• Nenhum resultado encontrado

[1]

Nakajima M, Yamada S, Miyajima M, et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir 2021;61(2):63-97. Available at doi:

10.2176/nmc.st.2020-0292.

[2]

Kobylecki C. Update on the diagnosis and management of Parkinson's disease. Clin Med 2020;20(4):393-398. Available at doi: 10.7861/clinmed.2020-0220.

[3]

McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017;89(1):88- 100. Available at doi: 10.1212/WNL.0000000000004058.

[4]

Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020;26(12):1230-1240. Available at doi: 10.1111/cns.13526.

[5]

Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol 2009;8(12):1150-7. Available at doi: 10.1016/S1474-4422(09)70238-8.

[6]

McFarland NR. Diagnostic Approach to Atypical Parkinsonian Syndromes. Continuum (Minneap Minn) 2016; 22(4 Movement Disorders):1117-1142. Available at doi:

10.1212/CON.0000000000000348 [7]

Levin J, Kurz A, Arzberger T, Giese A, Höglinger GU. The Differential Diagnosis and

Treatment of Atypical Parkinsonism. Dtsch Arztebl Int 2016;113(5):61-69. Available at doi:

10.3238/arztebl.2016.0061.

[8]

Malm J, Graff-Radford NR, Ishikawa M, et al. Influence of comorbidities in idiopathic normal pressure hydrocephalus – research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 2013;10(1):22. Available at doi:

10.1186/2045-8118-10-22.

[9]

Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid

hydrodynamics. J Neurol Sci 1965;2(4):307-27. Available at doi: 10.1016/0022- 510x(65)90016-x.

Adams RD, Fisher C, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult

hydrocephalus with “normal” cerebrospinal fluid pressure. A treatable syndrome. N Engl J Med 1965;273:117-26. Available at doi: 10.1056/NEJM196507152730301.

[10]

Zaccaria V, Bacigalupo I, Gervasi G, et al. A systematic review on the epidemiology of normal pressure hydrocephalus. Acta Neurol Scand 2020;141(2):101-114. Available at doi: 10.1111/ane.13182.

[11]

Thavarajasingam SG, El-Khatib M, Rea M, et al. Clinical predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Acta Neurochir 2021;163(10):2641-2672. Available at doi:

10.1007/s00701-021-04922-z [12]

Junkkari A, Luikku AJ, Danner N, et al. The Kuopio idiopathic normal pressure hydrocephalus protocol: initial outcome of 175 patients. Fluids Barriers CNS 2019 25;16(1):21. Available at doi: 10.1186/s12987-019-0142-9.

[13]

Koivisto AM, Kurki MI, Alafuzoff I, et al. High Risk of Dementia in Ventricular Enlargement with Normal Pressure Hydrocephalus Related Symptoms. J Alzheimers Dis

2016;52(2):497-507. Available at doi: 10.3233/JAD-150909 [14]

Koivisto AM, Alafuzoff I, Savolainen S, et al. Poor cognitive outcome in shunt-responsive idiopathic normal pressure hydrocephalus. Neurosurgery 2013;72(1):1-8;discussion 8.

Available at doi: 10.1227/NEU.0b013e31827414b [15]

Leinonen V, Koivisto AM, Savolainen, et al. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 2012 Feb;38(1):72-86. Available at doi: 10.1111/j.1365-2990.2011.01195.x.

[16]

Silverberg GD, Mayo M, Thomas S, Rubenstein E, McGuire D. Alzheimer's disease,

normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a

hypothesis. Lancet Neurol 2003;2(8):506-11. Available at doi: 10.1016/s1474- 4422(03)00487-3.

[17]

Ray B, Reyes PF, Lahiria DK. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: Change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Aβ) peptide and phospho-tau. J Psychiatr Res 2011;45(4):539-47. Available at doi:

10.1016/j.jpsychires.2010.07.011

Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: Pathophysiology and diagnosis by CSF biomarkers. Neurology 2013;80(15):1385-92. Available at doi: 10.1212/WNL.0b013e31828c2fda.

[18]

Hughes AG, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55(3): 181-184. Available at doi: 10.1136/jnnp.55.3.181

[19]

Srivanitchapoom P, Pitakpatapee Y, Suengtaworn A. Parkinsonian syndromes: A review.

Neurol India 2018;66(Supplement):S15-S25. Available at doi: 10.4103/0028-3886.226459 [20]

Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm 2017;124(8):901-905. Available at doi: 10.1007/s00702-017-1686-y

[21]

Postuma R, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease.

Mov Disord 2015;30(12):1591-601. Available at doi: 10.1002/mds.26424.

[22]

National Collaborating Centre for Chronic Conditions (UK). Parkinson's Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care.

London: Royal College of Physicians (UK) 2006 (NICE Clinical Guidelines, No. 35).

Available at: https://www.ncbi.nlm.nih.gov/books/NBK48513/

[23]

Molde K, Söderström L, Laurell K. Parkinsonian symptoms in normal pressure

hydrocephalus: a population-based study. J Neurol 2017;264(10):2141-2148. Available at doi: 10.1007/s00415-017-8598-5.

[24]

Krauss JK, Regel JP, Droste DW, et al. Movement disorders in adult hydrocephalus. Mov Disord 1997;12:53-60. Available at doi: 10.1002/mds.870120110.

[25]

Akiguchi I, Ishii M, Watanabe Y, et al. Shunt-responsive parkinsonism and reversible white matter lesions in patients with idiopathic NPH. J Neurol 2008;255(9):1392-9.

Available at doi: 10.1007/s00415-008-0928-1.

[26]

Pozzi NG, Brumberg J, Todisco M, et al. Striatal Dopamine Deficit and Motor Impairment in Idiopathic Normal Pressure Hydrocephalus. Mov Disord 2021;36(1):124-132. Available at doi: 10.1002/mds.28366.

[27]

Broggi M, Redaelli V, Tringali G, et al. Normal Pressure Hydrocephalus and Parkinsonism:

Preliminary Data on Neurosurgical and Neurological Treatment. World Neurosurg 2016;90:348-356. Available at doi: 10.1016/j.wneu.2016.03.004.

[28]

Todisco M, Zangaglia R, Minafra B, et al. Clinical Outcome and Striatal Dopaminergic Function After Shunt Surgery in Patients With Idiopathic Normal Pressure

Hydrocephalus. Neurology 2021;96(23):e2861-e2873. Available at doi:

10.1212/WNL.0000000000012064.

[29]

Allali G, Garibotto V, Assal F. Parkinsonism Differentiates Idiopathic Normal Pressure Hydrocephalus from Its Mimics. J Alzheimers Dis 2016;54(1):123-7. Available at doi:

10.3233/JAD-160428.

Allali G, Garibotto V, Mainta IC, Nigastro N, Assal F. Dopaminergic imaging separates normal pressure hydrocephalus from its mimics. J Neurol 2018 Oct;265(10):2434-2441.

Available at doi: 10.1007/s00415-018-9029-y.

[30]

Sakurai A, Tsunemi T, Ishiguro Y, et al. Comorbid alpha synucleinopathies in idiopathic normal pressure hydrocephalus. J Neurol 2022;269(4):2022-2029. Available at doi:

10.1007/s00415-021-10778-1.

[31]

Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018;141(7):2181-2193. Available at doi: 10.1093/brain/awy146

[32]

Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in

neurodegenerative diseases. Acta Neuropathol 2017;134(2):187-205. Available at doi:

10.1007/s00401-017-1709-7.

[33]

Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-

Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.

Alzheimers Dement 2011;7(3):270-9. Available at doi: 10.1016/j.jalz.2011.03.008.

[34]

McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to

Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7(3):263-9. Available at doi: 10.1016/j.jalz.2011.03.005.

[35]

Herukka SK, Simonsen AH, Andreasen N, et al. Recommendations for cerebrospinal fluid Alzheimer's disease biomarkers in the diagnostic evaluation of mild cognitive

impairment. Alzheimers Dement 2017;13(3):285-295. Available at doi:

10.1016/j.jalz.2016.09.009.

[36]

Simonsen AH, Herukka SK, Andreasen N, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement 2017;13(3):274-284.

Available at doi: 10.1016/j.jalz.2016.09.008.

[37]

Farotti L, Sepe FN, Toja A, Rinaldi R, Parnetti L. Differential diagnosis between

Alzheimer's disease and other dementias: Role of cerebrospinal fluid biomarkers. Clin Biochem 2019;72:24-29. Available at doi: 10.1016/j.clinbiochem.2019.04.011.

[38]

Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol 2016;15:673- 84. Available at doi: 10.1016/S1474-4422(16)00070-3

[39]

Schirinzi T, Sancesario GM, Di Lazzaro G, et al. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm 2018;125(4):673-679.

Available at doi: 10.1007/s00702-018-1842-z.

[40]

Chen Z, Liu C, Zhang J, et al. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS 2017;14(1):13. Available at doi: 10.1186/s12987- 017-0062-5.

[41]

Nakajima M, Kawamura K, Akiba C, et al. Differentiating comorbidities and predicting prognosis in idiopathic normal pressure hydrocephalus using cerebrospinal fluid biomarkers. Croat Med J 202131;62(4):387-398. Available at doi:

10.3325/cmj.2021.62.387.

[42]

Paolini Paoletti F, Gaetani L, Parnetti L. Molecular profiling in Parkinsonian syndromes:

CSF biomarkers. Clin Chim Acta 2020;506:55-66. Available at doi:

10.1016/j.cca.2020.03.002.

[43]

Farotti L, Paolini Paoletti F, Simoni S, Parnetti L. Unraveling Pathophysiological

Mechanisms of Parkinson’s Disease: Contribution of CSF Biomarkers. Biomark Insights 2020;15:1177271920964077. Available at doi: 10.1177/1177271920964077.

[44]

Andersen A, Binzer M, Stenager E, Gramsbergen JB. Cerebrospinal fluid biomarkers for Parkinson’s disease – a systematic review. Acta Neurol Scand 2017;135(1):34-56.

Available at doi: 10.1111/ane.12590.

[45]

Haass C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1993;75(6):1039-42. Available at doi: 10.1016/0092-

8674(93)90312-e.

[46]

Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006;27:570-575. Available at

doi:10.1016/j.neurobiolaging.2005.04.017.

[47]

Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2014;124(5):307-21. Available at doi:

10.3109/00207454.2013.833510.

[48]

Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer's Disease.

Neurotherapeutics 2021 Nov 2. Available at doi: 10.1007/s13311-021-01146-y.

[49]

Hamilton R, Patel S, Lee EB, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol 2010;68(4):535- 40. Available at doi: 10.1002/ana.22015.

[50]

Yasar S, Jusue-Torres I, Lu J, et al. Alzheimer's disease pathology and shunt surgery

outcome in normal pressure hydrocephalus. PLoS One 2017;12(8):e0182288. Available at doi: 10.1371/journal.pone.0182288.

[51]

Leinonen V, Koivisto AM, Savolainen S, et al. Amyloid and tau proteins in cortical brain biopsy and Alzheimer's disease. Ann Neurol 2010;68(4):446-53. Available at doi:

10.1002/ana.22100.

[52]

Leinonen V, Koivisto AM, Alafuzoff I, et al. Cortical brain biopsy in long-term prognostication of 468 patients with possible normal pressure hydrocephalus.

Neurodegener Dis 2012;10(1-4):166-9. Available at doi: 10.1159/000335155.

[53]

Pomeraniec IJ, Bond AE, Lopes MB, Jane JA Sr. Concurrent Alzheimer's pathology in

patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes. J Neurosurg 2016;124(2):382-8.

Available at doi: 10.3171/2015.2.JNS142318.

[54]

Pyykkö OT, Lumela M, Rummukainen J, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One

2014;9(3):e91974. Available at doi: 10.1371/journal.pone.0091974.

[55]

Seppälä TT, Nerg O, Koivisto AM, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 2012;78(20):1568-75. Available at doi:

10.1212/WNL.0b013e3182563bd0.

[56]

Elobeid A, Laurell K, Cesarini KG, Alafuzoff I. Correlations between mini-mental state examination score, cerebrospinal fluid biomarkers, and pathology observed in brain biopsies of patients with normal-pressure hydrocephalus. J Neuropathol Exp Neurol 2015;74(5):470-9. Available at doi: 10.1097/NEN.0000000000000191.

[57]

Jeppsson A, Wikkelsö C, Blennow K, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics .J Neurol Neurosurg Psychiatry

2019;90(10):1117-1123. Available at doi: 10.1136/jnnp-2019-320826.

[58]

Abu-Rumeileh S, Giannini G, Polischi B, et al. Revisiting the Cerebrospinal Fluid

Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus: The Bologna Pro-Hydro Study. J Alzheimers Dis 2019;68(2):723-733. Available at doi: 10.3233/JAD-181012.

[59]

Santangelo R, Cecchetti G, Bernasconi MP, et al. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus:

Analogies and Differences with Alzheimer's Disease. J Alzheimers Dis 2017;60(1):183-200.

Available at doi: 10.3233/JAD-170186.

[60]

Nakajima M, Miyajima M, Ogino I, et al. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2015;357(1-2):88-95. Available at doi:

10.1016/j.jns.2015.07.001.

[61]

Agren-Wilsson A, Lekman A, Sjöberg W, et al. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2007;116(5):333-9.

Available at doi: 10.1111/j.1600-0404.2007.00890.x.

[62]

Tarnaris A, Toma AK, Chapman MD, et al. Use of cerebrospinal fluid amyloid-β and total tau protein to predict favorable surgical outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurosurg 2011;115(1):145-50. Available at doi:

10.3171/2011.2.JNS101316.

[63]

Craven CL, Baudracco I, Zetterberg H, et al. The predictive value of T-tau and AB1-42 levels in idiopathic normal pressure hydrocephalus. Acta Neurochir 2017;159(12):2293- 2300. Available at doi: 10.1007/s00701-017-3314-x.

[64]

Jeppsson A, Hölttä M, Zetterberg H, et al. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016;13(1):13. Available at doi:

10.1186/s12987-016-0037-y.

[65]

Colom-Cadena M, Grau-Rivera O, Planellas L, et al. Regional Overlap of Pathologies in Lewy Body Disorders. J Neuropathol Exp Neurol 2017;76(3):216-224. Available at doi:

10.1093/jnen/nlx002.

[66]

Hall S, Ohrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or Parkinsonian disorders. Arch Neurol 2012;69:1445-52. Available at doi: 10.1001/archneurol.2012.1654.

[67]

Mollenhauer B, Locascio JJ, Schulz‐Schaeffer W, et al. alpha‐Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 2011;10:230-40. Available at doi: 10.1016/S1474-4422(11)70014-X.

[68]

Parnetti L, Tiraboschi P, Lanari A, et al. Cerebrospinal fluid biomarkers in Parkinson's disease with dementia and dementia with Lewy bodies. Biol Psychiatry 2008;64:850-5.

Available at doi: 10.1016/j.biopsych.2008.02.016.

[69]

Kaerst L, Kuhlmann A, Wedekind B, et al. Using cerebrospinal fluid marker profiles in clinical diagnosis of dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. J Alzheimers Dis 2014;38(1):63-73. Available at doi: 10.3233/JAD-130995.

[70]

Magdalinou NK, Paterson RW, Schott JM, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015; 86(11): 1240-1247. Available at doi: 10.1136/jnnp-2014- 309562

[71]

Constantinides VC, Paraskevas GP, Emmanouilidou E, et al. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J Neurol Sci 2017;382:91-95. Available at doi: 10.1016/j.jns.2017.09.039. Epub 2017 Sep 28.

[72]

Bäckström DC, Eriksson Domellöf M, Linder J, et al. Cerebrospinal Fluid Patterns and the Risk of Future Dementia in Early, Incident Parkinson Disease. JAMA Neurol 2015

Oct;72(10):1175-82. Available at doi: 10.1001/jamaneurol.2015.1449.

[73]

Montine TJ, Shi M, Quinn JF, et al. CSF Abeta(42) and tau in Parkinson's disease with cognitive impairment. Mov Disord 2010;25:2682-5. Available at doi: 10.1002/mds.23287.

[74]

Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid beta 1–42 predicts cognitive decline in Parkinson disease. Neurology 2010;75:1055-61. Available at doi:

10.1212/WNL.0b013e3181f39a78.

[75]

Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed

Parkinson’s disease: a cohort study. Lancet Neurol 2017;16(1):66-75. Available at doi:

10.1016/S1474-4422(16)30328-3.

[76]

Hall S, Surova Y, Öhrfelt A, et al. CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015;84(1):57-63. Available at doi: 10.1212/WNL.0000000000001098.

[77]

Kang JH, Mollenhauer B, Coffey CS, et al. CSF biomarkers associated with disease

heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol 2016;131(6):935-949. Available at doi: 10.1007/s00401-016- 1552-2.

[78]

Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol 1986;103(6 Pt 2):2739-46. Available at doi: 10.1083/jcb.103.6.2739.

[79]

Brandt R, Léger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J Cell Biol 1995;131:1327-40. Available at doi:

10.1083/jcb.131.5.1327.

[80]

Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 2009;118(1):53-69. Available at doi:

10.1007/s00401-009-0486-3.

[81]

Nakajima M, Miyajima M, Ogino I, et al. Preoperative Phosphorylated Tau Concentration in the Cerebrospinal Fluid Can Predict Cognitive Function Three Years after Shunt

Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2018;66(1):319-331. Available at doi: 10.3233/JAD-180557.

[82]

Maroteaux L, Campanelli JH, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988;8(8):2804-15. Available at doi: 10.1523/JNEUROSCI.08-08-02804.1988.

[83]

Perez RG, Waymire JC, Lin E, et al. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 2002;22(8):3090-9. Available at doi:

10.1523/JNEUROSCI.22-08-03090.2002.

[84]

Wersinger C, Sidhu A. Attenuation of dopamine transporter activity by alpha-synuclein.

Neurosci Lett 2003;340(3):189-92. Available at doi: 10.1016/s0304-3940(03)00097-1.

[85]

Guo JT, Chen AQ, Kong Q, et al. Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells. Cell Mol Neurobiol 2008;28:35-47.

Available at doi: 10.1007/s10571-007-9227-0.

[86]

Nemani VM, Lu W, Berge V, et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis.

Neuron 2010;65(1):66-79. Available at doi: 10.1016/j.neuron.2009.12.023.

[87]

Burré J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010;329(5999):1663-7. Available at doi:

10.1126/science.1195227.

[88]

Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 2006;313(5785):324-8. Available at doi: 10.1126/science.1129462.

[89]

Scott DA, Roy S. α-Synuclein Inhibits Intersynaptic Vesicle Mobility and Maintains Recycling-Pool Homeostasis. J Neurosci 2012;32(30):10129-10135. Available at doi:

10.1523/JNEUROSCI.0535-12.2012.

[90]

Quilty MC, King AE, Gai WP, et al. Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol

2006;199(2):249-56. Available at doi: 10.1016/j.expneurol.2005.10.018.

[91]

Pickrell AM, Huang CH, Kennedy SR, et al. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 2015 Jul;87(2):371-81. doi: 10.1016/j.neuron.2015.06.034.

[92]

Alves Da Costa C, Paitel E, Vincent B, Checler F. Alpha-synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and

implication for Parkinson's disease. J Biol Chem 2002;277(52):50980-4. Available at doi:

10.1074/jbc.M207825200.

[93]

Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of α- synuclein in neurological disorders. Lancet Neurol 2011;10(11):1015-25. Available at doi:

10.1016/S1474-4422(11)70213-7.

[94]

Adler CH, Beach TG, Zhang N, et al. Unified Staging System for Lewy Body Disorders:

Clinicopathologic Correlations and Comparison to Braak Staging. J Neuropathol Exp Neurol 2019;78(10):891-899. Available at doi: 10.1093/jnen/nlz080.

[95]

University of Eastern Finland and Kuopio University Hospital: Clinical Research Centre.

Neurosurgery: NPH and Early AD Group. Available at https://sites.uef.fi/crc/nph-and- early-ad-group/ (read 14.4.2022).

[96]

University of Eastern Finland and Kuopio University Hospital: Clinical Research Centre.

Neurology: Biomarkers for Neurodegenerative Disorders. Available at

https://sites.uef.fi/neuro/biomarkers-for-neurodegenerative-disorders/ (read 14.4.2022).

Tables and figures

Figure 1

Flowchart

Figure 2

Clinical symptoms and CSF biomarkers

a Abeta1-42

b p-tau

c t-tau

d aSyn

Table 1

Shunting status subgroups

Table 2

End-point diagnosis subgroups

Appendixes

Documentos relacionados