• Nenhum resultado encontrado

Algumas fórmulas de propagação

No documento Análise em conjunta de testes cosmológicos (páginas 104-111)

Nesta sessão, são deduzidas fórmulas específicas para alguns casos mais gerais.

• Soma ou subtração de variáveis: ω = x ± y ± z . ∂ω ∂x = 1, ∂ω ∂y = ±1, ∂ω ∂z = ±1. (A.5) e assim σ2ω = σx2+ σ2y + σz2 . (A.6) Deve ser observado que as variâncias sempre se somam, mesmo no caso de subtração de variáveis.

• Relação linear: ω = ax + b .

Admitindo que a e b são constantes isentas de erro ou com erros desprezíveis, somente a variável x é considerada para o cálculo da incerteza.

dx = a . (A.7)

Substituindo na equação (A.4), obtém-se

σω2 = a2σx2 ou σω = |a|σx . (A.8) Deve ser observado que σω e σxsão quantidades positivas definidas.

No caso em que b = 0, ω = ax e a expressão (A.8) para σωpode ser simplificada dividindo-a por ω = ax:

σω ω 2 =σω x 2 ou σω ω = σxω . (A.9) • Produto ou razão de variáveis: ω = axy ou ω = ax/y .

No caso de produto de variáveis, ∂ω

∂x = ay e ∂ω

∂y = ax. (A.10)

Substituindo na expressãop (A.3) e simplificando, tem-se σω ω 2 =σx x 2 +  σy y 2 . (A.11)

Este mesmo resultado vale para o caso ω = x/y.

BIBLIOGRAFIA

[1] UNION compilation 2.1. Disponível em: <http://supernova.lbl.gov/Union/>. [2] ETTORI, S. et al. The cluster gas mass fraction as a cosmological probe: a revised

study. Astronomy & Astrophysics, v. 501, 2009.

[3] BLAKE, C. et al. The Wigglez dark energy survey: testing the cosmologi- cal model with baryon acoustic oscillations at z = 0.6. 2011. Disponível em: <arXiv:1105.2862>.

[4] EISTEIN, A. Kosmologische betrachtungen zur allgemeinen relativitätstheorie. Preussische Akad. der Wiss., Sitzungsberichte, v. 1, p. 142–152, 1917.

[5] SITTER, W. de. Einstein´s theory of gravitation and its astronomical consequences. Mon. Not. Royal. Astro. Soc., v. 78, p. 3–28, 1917.

[6] FRIEDMANN, A. Über die krümmung des raumes. Zeitschrift für Physik., v. 10, n. 1, p. 377–386, 1922.

[7] HUBBLE, E. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci., v. 15, n. 3, p. 168–173, Jul 1929.

[8] ALPHER, R. A.; BETHE, H.; GAMOW, G. The origin of chemical elements. Physical Review, v. 73, n. 7, p. 803–804, Apr 1948.

[9] PENZIAS, A.; WILSON, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal, v. 142, p. 419–421, Jul 1965.

[10] SMOOT, G. F. et al. Structure in theCOBE DMR first year maps. Astrophysical Jour-

nal, Part 2 - Letters, v. 396, n. 1, p. L1–L5, Sept. 1992.

[11] PERLMUTTER, S. et al. Measurements of omega and lambda from 42 high- redshift supernovae. Astrophysical Journal, v. 517, n. 2, p. 565–586, 1999.

[12] RIESS, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal, v. 116, n. 3, p. 1009–1038, 1998.

[13] RYDER, L. Introduction to General Relativity. 1. ed. [S.l.]: Cambridge University Press, 2009. ISBN 978-0521845632.

[14] COLES, P.; LUCCHIN, F. Cosmology - The Origin and Evolution of Cosmic Structure. 2. ed. [S.l.]: John Willey & Sons Ltd., 2002. ISBN 978-0-471-48909-2.

[15] WEINBERG, S. Cosmology. 1. ed. [S.l.]: Oxford University Press Inc., 2008. ISBN 978-0-19-852682-7.

[16] ISLAM, J. N. An Introduction to Mathematical Cosmology. 2. ed. [S.l.]: Cambridge University Press, 2001. ISBN 978-0521499736.

[17] CARROLL M., S. The cosmological constant. Living Rev. Relativity, v. 4, p. 1–56, 2001.

[18] FRIEDMANN, A. Über die möglichkeit einer welt mit konstanter negativer krüm- mung des raumes. Zeitschrift für Physik., v. 21, n. 1, p. 326–332, 1924.

[19] STRAUMANN, N. The history of the cosmological constant problem. XVIIIth IAP Colloquium: Observational and theoretical results on the accelerating universe, Paris, France., p. 326–332, Jul 2002. Disponível em: <arXiv:gr-qc/0208027>.

[20] ZEL´DOVICH, Y. B. The cosmological constant and the theory of elementary par- ticles. Soviet Physics Uspekhi, v. 11, n. 3, p. 381–393, 1968.

[21] CARROLL M., S. The cosmological constant. Annual Review of Astronomy and As- trophysics, v. 30, p. 499–542, Sept. 1992.

[22] TRODDEN, M.; CARROLL M., S. TASI Lectures: Introduction to cosmology. Contributions to the TASI-02 and TASI-03 summer schools, n. SU-GP-04/1-1, Jan. 2004. Disponível em: <arXiv:astro-ph/0401547>.

[23] THURNER, M. S.; WHITE, M. J. CDM models with a smooth component. Physical Review D, v. 56, n. 8, p. 4439–4443, Oct. 1997.

[24] CHIBA, T.; SUGIYAMA, N.; NAKAMURA, T. Observational tests of x-matter models. Mon. Not. Royal. Astron. Soc., v. 301, n. 1, p. 72–80, Nov. 1998.

[25] CALDWELL, R. R.; KAMIONKOWSKI, M.; WEINBERG, N. N. Phantom energy: Dark energy with w < −1 causes a cosmic doomsday. Physical Review Letters., v. 91, n. 7, p. 071301, Feb. 2003.

[26] LIMA, J. A. S.; CUNHA, J. V.; ALCANIZ, J. S. Constraining the dark energy with galaxy cluster x-ray data. Physical Review D., v. 68, n. 2, p. 023510, Jul. 2003.

[27] STAROBINSKY, A. A. Future and origin of our universe: Modern view. Grav.Cosmol., v. 6, p. 157–163, 2000. Disponível em: <arXiv:astro-ph/9912054>. [28] CHAPLYGIN, S. O gazovykh struyakh. Sci. Mem. Moscow Univ. Math., v. 1, 1904. [29] BENTO, M. C.; BERTOLAMI; SEN, A. A. Generalized chaplygin gas, accelerated

expansion, and dark-energy-matter unification. Physical Review D., v. 66, n. 4, Aug. 2002.

[30] BILIC´, N.; TUPPER, G. B.; VIOLLIER, R. D. Unification of dark matter and dark energy: the inhomogeneous chaplygin gas. Physics Letters B., v. 535, n. 4, p. 17–21, May 2002.

[31] DVALI, G.; GABADADZE, G.; PORRATI, M. 4D gravity on a brane in 5D minkowski space. Physics Letters B., v. 485, n. 2, p. 208–214, Jul. 2000.

[32] DEFFAYET, C. Cosmology on a brane in minkowski bulk. Physics Letters B., v. 502, n. 1, p. 199–208, Mar. 2001.

[33] DEFFAYET, C. et al. Supernovae, CMB, and gravitational leakage into extra di- mensions. Physics Letters B., v. 66, n. 2, p. 024019, Jul. 2002.

[34] RYDEN, B. Introduction to Cosmology. 1. ed. [S.l.]: Addison Wesley, 2002. ISBN 978- 0805389128.

[35] KNOP, R. A. et al. New constraints on ΩM, ΩΛ and ω from an independent set of eleven high-redshift supernovae observed with hst. Astrophysical Journal., v. 598, n. 1, p. 102, Jul. 2003.

[36] SCHNEIDER, P. Extragalactic Astronomy and Cosmology - An Introduction. 1. ed. [S.l.]: Springer, 2006. ISBN 978-3-540-33175-9.

[37] ZWICKY, F. On the masses of nebulae and of clusters of nebulae. Astrophysical Journal, v. 86, n. 1, p. 217, 1933.

[38] LYNDEN-BELL, D. On the masses of nebulae and of clusters of nebulae. Mon. Not. Royal. Astro. Soc., v. 136, 1967.

[39] SCHINDLER, S. ΩM - Different ways to determine the matter density of the uni- verse. Space Sciences Series of ISSI, v. 15, 2001.

[40] WUENSCHE CARLOS, A. A radiação cósmica de fundo

em microondas e a formação de estruturas no unvierso: uma visão atual. Divulgação INPE, 1994. Disponível em: <http://www.das.inpe.br/∼alex/Divulgacao/rcf_formestruturas.pdf>.

[41] MAKLER, M. Apresentação: O lado escuro do universo. Disponível em: <http://staff.on.br/maia/app2_hp/O_lado_escuro_do_universo.pdf>.

[42] SITE: Prisma à Luz da Física. Disponível em:

<http://cftc.cii.fc.ul.pt/PRISMA/capitulos/capitulo1/modulo4/topico2.php>. [43] BERNARDIS, P. de et al. A flat universe from high-resolution maps of the cosmic

microwave background radiation. Nature, 2000.

[44] BALBI, A. et al. Constraints on cosmological parameters from MAXIMA−1. As- trophysical Journal Letters, v. 545, 2000.

[45] SPERGEL, D. N. et al. First-year wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. Astrophysical Journal Suple- ment Series, v. 148, 2003.

[46] AMENDOLA, L.; TSUJIKAWA, S. Dark Energy - Theory and observations. 1. ed. [S.l.]: Cambridge University Press, 2010. ISBN 978-0521516006.

[47] SOLLERMAN, J. et al. First-year sloan digital sky survey-II (SDSS-II) super- nova results: Constraints on nonstandard cosmological models. Astrophysical Jour- nal, v. 703, 2009.

[48] SILK, J. Cosmic black-body radiation and galaxy formation. Astrophysical Journal, v. 151, 1968.

[49] PEEBLES, P. J. E.; YU, J. T. Primeval adiabatic perturbation in an expanding uni- verse. Astrophysical Journal, v. 162, 1970.

[50] SUNAYEV, R. A.; ZEL´DOVICH, Y. B. Small-scale fluctuations of relic radiation. Astrophysics and Space Science, v. 7, 1970.

[51] BOND, J. R.; EFSTATHIOU, G. Cosmic background radiation anisotropies in uni- verses dominated by nonbaryonic dark matter. Astrophysical Journal Letters, v. 285, 1984.

[52] HOLTZMANN, J. A. Microwave background anisotropies and large-scale struc- ture in universes with cold dark matter, baryons, radiation, and massive and mass- less neutrinos. Astrophysical Journal Suplement Series, v. 71, 1989.

[53] HU, W.; SUGIYAMA, N. Small-scale cosmological perturbations: An analytic ap- proach. Astrophysical Journal, v. 471, 1996.

[54] EISENSTEIN, D. J.; HU, W. Baryonic features in the matter transfer function. As- trophysical Journal, v. 496, 1998.

[55] KOMATSU, E. et al. Five-year wilkinson microwave anisotropy probe observa- tions: Cosmological interpretation. Astrophysical Journal Suplement Series, v. 180, 2009.

[56] WANG, Y.; GARNAVICH, M. P. Measuring time dependence of dark energy den- sity from type ia supernova data. Astrophysical Journal, v. 552, 2001.

[57] GOLIATH, M. et al. Supernovae and the nature of the dark energy. Astronomy & Astrophysics, 2001. Disponível em: <arXiv:astro-ph/0104009v1>.

[58] SUZUKI, N. et al. The hubble space telescope cluster supernova survey. v. im- proving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophysical Journal, v. 746, n. 1, p. 85, Feb. 2011.

[59] ASTIER, P. et al. The supernova legacy survey: measurement of ΩM, ΩΛ and ω from the first year data set. Astronomy & Astrophysics, v. 447, n. 1, p. 31–48, Feb. 2006.

[60] ALCANIZ, J. S.; PIRES, N. Cosmic acceleration in brane cosmology. Physical Re- view D., v. 70, n. 4, p. 047303, Aug. 2004.

[61] CALDWELL, R. R.; LINDER, E. V. Limits of quintessence. Physical Review Letters, v. 95, n. 14, p. 141301, 2005.

[62] MAKLER, M.; OLIVEIRA, S. Q. de; WAGA, I. Observational constraints on cha- plygin quartessence: Background results. Physical Review D, v. 68, n. 12, p. 123521, 2003.

[63] MAKLER, M.; OLIVEIRA, S. Q. de; WAGA, I. Constraints on the generalized cha- plygin gas from supernovae observations. Physics Letters B, v. 555, n. 1–2, p. 1–6, 2003.

[64] JONES, D. H. et al. The 6dF galaxy survey: final redshift release (DR3) and south- ern large-scale structures. Mon. Not. Royal. Astro. Soc., v. 399, n. 2, p. 683–698, 2009. [65] EISENSTEIN, D. J. et al. Detection of the baryon acoustic peak in the large-scale

correlation function of SDSS luminous red galaxies. Astrophysical Journal, v. 633, n. 2, p. 560–574, 2005.

[66] AKAIKE, H. A new look at the statistical model identification. Automatic Control, IEEE Transactions on, v. 19, n. 6, p. 716–723, Dec 1974.

[67] SCHWARZ, G. Estimating the dimension of a model. Annals of Statistics, v. 6, n. 2, p. 461–464, 1978.

[68] PIRES, N.; ZHU, Z.-H.; ALCANIZ, J. A. Lookback time as a test for brane cosmo- logy. Physical Review D, v. 73, n. 12, p. 123530, 2006.

No documento Análise em conjunta de testes cosmológicos (páginas 104-111)

Documentos relacionados