• Nenhum resultado encontrado

Molecular screening of blue mussels indicated high mid-summer prevalence of human genogroup II Noroviruses, including the pandemic "GII.4 2012" variants in UK coastal waters during 2013

N/A
N/A
Protected

Academic year: 2021

Share "Molecular screening of blue mussels indicated high mid-summer prevalence of human genogroup II Noroviruses, including the pandemic "GII.4 2012" variants in UK coastal waters during 2013"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Molecular

screening

of

blue

mussels

indicated

high

mid-summer

prevalence

of

human

genogroup

II

Noroviruses,

including

the

pandemic

“GII.4

2012”

variants

in

UK

coastal

waters

during

2013

Subhajit

Biswas

∗,1

,

Philippa

Jackson,

Rebecca

Shannon,

Katherine

Dulwich,

Soumi

Sukla

1

,

Ronald

A.

Dixon

UniversityofLincoln,SchoolofLifeSciences,BrayfordPool,Lincoln,Lincolnshire,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5April2017 Accepted22June2017

Availableonline13October2017 AssociateEditor:MauricioNogueira

Keywords:

Bluemussels Norovirus

GII.4Sydneyvariant Coastalwater

a

b

s

t

r

a

c

t

Thismolecularstudyisthefirstreport,tothebestofourknowledge,onidentificationof norovirus,NoVGII.4Sydney2012variants,frombluemusselscollectedfromUKcoastal waters.Bluemussels(threepooledsamplesfromtwelvemussels)collectedduringthe2013 summermonthsfromUKcoastalsiteswerescreenedbyRT-PCRassays.PCRproductsof

RdRPgenefornoroviruseswerepurified,sequencedandsubjectedtophylogeneticanalysis. AllthesamplestestedpositiveforNoVs.SequencingrevealedthattheNoVpartialRdRP

genesequencesfromtwopooledsamplesclusteredwiththepandemic“GII.4Sydney vari-ants”whilsttheotherpooledsampleclusteredwiththeNoVGII.2variants.Thismolecular studyindicatedmusselcontaminationwithpathogenicNoVsevenduringmid-summerin UKcoastalwaterswhichposedpotentialriskofNoVoutbreaksirrespectiveofseason.As thedetectionofSydney2012NoVfromourpreliminarystudyofnaturalcoastalmussels interestinglycorroboratedwithNoVoutbreaksinnearbyareasduringthesameperiod,it emphasizestheimportanceofenvironmentalsurveillanceworkforforecastofhighrisk zonesofNoVoutbreaks.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Blue mussels (Mytilus spp) are filter-feeders and are

widespread in European coastal waters, which are often

in close proximity to urban sewage treatment units.1,2

Correspondingauthor.

E-mail:subhajit.biswas@iicb.res.in(S.Biswas).

1 Currentaddress:CSIR-IndianInstituteofChemicalBiology,4,RajaS.C.MullickRoad,Kolkata,WestBengal700032,India.

Filter-feeders may retain particles at 4␮m with 100%

efficiency.3 Faecal contamination of water (via sewage

discharge)posesaseriousthreattohumanhealthasbivalves

(mussels and oysters) which filter large volumes of water

through their gills as part of their feeding activities, bio-accumulate pathogenicmicrobes,includingentericbacteria

https://doi.org/10.1016/j.bjm.2017.06.006

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

andviruses.Insitustudieswithbio-accumulationofavirus indicatorinoystershaveshownthattheycaneffectively con-centrateviruses(upto99-fold)comparedtothesurrounding water.4Anadultbluemusselmayfilter∼72Lofwateronan

averageperday5andhavebeenproposedasbio-samplersfor

assessmentoffaecalcontaminationinrecreationalwaters.6

Consumptionofbivalvesasfoodisoftenreportedtobethe causeofdiseaseoutbreaksbyentericviruses.Thoughprimary infectionresultsfromingestionoffaecalcontaminatedfoodor water,unintentionalingestionofcontaminatedrecreational waterscanalsoleadtogastrointestinalillness.7Norovirus

out-breakshaveadistinctseasonalitylinkedtowintermonths.8,9 NoVinfectionsarecalled“gastricflu”foritssimilar seasonal-ity&lackofeffectivetherapeuticslikeinfluenzaviruses,and alsoforitshighinfectivityandrapidevolution.10,11

Noroviruses (NoVs) are a non-enveloped positive sense

single-stranded RNA virus of the Caliciviridae family. NoVs haveasignificantimpactonhumanhealthastheyarehighly infectiousand causeacutegastroenteritis inallagegroups accountingfor>200,000 deathsworldwideeach year, espe-ciallyinchildren.12 Theorganism ishighlycontagiousand

problematic as a hospital-acquired infection. According to WHO,<10virionsaresufficienttocause infectioninadults and NoVoutbreaks oftenlead toclosure ofentirehospital wards every yearaffectingboth patientsand staff.Despite

attempts to control via ‘deep cleaning’ and implementing

hygienemeasuresoutbreakscan causeconsiderable

incon-venienceandeconomiclosses.13–15 NoVscannotbecultured oncellsanddetectionanddiagnosisincreasinglyreliessolely

on molecular methods such as reverse transcriptase-PCR

(RT-PCR).16 Diversity of NoVs both genetically and

anti-genically were demonstrated through RT-PCRand genomic

sequencing.17NoVsaredividedintosixgenogroups(GI-GVI)

and genogroups are further subdivided into around forty

geneticclustersorgenotypes.18NoVgenogroupswhichinfect

humansareI(NoVGI),II(NoVGII)andrarelyIV(NoVGIV).NoV GII.4isresponsiblefor80%ofthediseaseoutbreaks19andis

currentlythemostvirulentstraincirculatingintheUK.20Since

ithasafastermutationratethanotherNoVs21newvariants

emergeevery2–3yearsandisalsoresponsiblefor60–80%of outbreaksworldwide.22TheGII.4variantnamedSydney2012

hasprogressivelyreplacedthepredecessorGII.4NewOrleans 2009variantglobally.23,24

GII.4 outbreaks occurred preferentially during winter

months25 and mostworks havebeenconductedwith

sam-plescollected duringwintermonths.26Thusthe aimofthe

presentstudywastoscreenforNoVcontamination/retention inbivalvesduringthesummermonthsintheUKcoastal sea-waters.Thisworkcontributestothedevelopmentofaworking methodologyfortheroutinesurveillanceofmusselsroundthe yearforidentificationandgeneticcharacterizationofenteric

pathogenicvirusesaccumulatedwithinthem.

Materials

and

methods

Collectionandprocessingofsamples

Eightwildbluemussels(numbered1–8)werecollectedinApril

2013;they were attached toa nylon rope fragmenton the

metalsupportinggirdersunderMumblesPier atThe

Mum-bles, Swansea, UK. Another four mussels (numbered 9–12)

wereobtainedinJune2013fromtheRoyalDockatGrimsby, UK.Hepatopancreas, gillsand gastrointestinal tissueswere dissectedoutfromthesemussels.Tissues(∼3.0g)from mus-sels1–4,5–8and9–12constitutedthethreepooledsamples1, 2and3respectively.Musseltissuesweretriturated;digested withproteinaseKandcentrifugedat3000×gtocollect∼5mL supernatant.27Thesupernatantwasfilteredtoremovetissue

and other debris including unwantedmicrobes(like

bacte-riaandfungi)using0.45␮Mfilter(Anachem-Supatop,UK)for furtherdownstreamapplications.

ViralRNAextraction,reversetranscriptionandnestedPCR Followingprocessingofthesamples,viralRNAwasextracted

usingQIAampViralRNAMinikit(Qiagen,Germany)

accord-ingtotheinstructionsofthemanufacturer.ExtractedRNA(in 60␮Lwater)wasusedforreversetranscriptiontocDNAusing BioScript RT-PCR Kit(Bioline, UK) and NoV-specific reverse primer,1422.28

ThecDNAwasamplifiedusingNoVGI-specific(PCRNos.

443,446)andGII-specific(PCRNos.443,444)semi-nestedPCRs (ExpandHighFidelityPCRkit,Roche,Germany)accordingto previouslypublished protocols.29 These PCRstarget partof

theNoVRNApolymerase,RdRPgene.ThePCRnumberinghas

been adopted fromthe numberingofthe PCRprotocols as

previouslypublished.28

Thetargetampliconsizeswere327bpforthefirstround PCR(No.443)forbothNoVGIandGII;188bpforthesecond roundPCRincaseofNoVGIand237bpforNoVGII.Positive PCR-amplifiedproducts(electrophoresedon1.5%agarosegel)

werepurifiedandcustom-sequencedforbothstrands.

The sequencing primers were the same forward and

reverseprimersoftherespectivePCRsthatresultedin visi-blebandsonthegel(e.g.primersforPCRNo.446forGINoV or444forGIINoV).

ArmouredRNA(Cells-to-cDNATMIIKit,Ambion,UK)was

usedaspositivecontrolbyspikingextractedRNAfrom mus-selswiththearmouredRNAtotestforRTandPCRinhibitors inthemusselRNAconcentrate.

Samples1–3werefurtherscreenedforNoVGIandNoVGII capsidgenesusingnestedPCRs(PCRNos.475,476)and(PCR Nos.437,438)respectivelyandalsoforHAV(PCRNos.675,676) followingpreviouslypublishedprotocols.28

AllthreesampleswerealsoscreenedforNoVGIV(PCRNos. 603,612;546,542)andCOG4F,G4SKRandG4SKF.28,30ForNoV

GIV detection byPCRnos. 603and 612,the reverse primer

1565usedforcDNAsynthesishadthesequenceasdescribed earlier31 andnotasdescribed inLaRosaetal.28 Thelatter

sequenceappearstobeincorrect.Samples2and3were fur-ther testedforHEV(PCRNos.711,712)and astrovirus(PCR Nos.696,697).

Sequencing

Nucleotide (nt) sequences, confirmed by bi-directional

sequencingofthePCRproducts(PCRs446,444)weresubjectto

NCBIBLASTfordetermininggeneticmatcheswithsequences

(3)

WwithothercloselyrelatedNoVsequencesidentifiedfrom theBLASTsearch.Aphylogenetictreewasgeneratedbythe neighbour-joiningmethodusingMEGA632on169ntofRdRP

gene (pertaining to nt positions 4326–4494 as in JX459908

NoVGII.4Sydneyvariant)tocharacterizetheNoVstrainsand studytheirgeneticdistanceswithothercloselyrelatedNoV strains.

Results

SequencingofNoVs

AllthreesampleswerepositiveforNoVGII-specificPCR(No. 444)(Fig.1Aand B).Samples2and 3werealsopositivefor NoV GI-specific PCR (No. 446) (Fig. 1B, sample2 isshown) andproducedPCRproductsofexpectedbandlength(188bp). AllsampleswerenegativeforGIVNoV.Samplesscreenedfor otherentericviruseswerealsonegative(withinthelimitsof

detection ofthe PCRs performed) excepta PCRproduct of

expectedsize(PCRNo.712;457bp)observedforHEVincase ofsample3.However,sequencingpooledproductfromthree suchbandsresultedinnon-HEVsequencesasalsoincaseof

non-NoVsequences observedforthe188bpbandfrom the

NoVGI-specificPCR(datanotshown).GI&GIINoVPCRs tar-getingNoVcapsidgenes(PCRNos.476,438)werenegative.

RelationshipswithotherNoVs

Phylogeneticanalysisofalignedsequencesrevealedthat

sam-ples 1and 2 from Swansea clustered closely with several

pandemicNoVGII.42012variants.Bothsamples,however,had differencesatnucleotide(nt)sequencelevels.NoVfrom sam-ple1wasnamedGII.4UK2013aandthatfromsample2was namedGII.4UK2013b.TheGII.4SydneyvariantsofNoVsfrom musselsinthepresentstudyclusteredwithNoVsofChinese andTaiwaneseorigin(Fig.1).

Thesample3fromGrimsbyclusteredcloselywithother

NoVGII.2strainsandthisNoVwasnamedGII.2UK2013(Fig.2).

NoVGI-specificPCRproductsfromsamples2and3produced

non-NoV sequenceswhich couldnot bematchedwith any

knownsequenceusingBLAST.

ThoughbothsamplescontainedNoVGII.4,the

predomi-nantstrainsaspreferentiallyamplifiedbyPCRsweredifferent

as evident from nucleotide differences in their RdRP gene

sequences and reflectedin phylogenetic clustering (Fig. 2).

In the tree, prototype sequence from a NoV GII obtained

from GenBank(accession numberX86557)and anoutgroup

sequencefromaNoVGI(AF093797)wereincluded.Prototype forNoVGII.4includedinthetreewastheSydney2012 vari-ant(accessionnumberJX459907)whichinterestinglycaused highincidenceofNoVoutbreaksintheUKduring2012.Both theNoVGII.4variantsfromSwanseagroupedcloselywiththe

2012NoVGII.4humanstrains, includingthe“Sydney2012”

Fig.1–RepresentativegelelectrophoresisofsecondroundPCRproductson1.5%agarosegels,forNoVGI(PCR446)andNoV GII(PCR444)frommusselsamples1and2.(A)Musselsample1PCR.Lane1:HyperladderIV(Bioline,UK);Lane3:Negative controlforNoVGII-specificPCR(PCRNos.443,444;nuclease-freewaterastemplateforbothPCRs);ProductforPCRno.444 wasrunongel,Lane5:NoVGIIPCRproduct(237bp);Lane7:PositivecontrolforPCRinhibitorsinmussels(147bp).(B) Musselsample2PCR.Lane1:HyperladderIV;Lane2:NoVGIPCRproduct(188bp);Lane3:NoVGIIPCRproduct(237bp).

(4)

FR669099 NoV GII Luxem 2009 FR669098 NoV GII Luxem 2009 HM635123 Hu GII 2 Korea 2009 Sample 3-Mussels 9-12 (GII.2 UK 2013) EU085490 Hu GII 2 Sweden 2004 Mussels X81879 GII 2-Msham-GBR95 GQ845370.2 Hu GII 12 StGeorge 2008 AU

JX459907 Hu GII 4 Sydney 2012 Sample 1-Mussels 1-4 (GII.4 UK 2013a)

Sample 2-Mussels 5-8 (GII.4 UK 2013b) KC688702 NV carrot salad 2012 Germany KC517362 Hu GII 4 2012 TW KF055286 Hu GII 4 Huzhou 2012 CHN KC709613 Hu GII 4 PKUPH 63 2012 CHN KC119508 Hu GII 4 2012 Spain

JQ613573 Hu GII 4 2010 AUS X86557 Hu GII 4-Lsdale-GBR-2005 X76716 NoV II 4 UK 1994

AF093797 NoV I 6 Germany 1997

75 79 85 73 92 8 58 54 19 24 95 77 67 36 54 0.5

Fig.2–PhylogeneticanalysisofthenorovirusRNA-dependentRNApolymerasegene(partial)ofseveralNoVgenogroups andgenotypes.NoVsequences,retrievedfromGenBankforcomparingwithourNoVstrainsinthemusselsareidentified bytheirGenBankaccessionnumbersonthefigure.Thescalebarindicatesgeneticdistanceintermsofnucleotide substitution/site/year.

variantsasdetectedearlier.24Themostinterestingfindingof

thisstudyisthefactthatNovGII.4Sydneyvariantswerefound eveninapilotscaleofsampleswhichadvocatesforthehigh prevalenceofthesepathogenicgenotypesinthemusselsof UKcoastalwaters.

Discussion

NoVs are most common cause ofoutbreaks of food-borne

illnesses and pose serious health risks to humans. In

the present small-scale study, mussel samples obtained

from seawater near Swansea were found to contain

two GII.4 variants. In February 2012, four wards were

closed in a nearby public hospital due to NoV outbreak

(http://www.bbc.com/news/uk-wales-south-west-wales-17110220

accessed on 14.10.2015). However,if the GII.4virus strains identified in the mussels were genetically identical to the NoVstrainsresponsiblefortheSwanseaoutbreaks,itwould demonstratethatthesevirusesprobablysurvivethesewage

treatment process and concentratein mussels. This could

notbeanalyzed inthe present study asno sequence data

ontheoutbreakofNoVstrainsfromSwanseain2012were

availableinthe public domain.In this context,it isworth mentioningthatthemostcommonlydetectedGII.4strainin thehealthcaresettingsinUKintheseason(2013–2015)was

Sydney2012(PHEMonthlyNationalNorovirusandRotavirus

Report, 14 April, 2016).33 NoV capsid PCRs were negative

whichcouldhaveresultedfromprimermismatchascapsid

proteinsareexposedtohigherlevelofimmunepressureand

therefore, immune selection compared to more conserved

non-structural proteins like virus RNA-dependent RNA

polymerase.Consequently,thecapsidgenesaremoreprone

tohigherratesofmutation.Ashumansaremostlyinfected bythe GIIstrains, the present work indicatesthe needfor a larger study of surveillance of enteric viruses (e.g. NoV, HAVvirusandHEV,rotavirusesandothers)thatcontaminate

coastal waters of the UK and become bio-accumulated in

mussels,clamsandoysters34confirmingtheirroleasafood

chainsourceofinfection.

NoVGIandGIIhavebeendetectedinoystersamples har-vestedfrombaysandestuariesworldwide35,36andalsofrom

humansamples.25However,thisisthefirstreport,tothebest

ofourknowledge,onNoVGII.4Sydney2012variantdetectedin bluemusselscollectedfromUKcoastalwaters.Itsuggeststhat choosingnorovirusesasaparameterwouldbeworthyenough ifviraltestingofmusselsisintroducedonaroutinebasis.It wasalsointerestingtonotethatnorovirusishighlydetectable

evenin asmall scalesampling ofmusselsduring summer

months,suggestingthepossibleprevalenceofpathogenicNoV strainscontaminatingUKcoastalwatersthroughouttheyear. IthadbeenreportedearlierthatNoVoutbreaksaremore likelytooccurduringwinter4ascoldwatertemperaturesand

reducedultravioletlightincreasetheirsurvival.37Thepresent

workdetectedNoVstoagreatextenteveninsummermonths, soitmaybeproposedthatmusselsactasreservoirstoretain andshelterthevirusesroundtheyearsothattheycan con-tributetothefluxofviableNoVscontaminationofseawaters duringwinterandpotentiategreaterspreadtocausesevere outbreaksofNoVinfectionsduringthewintermonths.

Onelimitationofthepresentworkwasthatthesamplesize wasnotlargebutstillcomparabletothatreportedearlier.28

Despitepilotlevelsamplesize,theinterestingandimportant observationwasthatdifferentpathogenicNOVGII,including

(5)

GII.4Sydneyvariants(as evidentfrom sequence variations intheRdRpgene)couldbedetectedfrompotentiallyallthe bluemusselscollected.Thissuggestssubstantial

environmen-talcontaminationwhichperhapsexplainswhySydney2012

variantwasisolatedfrommostUKoutbreaksduring2013–15. OnepossibleexplanationfortheclusteringoftheGII.4 Syd-neyvariantsofNoVsfrommusselswithNoVsofChineseand Taiwaneseorigincouldbethatthemusselcollectionsitesin

the present study were places whereyear-round maritime

activitiestakeplace andcoastal watercontaminationfrom shipsandvesselsfromfarawayplacescouldnotberuledout. SurveillanceandcontrolofNoVoutbreaksrelatedtomussel andothershellfishconsumptionisthereforecrucialto pre-ventspreadofinfectioninthepopulation.Webelievethatthis workwillbeanimportantaddendumtotheongoingresearch inNoVepidemiologyintheUK.38–40

Conflicts

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.All authorshaveagreedtothefinalversionofthemanuscript.

Acknowledgements

Thefundingforthisstudywasfrom theSchoolofLife

Sci-ences,University ofLincoln and Students into WorkGrant

(awardedtoRDforRS),SocietyforAppliedMicrobiology,UK.

WethankAngelaMurtaghandDrRossWilliams,Schoolof

LifeSciences,UniversityofLincolnforcollectingthemussel samples.

r

e

f

e

r

e

n

c

e

s

1.GoblickGN,AnbarchianJM,WoodsJ,BurkhardtW,CalciK.

Evaluatingthedilutionofwastewatertreatmentplant

effluentandviralimpactsonshellfishgrowingareasin

MobileBay,Alabama.JShellfishRes.2011;30:979–987.

2.FutchJC,GriffinDW,BanksK,LippEK.Evaluationofsewage

sourceandfateonsoutheastFloridacoastalreefs.MarPollut

Bull.2011;62:2308–2316.

3.MøhlenbergF,RiisgårdHU.Efficiencyofparticleretentionin

13speciesofsuspensionfeedingbivalves.Ophelia.

1978;17:239–246.

4.WangJ,DengZ.Detectionandforecastingofoyster

norovirusoutbreaks:recentadvancesandfuture

perspectives.MarEnvironRes.2012;80:62–69.

5.CranfordPJ,WardJE,ShumwaySE.Bivalvefilterfeeding:

variabilityandlimitsoftheaquaculturebiofilter.In:

ShumwaySE,ed.ShellfishAquacultureandtheEnvironment.

Oxford:Wiley-Blackwell;2011.

6.RoslevP,BukhA,IversenL,SonderboH,IversenN.

Applicationofmusselsasbiosamplersforcharacterization

offaecalpollutionincoastalrecreationalwaters.WaterSci

Technol.2010;62:586–593.

7.NenonenNP,HannounC,HoralP,HernrothB,BergstromT.

Tracingofnorovirusoutbreakstrainsinmusselscollected

nearsewageeffluents.ApplEnvironMicrobiol.

2008;74:2544–2549.

8.BokK,GreenKY.Norovirusgastroenteritisin

immunocompromisedpatients.NEnglJMed.

2012;367:2126–2132.

9.GaoY,JinM,CongX,etal.Clinicalandmolecular

epidemiologicanalysesofnorovirus-associatedsporadic

gastroenteritisinadultsfromBeijing,China.JMedVirol.

2011;83:1078–1085.

10.LopmanB,ZambonM,BrownDW.Theevolutionof

norovirus,the“gastricflu”.PLoSMed.2008;

5:e42.

11.BullRA,WhitePA.MechanismsofGII.4norovirusevolution.

TrendsMicrobiol.2011;19:233–240.

12.PatelMM,WiddowsonMA,GlassRI,AkazawaK,VinjéJ,

ParasharUD.Systematicliteraturereviewofroleof

norovirusesinsporadicgastroenteritis.EmergInfectDis.

2008;14:1224–1231.

13.BartschS,LopmanB,HallA,ParasharUD,LeeBY.The

potentialeconomicvalueofahumannorovirusvaccinefor

theUnitedStates.Vaccine.2012;30:7097–7104.

14.LopmanB,AdakG,ReacherM.Twoepidemiologicpatterns

ofnorovirusoutbreaks:surveillanceinEnglandandWales,

1992–2000.EmergInfectDis.2003;9:71–77.

15.LopmanB,ReacherM,VipondIB,etal.Epidemiologyand

costofnosocomialgastroenteritis,Avon,England,

2002–2003.EmergInfectDis.2004;10:

1827–1834.

16.ButotS,LeGuyaderFS,KrolJ,PutallazT,AmorosoR,Sánchez

G.Evaluationofvariousreal-timeRT-PCRassaysforthe

detectionandquantitationofhumannorovirus.JVirol

Methods.2010;167:90–94.

17.PatelMM,HallAJ,VinjeJ,ParasharUD.Noroviruses:a

comprehensivereview.JClinVirol.2009;44:1–8.

18.GreenKY.Caliciviridae:thenoroviruses.In:KnipeDM,

HowleyPM,CohenJL,eds.FieldsVirology.Philadelphia:

LippincottWilliams&Wilkins;2013:582–608.

19.FankhauserRL,MonroeSS,NoelJS,etal.Epidemiologicand

moleculartrendsof“Norwalk-likeviruses”associatedwith

outbreaksofgastroenteritisintheUnitedStates.JInfectDis.

2002;186:1–7.

20.LopmanB,ArmstrongB,AtchisonC,GrayJJ.Host,weather

andvirologicalfactorsdrivenorovirusepidemiology:

time-seriesanalysisoflaboratorysurveillancedatain

EnglandandWales.PLoSONE.2009;4:e6671.

21.BullRA,EdenJS,RawlinsonWD,WhitePA.Rapidevolution

ofpandemicnorovirusesoftheGII.4lineage.PLoSPathog.

2010;6:e1000831.

22.YangY,XiaM,TanM,etal.Geneticandphenotypic

characterizationofGII-4norovirusesthatcirculatedduring

1987to2008.JVirol.2010;84:9595–9607.

23.BennettS,MacLeanA,MillerRS,AitkenC,GunsonRN. IncreasednorovirusactivityinScotlandin2012isassociated withtheemergenceofanewnorovirusGII.4variant.

EuroSurveill.2013.http://www.eurosurveillance.org/

ViewArticle.aspx?ArticleId=20349.

24.vanBeekJ,Ambert-BalayK,BotteldoornN,etal.Indications forworldwideincreasednorovirusactivityassociatedwith emergenceofanewvariantofgenotypeII.4,late2012.Euro Surveill.2013.http://www.eurosurveillance.org/

ViewArticle.aspx?ArticleId=20345.

25.SabriaA,PintóRM,BoschaA,etal.Molecularandclinical

epidemiologyofnorovirusoutbreaksinSpainduringthe

emergenceofGII.42012variant.JClinVirol.2014;60:96–104.

26.SkraberS,LangletJ,KremerJR,etal.Concentrationand

diversityofNorovirusesdetectedinLuxembourg

wastewatersin2008–2009.ApplEnvironMicrobiol.

2011;77:5566–5568.

27.JothikumarN,LowtherJ,HenshilwoodK,LeesDN,HillVR,

VinjéJ.Rapidandsensitivedetectionofnorovirusesbyusing

TaqMan-basedone-stepreversetranscription-PCRassays

andapplicationtonaturallycontaminatedshellfishsamples.

(6)

28.LaRosaG,FratiniM,VennarucciSV,GuercioA,PurpariG,

MuscilloM.GIVnorovirusesandotherentericvirusesin

bivalves:apreliminarystudy.NewMicrobiol.2012;35:27–34.

29.LaRosaG,FontanaS,DiGraziaA,IaconelliM,PourshabanM,

MuscilloM.Molecularidentificationandgeneticanalysisof

norovirusgenogroupsIandIIinwaterenvironments:

comparativeanalysisofdifferentreversetranscription-PCR

assays.ApplEnvironMicrobiol.2007;73:4152–4161.

30.KitajimaM,OkaT,HaramotoE,TakedaN,KatayamaK,

KatayamaH.Seasonaldistributionandgeneticdiversityin

genogroupsI,IIandIVnorovirusesintheTamagawaRiver,

Japan.EnvironSciTechnol.2010;44:7116–7122.

31.LaRosaG,IaconelliM,PourshabanM,FratiniM,MuscilloM.

Moleculardetectionandgeneticdiversityofnorovirus

genogroupIV:ayear-longmonitoringofsewagethroughout

Italy.ArchVirol.2010;155:589–593.

32.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

MolecularEvolutionaryGeneticsAnalysisVersion6.0.Mol

BiolEvol.2013;30:2725–2729.

33.PHEMonthlyNationalNorovirusandRotavirusReport,14 April2016.https://www.gov.uk/government/uploads/

system/uploads/attachmentdata/file/516657/Norovirus

update2016week13.pdf.

34.LowtherJA,GustarNE,PowellAL,HartnellRE,LeesDN.

Two-yearsystematicstudytoassessnorovirus

contaminationinoystersfromcommercialharvestingareas

intheUK.ApplEnvironMicrobiol.2012;78:5812–5817.

35.ChengPK,WongDK,ChungTW,LimWW.Norovirus

contaminationfoundinoystersworldwide.JMedVirol.

2005;76:593–597.

36.GallimoreCI,CheesbroughJS,LamdenK,BinghamC,GrayJJ.

Multiplenorovirusgenotypescharacterisedfroman

oyster-associatedoutbreakofgastroenteritis.IntJFood

Microbiol.2005;103:323–330.

37.WestrellT,DuschV,EthelbergS,etal.Norovirusoutbreaks linkedtooysterconsumptionintheUnitedKingdom, Norway,France,SwedenandDenmark.EuroSurveill.

2010:19524.http://www.eurosurveillance.org/ViewArticle.

aspx?ArticleId=19524.

38.HarrisJP,AdakGK,O’BrienSJ.Tocloseornottoclose?

Analysisof4year’sdatafromnationalsurveillanceof

norovirusoutbreaksinhospitalsinEngland.BMJOpen.

2014;4:e003919.

39.BrownJR,ShahD,BreuerJ.Viralgastrointestinalinfections

andnorovirusgenotypesinapaediatricUKhospital,

2014–2015.JClinVirol.2016;84:1–6.

40.O’BrienSJ,DonaldsonAL,Iturriza-GomaraM,TamCC.

Age-specificincidenceratesforNorovirusinthecommunity

andpresentingtoprimaryhealthcarefacilitiesintheUnited

Referências

Documentos relacionados

Em geral, os principais fatores restritivos dos solos estão relacionados com a pouca profundidade efetiva (Neossolos Litólicos e Planossolos), relevo ondulado a

This study was conducted to evaluate the ability of Pediococcus acidilactici HA-6111-2, a PA-1 bacteriocin- producing lactic acid bacterium (LAB), isolated from ‘‘Alheira” to inhibit

See, for example, Shiratsuka (1997) who calculates Japanese trimmed inflation using both annual and monthly (seasonally adjusted) inflation data, and discusses their

Pearl mussels ( Margaritifera marocana ) in Morocco: Conservation status of the rarest bivalve in African fresh waters. Changing perspectives on pearly mussels, North America 0 s

There- fore, the aim of this study was to evaluate efficiency of two virus concentration methods used for detecting HAdV, RV-A, norovirus genogroup II (NoV GII) and HAV in sew-

The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the

R ESUMO : Materiais antibacterianos para aplicação na purificação de água foram produzidos a partir de carvão ativado suportados com nanopartículas (NPs) de prata

A adoção desses procedimentos simples para doação de roupas facilita a triagem e o encaminhamento das mesmas, seja para instituições, brechós ou projetos sociais que as