofthefreeformofboth nanosensorsinthepresenceandabsenceofglucoseastheligand. Thepresence ofglucose altersthefluorescenceintensityof the yellow(530nm)andcyano(485nm)ofFLIPnanosensors.The spec-trameasurementswerecarriedoutbyusingfreeandimmobilized formsofbothnanosensorsinthepresenceandabsenceofglucose astheligand.Acalibrationcurveforglucosewascarriedoutby usingFRETmeasurementsinthelinearrangeof0–24mMglucose asdescribedinSection2.2.4.Forcomparativepurposes,glucose wasassayedinseveralsamplesofhumanserabyusingthepresent FRETmethodandaconventionalcolorimetricassaymethodbased onglucoseoxidaseandperoxidase[6].

2.2.6. StabilityofimmobilizedFLIPglucosenanosensors

Immobilized FLIPglucosenanosensors (microtiterplatesand onion membranes) were used to investigate their storage and operationalstabilities.Therefore,fluorescencemeasurementswere carried out inthe presence andabsence of glucosein order to determinetheirstabilityasafunctionoftimebymeasurementsof glucoseassayinmicrotiterplatereader.Thesenanosensorswere storedin50mMphosphatebufferpH7.0containing1mM benza-midineat4◦C.

2.2.7. Selectivityofgeneticallyencodednanosensors

Theselectivityofthesenanosensorswasinvestigatedbyusing severalcarbohydratesasligandsinordertostudytheireffectonthe

(3)

ratioofEYFP/ECFPcomparedwiththeglucosebyusingdifferent ligandconcentrations.

2.2.8. Proteinassay

Proteinconcentrationofcell-freeextractswerecarriedoutby coomassiebluedyebindingmethodbyusingBSAastheprotein standardasmentionedpreviouslywithminormodifications[17].

3. Resultsanddiscussion

3.1. Productionofgeneticallyencodedglucosenanosensors

Genetically-encodedFRETnanosensors have been developed formeasuringthedynamic changes in concentrationofseveral metabolitesofbiologicalinterest[10].ThepresentFRETsensor con-tainsGBPwhichwasfusedtoafluorescentpairwithoverlapping emissionandexcitationspectra(i.e.ECFPandEYFP).Thebinding ofthemetaboliteofinterestinducesaconformationalchangethat affectstherelativedistanceand/ororientationbetweenthetwo flu-orescentproteinswhichcancauseeitheranincreaseoradecrease inFRETefficiency.TheseFLIPnanosensorsweredetectedinLB cul-turemediumbymeasurementoffluorescencespectrumbetween 400and600nm(Fig.1A)sincetherearetwofluorescencepeaks atabout485and530nm.Moreover,thefluorescencespectrumof cell-freeextractofFLIP-glu-3.2mMnanosensorwasobtainedin thepresenceandabsenceofglucosewhichrevealedadecreasein fluorescenceofEYFPandanincreaseofECFPasshowninFig.1B. 3.2. ImmobilizationofFLIPglucosenanosensors

The96-welltissue culturemicrotiterplatesand onion mem-branes were selected as immobilization supports since they

exhibitedthebestresultsasfarasrecoveryandretentionof bio-logicalactivityareconcerned.Thecellwallofinnerepidermiscells containsseveralbiologicalmacromoleculessuchas polygalactur-onicacid,hemicelluloses,proteinsandlignin[18].Therefore,onion membranesexhibitabiocompatiblemicroenvironmentandstable supportforimmobilizationofwhole-cellsandcell-freeextract.

Theimmobilizationofthesenanosensorsonboththesesupports resultedinrecoveryoffluorescenceintherangeof50–90%which wasrepresentedasthepercentageoftheratioEYFP/ECFPcompared withthefreeformofthenanosensor(Figs.2and3).

Asfarasglutaraldehydeisconcerned,severalconcentrations weretestedand itwasfoundthatlowerconcentrations of glu-taraldehydeexhibited higher recoveryof fluorescenceof either theimmobilizedwhole-cellsorcell-freeextractonbothsupports (Fig.2).Theeffectoftheamountofwhole-cellsandcell-freeextract onfluorescencerecoveryataconstantconcentrationof glutaralde-hyde(i.e.2%,v/v)wasalsoinvestigatedwhichrevealedthatlower amountsofnanosensorexhibitedhigherrecoveryoffluorescenceof eithertheimmobilizedwhole-cellsorcell-freeextractonboth sup-ports(Fig.3).Therefore,thesedataindicatethattherate-limiting stepseemstobethelowcapacityoftheonionmembranesaswell asthewellsofthemicrotiterplates[16,18].

3.3. Glucoseassay

Glucoseassaywascarriedoutbyusingfreeandimmobilized genetically encoded nanosensor in the range of 0–100mM as shown inFig. 4.Asexpected, theratioof EYFP/ECFP decreased astheglucose concentrationincreasedfor thefree formofthe nanosensorforwhole-cellsandcell-freeextract(Fig.4A).The cell-freeextractpresentedhigherFRETvaluesthanwhole-cellsbecause it has a higher amount of soluble protein compared withthe

0 200 400 600 800 1000 1200 1400 450 500 550 600 650 700 Fluor escence (A UF) wavelenght (nm) FLIPglu- 3.2mM LB medium 0 200 400 600 800 1000 1200 450 500 550 600 AUF λλ (nm) 1 m M glucose No glucose

A

B

(4)

0 20 40 60 80 100 0 5 10 15 20 Rec ov er y ( % ) Glutaraldehyde (%, v/v) whole cells cell-free extract 0 20 40 60 80 100 120 0 5 10 15 20 Rec ov er y ( % ) Glutaraldehyde (%, v/v) whole-cells

A

B

Fig.2. Effectofglutaraldehydeconcentrationontherecoveryofglucosenanosensor immobilizedonbothsupports.Aconstantamountofwhole-cells(1.9and0.5␮g) andcell-freeextract(2.9and29.0␮g)ofFLIP-glu-3.2mMwereusedand glu-taraldehydeconcentrationwasvariedforonionmembraneandtissuecultureplate, respectively.TherecoveryrepresentspercentageoftheratioEYFP/ECFPinthe pres-enceofglucosecomparedwiththefreeformofthebiosensor.(A)Innerepidermis ofonionbulbscale;(B)96-welltissueculturemicrotiterplate.

whole-cells(Fig.4A).Moreover,thenanosensorincell-freeextract andwhole-cellsmaybeindifferentconformationswhichhasbeen alsomentionedbyotherresearchworkersintheliterature[12,19]. However,asfarastheimmobilizedcell-freeextractand whole-cells on onion membrane are concerned,the data revealed an increaseintheratioasafunctionofglucoseconcentrationwhich suggestthatthereisanincreaseinFRETefficiency(Fig.4B). Sim-ilarresultswerealsoobtainedwithimmobilizednanosensorsin 96-wellmicrotiterplates(datanotshown).Thisresultwas unex-pectedbut it maybeexplained by thefact that thecovalently immobilizednanosensorisboundtotheimmobilizationsupport insuchawaythatbothfluorescentproteins(i.e.EYFPandECFP) maybelocatedfurtherapart.Subsequently,thebindingofglucose toGBPinducesa conformationalchangewhichmayapparently bring closer both these two fluorescent proteins and therefore thereisanincreaseinFRETefficiency.Severalresearchworkers have reported that FRET is apparently a very complex process whenfreeand immobilizedwhole-cellsorcell-freeextractsare involved [19–22].Regardingthedifferencesin FRETefficiencies betweenthefreeandimmobilizednanosensors,therearea num-beroffactorsaffectingimmobilizedandsolubleproteinssuchas

Fig.3.Effectoftheamountofwhole-cellsandcell-freeextractontherecoveryof glucosenanosensorimmobilizedonbothsupports.Increasingamountsof whole-cellsandcell-freeextractofFLIP-glu-3.2mMwereusedataconstantconcentration ofglutaraldehyde(2%).TherecoveryrepresentspercentageoftheratioEYFP/ECFP inthepresenceofglucosecomparedwiththefreeformofthebiosensor.(A)96-well tissueculturemicrotiterplate;(B)innerepidermisofonionbulbscale.

restrictedmobilityonimmobilization,chemicalmodificationdue totheimmobilizationmethodused,natureofthe microenviron-mentanddiffusionlimitation[20].Thereareseveralreportsinthe literaturethathave mentioneddifferentfluorescentbehaviorin theFRETpairbetweenfreeandimmobilizednanosensorsdueto somefactorsmentionedabove.Apparently,thisdifferencemaybe duetothereducedflexibilityof thelinkerdomainbetweenthe fluorescentproteinsbecauseoftheattachmenttosolidsurface. Thisissueemphasizestheimportancetoretainflexibilityofboth thefusionproteinsindevisingFRETpairsforimmobilizationto solidsurfaces[19,21].Ingeneral,FRETtheoryassumesthatina FRETcoupleonlyasingledonorandasingleacceptorarepresent withveryweakcoupling.However,incell-freeextractsor whole-cells, it is generally unknown if a single or multiple acceptors arepresentwhichmarkedlycomplicatesthecalculationofFRET efficiency.Moreover,otherproblemsmustbeevaluatedand con-trolledsuchascross-talkbetweenFRETpartners,effectofpHon theirmicroenvironmentanddifferenceinstoichiometricratiosof donorandacceptorbiomolecules[23,24].However,this immobi-lizednanosensorwassuccessfully usedtoassayglucosein real samplesofhumansera(Table1).Acalibrationcurveforglucose assayhasbeenpresentedinFig.4Cbyusingimmobilizedcell-free extractononionmembrane.Alimitofdetection(LOD)of0.11mM Table1

ComparativeanalysisofglucoseassaybythepresentFRETmethod(i.e.immobilized whole-cellsinonionmembrane)andconventionalcolorimetricmethodbyusing threedifferenthumanserasamples.

Serumsamples PresentFRET

method(mM) Colorimetric method(mM) Humanserum1 3.1±0.15 3.3±0.11 Humanserum2 5.9±0.32 6.1±0.28 Humanserum3 8.4±0.43 8.7±0.51

(5)

Fig.4. EffectofglucoseconcentrationontheratioofEYFP/ECFPoffreeand immo-bilizedFLIP-glu-3.2mMnanosensor.(A)Freewhole-cellsandcell-freeextract;(B) immobilizedcell-freeextractandwhole-cellsononionmembraneand(C) cali-brationcurveforglucoseassaybyusingimmobilizedcell-freeextractononion membrane.

glucosewasobtainedaccordingtoIUPACandICH[25].However,

upconversionluminescencenanosensorshavebeenusedtoassay forglucosewitha LODof64nMwhich ismuchlowerthanthe valuepresentedinthiswork[26].Acomparativestudywascarried outbyusing awell-establishedconventional colorimetricassay forglucosewithglucoseoxidaseandperoxidasewhichrevealed thattheresultsareslightlylowerwiththeFRETmethodcompared thecolorimetricmethod(Table1).Theseresultsmaybeexplained bythefactthatsomeinterferingsubstancesinhumanserummay affecttheFRETmethod.However,thisdifferenceisnotsignificant sinceverysimilarresultswereobtainedforbothmethods(Table1).

Fig.5.Stabilityofwhole-cellsandcell-freeextractcontainingFLIP-glu-3.2mM nanosensorimmobilizedonbothsupports.Thestability/operationalstability repre-sentsthepercentageoftheratioEYFP/ECFPinthepresenceofglucoseasafunction oftime:(A)innerepidermisofonionbulbscale;(B)96-welltissueculturemicrotiter plateand(C)Operationalstabilityoftheimmobilizednanosensorononion mem-braneasafunctionofNo.ofcyclesforglucoseassay.

Similarresultswereobtainedbyusingimmobilizedwhole-cells andcell-freeextracton96-wellmicrotiterplates(datanotshown). 3.4. StabilityofimmobilizedFLIPglucosenanosensors

The data presented in Fig.5 revealed that the immobilized nanosensors exhibited a very high storage stability at 4◦C of over 6 and 7 months for onion membrane and tissue culture microtiterplate,respectively(Fig.5AandB).Ontheotherhand, theoperationalstabilityoftheseimmobilizednanosensorswasalso investigatedbyassayingforglucoseasafunctionofthenumberof cycleswhichrevealedthattheycouldbeusedatleast20cycles withoutanysignificantlossofbiological activityasfarasFRET signalisconcerned(Fig.5C).

(6)

2 2.2 2.4 2.6 2.8 100 10 1 0 Ratio [Carbohydrate] mM Glucose Galactose Fructose Xylose Arabinose Sacarose

Fig.6. SelectivityofFLIP-glu-3.2mMnanosensor.Differentconcentrationsof sev-eralsugarswereusedtoinvestigatetheireffectontheratiobyusingfreewhole-cells.

3.5. Selectivityofgeneticallyencodednanosensors

The selectivity of FLIP-glu-3.2mM nanosensor was investi-gatedbyusingseveralmonoanddisaccharidesontheratiowhich revealedthatgalactoseexhibitedaverysmallcross-reactivitywith thenanosensorcomparedwiththeglucose(Fig.6).Thisresultis inagreementwithpublishedreports ontheselectivityofthese geneticallyencodednanosensors[10].

4. Conclusions

RecombinantE.coliwhole-cellsandcell-freeextract contain-inggeneticallyencodednanosensorswereimmobilizedononion membraneandtissueculturemicrotiterplateswithhighrecovery ofbiologicalactivity.Thismethodwasusedtoquantifyglucosein realhumanserasamplesandtheresultsareinagreementwith awell-establishedcolorimetricassaymethod.Thisassaymethod isbasedon96-wellmicrotiterplatewhichcanbeusedasahigh throughputassaymethodforglucosesinceitischeap,rapidand manysamplescanbeassayedona singleplatform.Thestorage andoperationalstabilityofthesenanosensorsarehighand there-foretheycanbere-usedseveraltimes.Toauthorknowledge,thisis thefirstreportontheuseofimmobilizedwhole-cellsandcell-free extract containing genetically encoded nanosensors for glucose assaybyusingthesetwonovelsupports.

Acknowledgements

WewouldliketothankFundac¸ãoparaaCiênciaeaTecnologia/ MCTES (Portugal) for financial support (PTDC/EEA-ELC/11854/ 2009;Pest2012-2014forUnit702).

References

[1]M.Taguchi,A.Ptitsyn,E.S.McLamore,J.C.Claussen,Nanomaterial-mediated biosensorsformonitoringglucose,J.Diab.Sci.Technol.8(2014)403–411. [2]J.C.Pickup,F.Hussain,N.D.Evans,O.J.Rolinski,D.J.Birch,Review

Fluorescence-basedglucosesensors,Biosens.Bioelectron.20(2005)2555–2565.

[3]A.P.F.Turner,Biosensors:senseandsensibility(TutorialReview),Chem.Soc. Rev.42(2013)3184–3196.

[4]J.V.Veetil,S.Jin,K.Ye,Aglucosesensorproteinforcontinuousglucose moni-toring,Biosens.Bioelectron.26(2010)1650–1655.

[5]E.A.Moschou,B.V.Sharma,S.K.Deo,S.Daunert,Fluorescenceglucosedetection: advancestowardtheidealinvivobiosensor,J.Fluoresc.14(2004)535–547. [6]C.Chen,Q.Xie,D.Yang,H.Xiao,Y.Fu,Y.Tan,S.Yao,Recentadvancesin

electrochemicalglucosebiosensors:areview,RSCAdv.3(2013)4473–4491. [7]S.B.VanEngelenburg,A.E.Palmer,Fluorescentbiosensorsofproteinfunction,

Curr.Opin.Chem.Biol.12(2008)60–65.

[8]R.Ballerstadt,J.S.Schultz,Agalactose-specificaffinityhollowfibersensorbased onfluorescenceresonanceenergytransfer,Meth.Biotechnol.7(2000)89–98. [9]T.Saxl,F.Khan,D.R.Matthews,Z-L.Zhi,O.Rolinski,S.AmeerBeg,J.Pickup, Fluo-rescencelifetimespectroscopyandimagingofnano-engineeredglucosesensor microcapsulesbasedonglucose/galactose-bindingprotein,Biosens. Bioelec-tron.24(2009)3229–3234.

[10]M.Fehr,S.Lalonde,I.Lager,M.W.Wolff,W.B.Frommer,Invivoimagingof thedynamicsofglucoseuptakeinthecytosolofCOS-7cellsbyfluorescent nanosensors,J.Biol.Chem.278(2003)19127–19133.

[11]M.Fehr,W.B.Frommer,S.Lalonde,Visualizationofmaltoseuptakeinliving yeastcellsbyfluorescentnanosensors,Proc.Natl.Acad.Sci.U.S.A.99(2002) 9846–9851.

[12]G.Wen,X.Wen,S.Shuang,M.M.F.Choi,Whole-cellbiosensorfordetermination ofmethanol,Sens.ActuatorsB201(2014)586–591.

[13]M.Park,T.-L.Tsai,W.Chen,Microbialbiosensors:engineeredmicroorganisms asthesensingmachinery,Sensors13(2013)5777–5795.

[14]A.R.Barbosa,A.Karmali,Developmentofabiosensorforureaassaybasedon amidaseinhibition,usinganion-selective,Biocatal.Biotransform.29(2011) 130–140.

[15]K.Deuschle, S.Okumoto,M.Feh,L.L.Looger,L. Kozhukh,W.B.Frommer, Constructionandoptimizationofafamilyofgeneticallyencodedmetabolite sensorsbysemirationalproteinengineering,ProteinSci.14(2005)2304–2314. [16]J.Kumar,S.F.D’Souza,Immobilizationofmicrobialcellsoninnerepidermis ofonionbulbscaleforbiosensorapplication,Biosens.Bioelectron.26(2011) 4399–4404.

[17]J.J.Sedmak,S.E.Grossberg,Arapid,sensitiveandversatileassayforprotein usingCoomassieBrilliantBlueG-250,Anal.Biochem.79(1977)544–552. [18]J.J.Kumar,S.F.D’Souza,Innerepidermisofonionbulbscale:asnaturalsupport

forimmobilizationofglucoseoxidaseanditsapplicationindissolvedoxygen basedbiosensor,Biosens.Bioelectron.24(2009)1792–1795.

[19]B.G.Abraham,V.Santala,N.V.Tkachenko,M.Karp,Fluorescentprotein-based FRETsensorforintracellularmonitoringofredoxstatusinbacteriaatsingle celllevel,Anal.Bioanal.Chem.406(2014)7195–7720.

[20]L.Q.Zhou,A.E.G.Cass,Periplasmicbindingproteinbasedbiosensors1. Prelimi-narystudyofmaltosebindingproteinassensingelementformaltosebiosensor, Biosens.Bioelectron.6(1991)445–450.

[21]R.M.DeLorimier,Y.Tian,H.W.Hellinga,Bindingandsignalingof surface-immobilizedreagentless fluorescent biosensorsderived from periplasmic bindingproteins,ProteinSci.15(2006)1936–1944.

[22]H-C.Ishikawa-Ankerhold,R.Ankerhold,G.P.C.Drummen,Reviewadvanced flu-orescencemicroscopytechniques—FRAP,FLIP,FLAP,FRETandFLIM,Molecules 17(2012)4047–4132.

[23]D.M.Chudakov,M.V.Matz,S.Lukyanov,K.A.Lukyanov,Fluorescentproteins andtheirapplicationsinimaginglivingcellsandtissues,Physiol.Rev.90(2010) 1103–1163.

[24]D.W.Piston,G.-J.Kremers,FluorescentproteinFRET:thegoodthebadandthe ugly,TrendsBiochem.Sci.32(2007)407–414.

[25]Y.Hayashi,R.Matsuda,K.Ito,W.Nishimura,K.Imai,M.Maeda,Detectionlimit estimatedfromslopeofcalibrationcurve:anapplicationtocompetitiveELISA, Anal.Sci.21(2005)167–169.

[26]J.Liu,L.Lu,A.Li,J.Tang,S.Wang,S.Xu,L.Wang,Simultaneousdetectionof hydrogenperoxideandglucoseinhumanserumwithupconversion lumines-cence,Biosens.Bioelectron.68(2015)204–209.

Biographies

AnaCharnecacompletedherBachelordegreeinChemicalandBiological Engineer-ingin2012atInstitutoSuperiordeEngenhariadeLisboa(ISEL)inPortugaland sincethenshehasbeeninvolvedinresearchactivitiesasaresearchassistantina biosensorresearchprojectforglucose.Shehasseveralpublicationsininternational journalsaswellasininternationalscientificconferences.

AminKarmaligothisPh.D.attheageof26fromKing’sCollegeLondon-U.K.,and postdoctoratefromGulbenkianInstituteofScienceinPortugal.HegothisD.Sc. (aggregation)in2001atÉvoraUniversity.HeisafullProfessorinBioengineeringand HeadofBiotechnologyandChemicalEngineeringResearchCenterofISELinLisbon, hasseveralresearchprojectsfundedbyEuropeanandNationalResearchCouncil, hassupervised15M.Sc.and7Ph.D.thesis(completed),publishedmorethan70 papersand4patentsinreputedjournalsandisareviewerofseveralinternational journalsandeditorialmemberofsomejournals.

ManuelaVieirawasborninLisbon,Portugal.In1986,shereceivedtheMastersof Scienceinsolidstatephysics-microelectronicandin1993thePh.D.in semicon-ductormaterialsbothfromtheNewUniversityofLisbon.Sheisfullprofessorin electronicsintheDepartmentofElectronicsTelecommunicationandComputers (ISEL,Portugal)andtheheadofagroupinappliedresearchinmicroelectronic opto-electronicandsensors(GIAMOS).Shehasseveralscientificpapersand20yearsof experienceinthefieldofthinfilmsanddevices,herresearchactivitieshavebeen mainlyrelatedtothedevelopmentofopticalsensors.

Referências

Documentos relacionados

Em todos os casos empíricos descritos acima, tanto o da pesquisa de Fretel (2011) quanto os estudos de Palmeira (1996), Cânedo (2005) e Bezerra (2006), é

Aiming to evaluate the irreversible loss of enzymatic activity on exposure to high temperature, in this case 60ºC, the thermal stability of free and immobilized lipases was

Regardless of the etiology and pathogenesis of hearing loss, it can be noted that several studies of auditory function in diabetic patients showed that hearing loss

Figure 10 presents the pendular sclerometer results for the different analysed zones of the West, East and North walls of Jogo da Pêla Tower, and in Figure 11 the same for

On the one hand, the more critical state of health of group A patients may explain the higher blood glucose levels, but on the other hand, glucose is a substrate that can

Por  serem  os  estágios  em  que  existe  a  possibilidade  de  ter  mais  autonomia,  considero  que  foi  com  Medicina  Interna,  Medicina  Geral  e  Familiar 

increased between 1.5 to 1.8 times ( p <0.05) in soils with glucose and inoculated with the fungi (except F. verticillioides ), in relation to soil without

Table 5.1S – Immobilization yield (Y) and recovered activity after the stability assay (RA) of glucose oxidase (GOD) immobilized by the CLEA technique:. influence of the