• Nenhum resultado encontrado

Moving Coordinate System and Euler-Savary Formula under One- Parameter Planar Homothetic Motions in Generalized Complex Number

Plane C

j

Nurten Gürses1, Salim Yüce2 and Mücahit Akbıyık3

1Faculty of Arts and Sciences, Department of Mathematics, Yildiz Technical University, Esenler, Istanbul, 34220

nbayrak@yildiz.edu.tr

2Faculty of Arts and Sciences, Department of Mathematics, Yildiz Technical University, Esenler, Istanbul, 34220

sayuce@yildiz.edu.tr

3Faculty of Arts and Sciences, Department of Mathematics, Yildiz Technical University, Esenler, Istanbul, 34220

makbiyik@yildiz.edu.tr

Abstract

In this study, we firstly give the basic notations of the generalized complex number plane (p-complex plane) Cp. Then, we introduce the one-parameter planar homothetic motions

CJ/CJ in p-complex plane CJ such that CJCp by examining the velocities, accelerations and pole points. Besides, we discuss the relations between absolute, relative, sliding velocities (accelerations) and pole curves under these motions. Moreover, three generalized complex number planes, of which two are moving and the other one is fixed, are considered and a canonical relative system for one-parameter planar homothetic motion in CJ is defined. Euler- Savary formula, which gives the relationship between the curvatures of trajectory curves, during the one-parameter homothetic motions, is obtained with the aim of this canonical relative system.

Keywords: Generalized complex number plane; One-parameter planar homothetic motion; Kinematics; Euler-Savary formula.

References

[1] M. Akar, S. Yüce and N. Kuruoğlu, One-Parameter Planar Motion in the Galilean Plane, International Electronic Journal of Geometry (IEJG), 6(1): 79-88, 2013

[2] M. Akbıyık and S. Yüce, One-Parameter Homothetic Motion on the Galilean Plane, 13th Algebraic Hyperstructures and its Applications Conference (AHA2017), İstanbul, Turkey, 2017.

[3] M. Akbıyık and S. Yüce, The Moving Coordinate System and Euler-Savary's Formula For The One Parameter Motions On Galilean (Isotropic) Plane, International Journal of Mathematical Combinatorics, 88-105, 2015.

43

16th International Geometry Symposium

July 4-7, 2018 Manisa Celal Bayar University, Manisa-TURKEY

[4] M. Akbıyık and S. Yüce, Euler Savary's Formula on Galilean Plane, 13th Algebraic Hyperstructures and its Applications Conference (AHA2017), İstanbul, Turkey, 2017.

[5] J.C. Alexander and J.H. Maddocks, On the Maneuvering of Vehicles, SIAM J. Appl. Math., 48(1): 38-52, 1988.

[6] D. Alfsmann, On families of 2N dimensional Hypercomplex Algebras suitable for digital signal Processing, Proc. EURASIP 14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, 2006.

[7] I. Aytun, Euler-Savary formula for one-parameter Lorentzian plane motion and its Lorentzian geometrical interpretation, Master Thesis, Celal Bayar University Graduate School of Natural and Applied Sciences, 2002.

[8] W. Blaschke and H. R. Müller, Ebene Kinematik, Verlag Oldenbourg, München, 1956.

[9] R. Buckley and E.V. Whitfield, The Euler-Savary Formula, The Mathematical Gazette, 33(306): 297-299, 1949.

[10] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampetti, The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers, Birkhauser Verlag, Basel, 2008.

[11] F. Catoni, R. Cannata, V. Catoni and P. Zampetti, Hyperbolic Trigonometry in two- dimensional space-time geometry, N. Cim., B 118: 475–491, 2003.

[12] F.M. Dimentberg, The Screw Calculus and Its Applications in Mechanics, Foreign Technology Division translation FTD-HT-23-1632-67, 1965.

[13] F.M. Dimentberg, The method of screws and calculus of screws applied to the theory of three dimensional mechanisms, Adv. in Mech., 1(3-4): 91-106, 1978.

[14] D.B. Dooner and M.W. Griffis, On the Spatial Euler-Savary Equations for Envelopes, J.

Mech. Design, 129(8): 865-875, 2007.

[15] A.A. Ergin, On the one-parameter Lorentzian motion, Communications Faculty of Science, University of Ankara, Series A40: 59-66, 1991.

[16] A.A. Ergin, Three Lorentzian planes moving with respect to one another and pole points, Comm. Fac. Sci.Univ. Ankara, Series A, 41: 79-84, 1992.

[17] M. Ergüt, A.P. Aydın and N. Bildik, The Geometry of the Canonical Relative System and the One-Parameter Motions in 2-dimensional Lorentzian Space, The Journal of Fırat University, 3(1): 113-122, 1988.

[18] S. Ersoy and M. Akyiğit, One-parameter homothetic motion in the hyperbolic plane and Euler-Savary formula, Adv. Appl. Clifford Algebras, 21: 297-313, 2011.

[19] H. Es, Motions and Nine Different Geometry, PhD Thesis, Ankara University Graduate School of Natural and Applied Sciences, 2003.

[20] P. Fjelstad and S.G. Gal, n-dimensional hyperbolic complex numbers, Adv. Appl. Clifford Algebr., 8(1): 47-68, 1998.

[21] P. Fjelstad and S.G. Gal, Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Adv. Appl. Clifford Algebra, 11(1): 81-107, 2001.

[22] P. Fjelstad, Extending special relativity via the perplex numbers, Amer. J. Phys., 54(5):

416-422, 1986.

[23] N. (Bayrak) Gürses and S. Yüce, One-Parameter Planar Motions in Generalized Complex Number Plane CJ, Adv. Appl. Clifford Algebras, 25: 889-903, 2015.

[24] N. (Bayrak) Gürses and S. Yüce, One-parameter planar motions in Affine Cayley-Klein planes, European Journal of Pure and Applied Mathematics, 7(3): 335-342, 2014.

[25] N. (Bayrak) Gürses and S. Yüce, On the Moving Coordinate System and Euler-Savary Formula in Affine Cayley-Klein Planes, Submitted.

44

16th International Geometry Symposium

July 4-7, 2018 Manisa Celal Bayar University, Manisa-TURKEY

[26] H. Hacisalihoğlu, On the rolling of one curve or surface upon another, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 71: 13-17, 1971.

[27] A.A. Harkin and J.B. Harkin, Geometry of generalized complex numbers, Mathematics Magazine, 77(2), 2014.

[28] G. Helzer, Special relativity with acceleration, The American Mathematical Monthly, 107(3): 219-237, 2000.

[29] T. Ikawa, Euler-Savary’s formula on Minkowski geometry, Balkan Journal of Geometry and Its Applications, 8(2): 31-36, 2003.

[30] V.V. Kisil, Geometry of Möbius Transformations: Eliptic, Parabolic and Hyperbolic Actions SL R2( ), Imperial College Press, London, 2012.

[31] F. Klein, Über die sogenante nicht-Euklidische Geometrie, Gesammelte Mathematische Abhandlungen, 254-305, 1921.

[32] F. Klein, Vorlesungen Über nicht-Euklidische Geometrie, Springer, Berlin, 1928.

[33] N. Kuruoğlu, A. Tutar and M. Düldül, On the 1-parameter homothetic motions on the complex plane, International Journal of Applied Mathematics, 6(4): 439-447, 2001.

[34] N. Kuruoğlu, A. Tutar and M. Düldül, On the moving coordinate system on the complex plane and pole points, Bulletin of Pure and Applied Sciences, 20E(1): 1-6, 2001.

[35] M. Masal, S. Ersoy and M. A. Güngör, Euler-Savary formula for the homothetic motion in the complex plane C, Ain Shams Engineering Journal, 5: 305-308, 2014.

[36] M. Masal, M. Tosun and A.Z. Pirdal, Euler Savary formula for the one parameter motions in the complex plane C, International Journal of Physical Sciences, 5(1): 006-010, 2010.

[37] H.R. Müller, Verallgemeinerung einer formel von Steiner, Abh. d. Brschw. Wiss. Ges. 24:

107-113, 1978.

[38] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math., 11: 71-110, 2004.

[39] O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Institut für Math. und Angew. Geometrie, Leoben, 1984.

[40] O. Röschel, Zur Kinematik der isotropen Ebene, Journal of Geometry, 21: 146-156, 1983.

[41] O. Röschel, Zur Kinematik der isotropen Ebene II, Journal of Geometry, 24: 112-122, 1985.

[42] R. Salgado, Space-Time Trigonometry, AAPT Topical Conference: Teaching General Relativity to Undergraduates, AAPT Summer Meeting, Syrauce University, NY, July 20-21, 22-26, 2006.

[43] G.N. Sandor, G.E. Arthur and E. Raghavacharyulu, Double valued solutions of the Euler- Savary equation and its counterpart in Bobillier's construction, Mechanism and Machine Theory, 20(2): 145-178,1985.

[44] G.N. Sandor, Y. Xu and T.C. Weng, A Graphical Method for Solving the Euler-Savary Equation, Mechanism and Machine Theory, 25(2): 141-147, 1990.

[45] G. Sobczyk, The hyperbolic number plane, The College Math. J., 26(4): 268-280, 1995.

[46] E. Study, Geometrie der Dynamen, Verlag Teubner, Leipzig, 1903.

[47] A. Tutar and N. Kuruoğlu, On the one-parameter homothetic motions on the Lorentzian plane, Bulletin of Pure Applied Sciences, 18E(2): 333-340, 1999.

[48] G.R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mechanism and Machine Theory 11(2): 141-156, 1976.

[49] I.M. Yaglom, A simple non-Euclidean geometry and its Physical Basis, Springer-Verlag, New York, 1979.

[50] I.M. Yaglom, Complex numbers in geometry, Academic Press, New York, 1968.

45

16th International Geometry Symposium

July 4-7, 2018 Manisa Celal Bayar University, Manisa-TURKEY

[51] S. Yüce and N. Kuruoğlu, One-parameter plane hyperbolic motions, Adv. appl. Clifford alg., 18: 279-285, 2008.

[52] S. Yüce and M. Akar, Dual Plane and Kinematics, Chiang Mai J. Sci., 41(2): 463-469, 2014.

46

16th International Geometry Symposium

July 4-7, 2018 Manisa Celal Bayar University, Manisa-TURKEY

Pythagorean Hodograph λ μ - Bezier Like Curve with Two Shape