• Nenhum resultado encontrado

PARREIRA, R. M.; ANDRADE, T. L.; SILVA, N. S.; SOARES, C. P.; PANDOLFELLI, VICTOR CARLOS; OLIVEIRA, I. R. Avaliação do comportamento de composições a base de cimento aluminato de cálcio frente aos microorganismos Staphilococus aureus e Escherichia coli. 60º Congresso Brasileiro de Cerâmica, Águas de Lindóia, 2016.

OLIVEIRA, I. R.; PARREIRA, R. M.; ANDRADE, T. L.; MANSUR, K. C. A. Additives influence on the calcium aluminate properties aiming your application as a biomaterial. XIV Brazil MRS Meeting, 2015, Rio de Janeiro. Additives influence on the calcium aluminate properties aiming your application as a biomaterial, 2015.

PARREIRA, R. M.; SOUZA, C. M.; PIRES, A.; SOARES, C. P.; SILVA, N. S.; OLIVEIRA, I. R. Biofilm evaluation in calcium aluminate cement containing different additives. XIV Brazil MRS Meeting, 2015, Rio de Janeiro. Biofilm evaluation in calcium aluminate cement containing different additives, 2015.

ANDRADE, D. P.; CARVALHO, I. S. C. ;PARREIRA, R. M.; SOUZA, C. M. ; PIRES, A.; CARVALHO, Y. R. ; SOARES, C. P. ; SILVA, N. S. Titanium-35 niobium alloy inhibit biofilm formation in Staphylococcus aureus and Escherichia coli. XIV Brazil MRS Meeting, 2015, Rio de Janeiro. Titanium-35 niobium alloy inhibit biofilm formation in Staphylococcus aureus and Escherichia coli, 2015.

PARREIRA, RENATA MARTINS; CASTRO, I. ; ANDRADE, TALITA LUANA DE ; MANSUR, K. C. A. ; OLIVEIRA, I. R. Avaliação da produção de cimento de aluminato de cálcio poroso por meio da adição de incorporador de poros. 59º Congresso Brasileiro de Cerâmica, 2015, Barra dos Coqueiros.

ANDRADE, TALITA LUANA DE; MANSUR, K. C. A.; PARREIRA, RENATA MARTINS; OLIVEIRA, I. R. Avaliação da influencia de diversos compostos nas propriedades de cimentos de aluminato de cálcio visando sua aplicação como biomaterial. 59º Congresso Brasileiro de Cerâmica, 2015 Barra dos Coqueiros.

MANSUR, K. C. A.; ANDRADE, TALITA LUANA DE;PARREIRA, RENATA MARTINS; PANDOLFELLI, VICTOR CARLOS ; OLIVEIRA, I. R. Avaliação da síntese de hidroxiapatita e seu efeito sobre a resistência mecânica de cimento aluminoso. 59º Congresso Brasileiro de Cerâmica, 2015, Barra dos Coqueiros.

PARREIRA, R. M.; ANDRADE, T. L.; OLIVEIRA, I. R. Evaluation of silver and titanium oxide additives on the properties of a biomaterial based on calcium aluminate. Congreso Internacional de Metalurgia y Materiales SAM-CONAMET / IBEROMAT 2014, Santa Fé.

PARREIRA, R. M.; ANDRADE, T. L.; MATSUO, D. C.; CHO, L. Y.; OLIVEIRA, I. R. Avaliação da capacidade bactericida e bioatividade do cimento aluminato de cálcio

pela adição de prata. XIII Encontro Latino Americano de Pós Graduação, 2013, São José dos Campos.

ANDRADE, T. L.; MATSUO, D. C.; PARREIRA, R. M.; OLIVEIRA, I. R.. Avaliação das propriedades do cimento de aluminato de cálcio na presença de radiopacificadores. XVII Encontro Latino Americano de Iniciação Científica, 2013, São José dos Campos.

PARREIRA, R.M.; ANDRADE, T.L.; LUZ, A.P.; PANDOLFELLI, V.C.; OLIVEIRA, I.R. Calcium aluminate cement-based compositions for biomaterial applications.

Ceramics International, v. 42, p. 11732-11738, 2016.

OLIVEIRA, IVONE REGINA DE; ANDRADE, TALITA LUANA DE; PARREIRA, RENATA MARTINS; JACOBOVITZ, MARCOS ; PANDOLFELLI, VICTOR CARLOS . Characterization of Calcium Aluminate Cement Phases when in Contact with Simulated Body Fluid. Materials Research (São Carlos. Impresso), v. 18, p. 382-389, 2015.

OLIVEIRA, IVONE REGINA DE; ANDRADE, TALITA LUANA DE; MATSUO, DANIELE COELHO; PARREIRA, RENATA MARTINS; JACOBOVITZ, MARCOS ; PANDOLFELLI, VICTOR CARLOS . Influence of radiopacifier additives on calcium aluminate cement properties. Materials Research (São Carlos. Impresso), v. 17, p. 1295-1301, 2014.

REFERÊNCIAS BIBLIOGRÁFICAS

1 CENTRO DE GESTÃO E ESTUDOS ESTRATÉGICOS (CGEE). Estudo

Prospectivo. Materiais Avançados para Saúde Médico-Odontológico 2010-2022. Brasília: Centro de Gestão e Estudos Estratégicos, 2010.

2 FOOK, A.C.B.M. et al. Materiais odontológicos: cimentos de ionômero de vidro. Revista Eletrônica de Materiais e Processos, v. 3, p. 240-45, 2008. Disponível em: < http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/issue/view/8>. Acesso em: 5 dez. 2016.

3 CAUSA, F.; NETTI, P.A.; AMBROSIO, L. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials, v. 28, p. 5093– 5099, 2007.

4 LARANJEIRA, M.C.M.; FÁVERE, V.T. Quitosana: biopolímero funcional com potencial industrial biomédico. Química Nova, v. 32, p. 672-678, 2009..

5 BURGER,C.P.; MORAES, P.C; et al. Calcium aluminate cement: used in bone defects induced in the femur of rabbits. Arq. Bras. Med. Vet. Zootec., v. 65, p. 757- 762, 2013.

6 OLIVEIRA, I. R. et al. Bioactivity of calcium aluminate endodontic cement. Journal of Endodontics, v. 39, p. 774-778, 2013.

7 OLIVEIRA, I. R.; PANDOLFELLI, V. C.; JACOBOVITZ, M. Chemical, physical and mechanical properties of a novel calcium aluminate endodontic cement. International Endodontic Journal, v.43, p. 1069-1076, 2010.

8 PANDOLFELLI, V. C. et al. Aluminous cement-based composition for application in endodontics and cementitious product obtained thereof.

WO2009067774-A2. 27 nov. 2008, 4 jun. 2009.

9 ENGQVIST, H.; et al. Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth. Biomaterials, v. 25, n.14, 2781-2787, 2004.

10 AGUILAR, F. G.; et al. Biocompatibility of new calcium aluminate cement (EndoBinder). Journal of Endodontics, v. 38, n. 3, p.367-71, 2012.

11 CASTRO-RAUCCI, L. M. et al. Effects of a novel calcium aluminate cement on the early events of the progression of osteogenic cell cultures. Brazilian Dental Journal, v. 22, p. 99-104, 2011.

12 JACOBOVITZ, M. et al. Root canal filling with cements based on mineral aggregates: An “in vitro” analysis of bacterial microleakage. Oral Surgery Oral Medicine Oral Patholog, v. 108, p.140-4, 2009.

13 ENGQVIST, H. et al. Chemical stability of a novel injectable bioceramic for stabilisation of vertebral compression fractures. Trends Biomater. Artif. Organs, v. 21, n. 2, p. 98-106, 2008.

14 LOOF, J. Calcium-aluminate as biomaterial: synthesis, design and evaluation. Dissertação (Mestrado) Acta Univertitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations From the Facuty of Science and Technology, Upssala. 2008.

15 KOPANDA, J. E.; MACZURA, G. Production processes, properties, and applications for calcium aluminate cements. In: HART, L. D.; LENSE, E. Alumina Chemicals Science and Tecnology Handbook. New York: Wiley-American Ceramic Society, 1990.

16 BURGER, C. P. Calcium Aluminate Cement - Use in bone defects induced in the femurs of rabbits (Oryctolagus cuniculus). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, Belo Horizonte, v. 65, n. 3, p. 757-762, jun. 2013.

17 VACCANO, A.R. et al. Bone grafiting alternatives in spinal surgery. Spine J., n. 2, p. 206, 2002.

18 KAWACHI, E. Y. et al. Biocerâmicas: Tendências eperspectivas de uma área interdisciplinar. QUIMICA NOVA, v. 23, p. 518-522, 2000.

19 KATCHBURIAN, E.; ARANA, V. Histologia e Embriologia Oral. 2. ed. Rio de Janeiro: Guanabara Koogan, 2004.

20 LYNCH, S.E.; GENKO, R.; MARX, R. Tissue engineering application in maxillofacial. Quintessence, v. 5, p. 93-112, 1999.

21 JUNQUEIRA, L.C.; CARNEIRO, J. Histologia básica. 10ª. ed. Rio de Janeiro: Guanabara Koogan, 2004.

22 HIRN, M. et al. Bone defects following curettage do not necessarily need augmentation. Acta Orthop., v. 80, n.1, p. 4-8, 2009.

23 FILVAROFF, E.H. Musculoskel Neuron Interact. VEGF and bone, Athens, v. 3, n. 4, p. 304 - 307, Aug. 2003.

24 KLENKE, F.M; et al. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. Biomed Mater Res A, v. 85, n. 3, p. 777-786, 2008.

25 BURG, K. J. L.; PORTER, S.; KELLAM, J. K. Biomaterial developments for bone tissue engineering. Biomaterials, Surrey, v. 21, n. 23, p. 2347- 2359, 2000.

26 BAPTISTA, A.D. et al. Estudohistológico dos enxertos ósseos homólogos humanos. Acta Ortop Bras., v. 11, p. 220-24, 2003.

27 KHAN, S.N. et al. The biology of bone grafting. Journal of the American Academy of Orthopaedic Surgeons, v. 13, p. 77-86, 2005.

28 BLAY, A.; TUNCHEL, S.; SENDYK, W.R. Viability of autogenous bone grafts obtained by using bone collectors: histological and microbiological study. Pes q. Odontol Bras, v. 17, p. 234-240, 2003.

29 OLIVEIRA, S.M. et al. Engineering Endochondral Bone: In VivoStudies. Tissue Eng. Part A, v. 15, p. 635-643, 2009.

30 PRECHEUR, H.V. Bone Graft Materials. Dent. Clin. N. Am, v. 51, p. 729-746, 2007.

31 OLIVEIRA, L.S.A.F. et al. Biomaterials for bone regeneration – Methods of analyses and future perspectives. R. Ci. méd. biol., v. 9, Supl.1, p.37-44 2010.

32 ABDO FILHO R.C. et al. Reconstruction of bony facial contour deficiencies with polymethylmethacrylate implants: case report. J Appl Oral Sci., v. 19, n. 4, p.426- 30, 2010.

33 BHATT, R.A.; ROZENTAL, T.D. Bone Graft Substitutes. Hand. Clin., v. 28, p. 457-468, 2012.

34 WAN, D.C.; NACAMULI, R.P.; LONGAKER, M.T. Craniofacial bone tissue engineering. Dental Clinics of North American, Philadelphia, v. 50, n. 2, p. 175- 190, 2006.

35 SEITZ, H.; et al. Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering. advanced engineering materials, v. 11, n. 5, p. B41–B46, 2009.

36 GOODGER, N.M. et al. Methylmethacrylate as a Space Maintainer in MandibularReconstruction. Journal of Oral e Maxilofacial Surgery, v. 63, p. 1048- 1051, 2005.

37 CHIM, H.; GOSAIN, A.K. Biomaterials in Craniofacial Surgery Experimental Studies and Clinical Application. Journal of Craniofacial Surgery, v. 20, 29-33, 2009.

38 CARAKER, S. et al. Complication of Polymethylmethacrylate Bone Cement in the Mandible. Journal of Craniofacial Surgery, Istanbu, v. 21, p. 1196-1198, jan. 2010.

39 FANDANELLI, R.G. et al. Reconstrução de nariz após necrose por injeção de polimetilmetacrilato na face- relato de dois casos. ACM arq. catarin. med., v. 36, supl.1, p.154-156, jun. 2007.

40 CIMENTO ORTOPÉDICO BIOMECÂNICA, Cimento Ortopédico Biomecânica. Biomecânica. Jaú, São Paulo. Responsável técnico Thais de Paula Busquim.

41 ORÉFICE, R.L.; PEREIRA, M.M.; MANSUR, H.S. Biomateriais: fundamentos e aplicações., Rio de Janeiro: Cultura Médica , 2006.

42 MANEENUT, C.; SAKOOLNAMARKA, R.; TYAS, M. The repair potential of resinmodified modified glass-ionomer cements. Dental Materials, v. 26, p. 659-665, 2010.

43 PROAÑO DE CASALINO, Doris; LÓPEZ PINEDO, Martha. Los cementos ionómeros de vidrio y el mineral trióxido agregado como materiales biocompatibles usados en la proximidad del periodonto. Rev. estomatol. hered., v.16, n.1, p.59-63, ene.-jun. 2006.

44 BERTOLINI, M.J. et al. Caracterização de cimento odontológico obtido a partir de um vidro preparado pelo método dos precursores poliméricos. Quim. Nova, v. 28, p. 813-816, 2005.

45 WILSON A.D.; KENT, B.E. A new translucent cement for dentistry: the glass ionomer cement. Br Dent J., v. 132, n. 4, p.133-5, 1972.

46 MOUNT, G.J. Glass-ionomers: a review of their current status. Oper Dent., v. 24, n.2, p.115-124, 1999.

47 MOSHAVERINIA, A. et al. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia, v. 4, p. 432-440, 2008.

48 LIPORONI, P. et al. Surface finishing of resin-modified glass ionomer. Gen Dent., v. 51, ´,p. 541-543, 2003.

49 HOTTON, P. V.; HURRELL-GILLINGHAM, K.; BROOK, I. M. Biocompatibility of glass-ionomer bone cements. Journal of Dentistry, v. 34, p. 598-601, 2006.

50 ABUKAWA, H.; et al. The Engineering of Craniofacial Tissues in the in the Laboratory: A Review of Biomaterials for Scaffolds and ImplantThe Engineering of Craniofacial Tissues. Dental Clinics of North American, Philadelphia, v. 50, n. 2, p. 205-216, 2006.

51 THAMARAISELVI, T.V.; RAJESWARI, S. Biological evaluation of bioceramic materials: a review. Trend Biomater. Artif. Organs, v. 18, n. 1, p. 9-17, 2004.

52 GANDOLFI, M.G. et al. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, v. 108, n.6, p.e39-45, 2009.

53 CHOW, L.C.; TAKAGI, S. A. Natural Bone Cement—A Laboratory Novelty Led to the Development of Revolutionary New Biomaterials. J Res Natl Inst Stand Technol, v. 106, n.6, p.1029-1033, 2001.

54 SAGHIRI, M. A. et al. Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. Journal of Endodontics, v. 34, p. 1226- 1229,

2008.

55 PARIROKH,M. et al. The long-term effect of saline and phosphate buffer solution on MTA: an SEM and EPMA investigation. Int. Endodontic J., v. 2, p. 81-86, 2007.

56 YALTIRIK, M. et al. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J Endod, v. 30, p. 95-99, 2004.

57 TORABINEJAD, M. et al. Investigation of mineral trioxide aggregate for root end filling in dogs. J Endod, v. 21, p. 603–608, 1995.

58 VITTI, R.P. et al. Physical Properties of MTA Fillapex Sealer. J Endod, v. 39, p. 915-918, 2013.

59 PARKER, K.M.; SHARP, J.H. Refractory calcium aluminate cements. British Ceramic Transitions Journal, v. 81, p. 42-35, 1982.

60 LOURENÇO, R. R.; SIMÕES, A.R.; RODRIGUES, J. Preparation of refractory calcium aluminate cement using the sonochemical process. Materials Research (São Carlos. Impresso), v. 16, p. 731-739, 2013.

61 OLIVEIRA, I.R.; GARCIA, J. R.; PANDOLFELLI, V. C. Cinética de hidratação de ligantes à base de alumina hidratável ou aluminato de cálcio. Cerâmica, v. 53, p. 20- 28, 2007.

62 GARCIA, J.R.; OLIVEIRA, I.R.; PANDOLFELLI, V.C. Processo de hidratação e os mecanismos de atuação dos aditivos aceleradores e retardadores de pega do cimento de aluminato de cálcio. Cerâmica, v. 53, p. 42-56, 2007.

63 PENA, P.; AZA, A.H. Cemento de Aluminatos Cálcicos. Constituición, Características y Aplicaciones. In: BAUDIN, C. Refractarios Monolitics. Madrid: Sociedad Española de Ceramica y Vidrio, 1999. p. 85-106.

64 GRONBERG, K. S. Calcium aluminate cement as dental restorative - Mechanical properties and clinical durability. 2004. Dissetação (Mestrado) Umeå University, Sweden, 2004.

65 KRAFT, L. Calcium-Aluminate Based Cement as Dental Restorative Materials. Uppsala: Acta Universitatis Upsaliensis , 2002. , 67 p. (Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, n. 775).

66 OH, S.H. et al. Effects of lithium fluoride and maleic acid on the bioactivity of calcium aluminate cement: Formation of hydroxyapatite in simulated body fluid. Journal of Biomedical Materials Research Part A, v. 67, n.1, p.104-111, 2003.

67 LÖÖF, J. et al. A comparative study of the bioactivity of three materials for dental applications. Dental materials, v. 24, n.5, p. 653-659, 2008.

68 AZEVEDO, V. V. C. et al. Materiais cerâmicos utilizados para implantes. Revista Eletrônica de Materiais e Processos, v. 2, p. 35-42, 2007.

69 HEJAZIA, M. S.; AHMADIANA, M.; et al. Effect of alumina contents on phase stability and mechanical properties of magnesium fluorapatite/alumina composites. Journal of the mechanical behavior of biomedical materials, v. 40, p. 95-101, 2014.

70 MOLDOVAN, M. et al. Structural and morphological properties of HA-ZnO powders prepared for biomaterials. Open Chem, v. 13, p. 725–733, 2015.

71 ITO, A. et al. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. Journal Biomed. Mater. Res., v. 50, p. 178-183, 2000.

72 ALVAREZ-PÉREZ, M. A.; GARCIA-HIPOLITO, M.; et al. Biocompatibility of zinc aluminate nanostructured. Material J. Nano Res., v. 5, p. 169-176, 2009.

73 SEABRA, D.E.A.. Studies of bioactivity of zinc oxide nanostructures. 2013. 92 f. Dissertação (Mestrado em Materiais e Dispositivos Biomédicos), Departamento de Engenharia de Materiais e Cerâmica da Universidade de Aveiro, Aveiro, 2013..

74 CORENO J.A. et al. Mechanochemical synthesis of nanocrystalline carbonate- substituted hydroxyapatite. Optical Materials, v. 27, p. 1281–1285, 2005.

75 CAO, W.; HENCH, L. L. Bioactive materials. Ceramics International, v. 22, p. 493-507, 1996.

76 NARASARAJU, T.S.B.; PHEBE, D.E. Review – Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science, v. 31, p. 1-121, 1996.

77 ROEMHILDT, M.L.; MCGEE, T.D.; WAGNER, S.D. Novel calcium phosphate composite bone cement: strength and bonding properties. Journal of Materials Science: Materials in Medicine, v. 14, p. 137-141, 2003.

78 MOREJÓN-ALONSO, L.; CARRODEGUAS, R.G.; SANTOS, L.A. Development and characterization of α-tricalcium phosphate/monocalcium aluminate composite bone cement. J. Biomedical Science and Engineering, v. 5, p. 448-456, 2012.

79 AMARAL, M. B. Capacidade de regeneração óssea de biomateriais em defeito crítico de calvária: análise histológica e microtomografia computadorizada. 2013. 110 f. Tese (doutorado) Escola de Engenharia de São Carlos, Insituto de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São CArlos, 2013.

80 TAVARIA, F.K. et al. A quitosana como biomaterial odontológico: estado da arte. Braz. J. Biom, v. 29, n. 1, p. 110-120, 2013.

81 KISHEN, A. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. Journal of Endodontics, v. 34, p. 1515-1520, 2008.

82 LIANG, Y. et al. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering C, v. 33, p. 3652–3660, 2013.

83 LUZ, A.P.; BORBA, N.Z.; PANDOLFELLI, V.C. Mechanical strength and hydrate products evolution of calcium aluminate cement for endodontic applications. Cerâmica, v. 60, n. 354, p. 192-198, 2014.

84 ROY, D. M. New strong cement materials: chemically bonded ceramics. Science, New Series, v. 235, p. 651-658, 1987.

85 AGUILAR, F.G.; et al. Radiopacity evaluation of calcium aluminate cement containing different radiopacifying agents. J Endod, v. 37, p. 67-71, 2011.

86 TANOMARU-FILHO, M. et al. Radiopacity evaluation of root-end filling materials by digitalization of images. Journal of Applied Oral Science, v. 16, p. 376-379, 2008.

87 BEYER-OLSEN, E.M.; ORSTAVIK, D. Radiopacity of root canal sealers. Oral Surg Oral Med Oral Pathol, v. 51, p. 320-328, 1981.

88 STANDARDIZATION., INTERNATIONAL ORGANIZATION FOR. ISO 6876:2012 . Dentistry: root canal sealing materials. Genève: ISO, 2012..

89 OLIVEIRA, I.R. et al. Influence of radiopacifier additives on calcium aluminate cement properties. Materials Research (São Carlos. Impresso), v. 17, p.1295-1301, 2014.

90 PAMEIJER, C.H. A review of luting agents. International Journal of Dentistry, v. 2012, p. ID752861, 2012. Disponível em:

<https://www.hindawi.com/journals/ijd/2012/752861/> Acesso em: 5 dez. 2016.

91 CZARNECKA, B. et al. The use of mineral trioxide aggregate on endodontics – Status report. Dental Medical Problems, v. 45, p. 5-11, 2008.

92 KOKUBO, T. Bioactive Glass-Ceramics Properties and Applications. Biomaterials, v. 12, p. 155-163, 1991.

93 RIGO, E. C. S.; BOSCHI, A. O.; YOSHIMOTO, M. Evaluation in vitro and in vivo of biomimetic hydroxypaptite coated on titanium dental implants. Materials Sience and Engineering, v. 24, 647-651, 2004.

94 SARKAR, N.K. et al. Physicochemical basis of the biologic properties of mineral trioxide aggregate. Journal of Endodontics, v. 31, p. 97-100 2005.

95 LI PANJIAN, P. et al. Role of hidrated silica titania and aluminia in induction apatite on implants. J Biomed Mater Res., v. 28, n.1, p.7-15, p. 1994.

1

96 HERMANSSON, L. Nanostructural Chemically Bonded Ca-Aluminate Based Bioceramics.In: PIGNATELLO, Rosario (Ed.). Biomaterials: Physics and

Chemistry. InTech, 2011. Disponível em:

<http://www.intechopen.com/books/biomaterials-physics-and-

chemistry/nanostructural-chemically-bonded-ca-aluminate-based-bioceramics>. Acesso em: 5 dez. 2016. DOI: 10.5772/24411.

97 TRENTIN, D.S.; GIORDANI, R.B.; MACEDO, A.J. Biofilmes bacterianos patogênicos: aspectos gerais, importância clínica e estratégias de combate1. Revista Liberato, Novo Hamburgo, v. 14, n. 22, p. 113-238, 2013.

98 NAVES, P. et al. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microbial. Pathog., v. 45, p. 86-91, 2008.

99 UNOSSON, E. et al. Antibacterial Properties of Dental Luting Agents: Potential to Hinder the Development of Secondary Caries. Int. J. Dent, v. 2012, p. ID 529495, 2012.

100 SILVA, E.J.N.L. et al. Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material. J Appl Oral Sci., v. 22, p. 61–67, 2014.

101 QI, L. et al. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res., v.339, p.2693-2700, 2004.

102 AZCURRA, A.I. et al. Efecto del quitosán de alto peso molecular y del alginato de sodio sobre la hidrofobicidad y adhesión de Candida albicans a células. Medicina Oral Patolologia Medicina Oral Patolologia Oral y Cirurgia Bucal., v. 11, p. E120- 125, 2006.

103 RAMESH, M.; ANBUVANNAN, M.; VIRUTHAGIRI, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A, v .136, p. 864–870, 2015.

104 SOARES, D.G.; ROSSETO, H.L.; et al. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells. Braz. Oral Res., v. 30, p. e54. 2016.

105 HENTRICH, R.L. et al. An Evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J. Biomed. Mater. Res., v.5, n.1, p.25-51, 1971.

106 KALITA, S.J.; et al. Porous calcium aluminate ceramics for bone-graft applications. J. Mater. Res., v. 17, p. 3042-3049, 2002.

107 HULBERT, S. F. et al. Potential of ceramic materials as permanently implantable skeletal prostheses. Biomed. Mater. Res, v. 4, p. 433-456, 1970.

108 RAMAY, H.R.; ZHANG, M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials, v. 24, p. 3293-3302, 2003.

109 KARAGEORGIOU, V.; KAPLAN, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v. 26, p. 5474-5491, 2005.

110 KLAWITTER, J.J., HULBERT, S.F. Application of porous ceramics for the attachment of load-bearing internal orthopedic applications. Journal of Biomedical Materials Research Symposium, v. 2, p. 161-229, 1971.

111 WHANG, K.; et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Engineering, v. 5, n. 1, p. 35-51, 1999.

112 BAKSH, D. E DAVIES, J.E. Design strategies for 3-Dimensional in vitro bone growth in tissue-engineering scaffolds. In DAVIES, J. E, (Ed.).Bone Engineering. Toronto, Canada: Em Square, 2000. p. 488–495.

113 BARRALET, J.E. et al. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials, v. 23, p. 3063-3072, 2002.

114 VALERIO, P.; PEREIRA, M.P.; et al. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials, v. 25, p. 2941-2948, 2004.

115 BAUER, T.; MUSCHLER, G.F. Bone Graft Materials: An overview of the basic science. Clinical Orthopedics and Related Research, n. 371, p. 10-27, 2000.

116 GEISTLICH. Geistlich. Disponivel em: <http://www.geistlich.com.br/>. Acesso em: Jul. 2016.

117 SANTOS, S.R.A. et al. Produção de scaffolds porosos para regeneração óssea. CONGRESSO LATINO AMERICANO DE ÓRGÃOS ARTIFICIAIS E BIOMATERIAIS, 4.; Caxambu-MG, 2006. Anais... Rio de Janeiro: Sociedade Latino Americana De Biomateriais e Órgãos Artificiais, 2006.

118 BUCKLEY, C.T.; O'KELLY, K.U. Regular scaffold fabrication techniques for investigations in tissue engineering. In: PRENDERGASt, Patrick J.; MCHUGH, Peter E. Topics in Bio-Mechanical Engineering. Galway: Trinity Centre for Bio- Engineering (TCBE) the National Centre for Biomedical Engineering Science (NCBES), 2004. p.147-166.

119 JO, I-H.; et al. Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Materials Letters, v. 63, p. 1702- 1704, 2009.

120 ZHU, X.; JIANG, D.; TAN, S. Preparation of silicon carbide reticulated porous ceramics. Mater. Sci. Eng, v. 323, p. 232–238, 2002.

121 MONTANARO, L. et al. Ceramic foams by powder processing. Journal of the European Ceramic Society, v. 18, p. 1339-1350, 1998.

122 FOOK, A.C.B.M.; APARECIDA, A.H.; FOOK, M.V.L. Revista Matéria, v. 15, n. 3, p. 392 – 399, 2010.

123 SALVINI, V.R. et al. Otimização do processamento para a fabricação de filtros no sistema Al2O3-SiC. Cerâmica, v. 47, p. 13-18, 2001.

124 SCHEFFLER, M.; COLOMBO, P. Cellular Ceramics: structure, manufacturing, properties and applications. Dresden, DEU: WILEY-VCH, 2005.

125 SALVINI, V.R.; INNOCENTINI, M.D.M.; PANDOLFELLI, V.C. Influência das condições de processamento cerâmico na resistência mecânica e permeabilidade dos filtros Al2O3-SiC. Cerâmica, v. 48, p. 121-127, 2002.

126 INTERNATIONAL STANDARD ORGANIZATION (ISO). 10993-5, Biological evaluation of medical devices-Part5: Tests for in vitro cytotoxicity. Geneva: ISSO, 2009.

127 DA SILVA, R.A. et al. Effects of the association between a calcium hydroxide paste and 0,4% chlorhexidine on the development of the osteogenic phenotype in vitro. journal endodontic, v. 34, p. 1485-1489, 2008.

128 AMINZARE, M. et al. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceramics International, v. 39, p. 2197–2206, 2013.

129 AGUIAR, D.A. et al. Evaluation of mechanical properties of five cements for orthodontic band cementation. Braz Oral Res., v. 27, p. 136-141, 2013.

130 CONTI, M.; MUENCH, A.. Flexural strenght of glass ionomers and its adhesivity to dentin. Rev Odontol Univ São Paulo, v.10, p. 171-175, 1995.

131 SODAGAR, A. et al. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. Journal of Prosthodontic Research, v. 57, p. 15–19, 2013.

132 BASTURK, F. B.; et al. Effect of Various Mixing and Placement Techniques on the Flexural Strength and Porosity of Mineral Trioxide Aggregate. Basic Research— Technology, v. 40, p. 441-445, 2014.

133 WALKER, M.P.; DILIBERTO, A.; LEE, C. Effect of setting conditions on mineral trioxide aggregate gate flexural strength. J Endod., v. 32, p. 334–336, 2006.

134 PEREIRA, Erika Cristina Sbrisse. Estudo longitudinal dos efeitos da

deficiência estrogênica no fêmur de ratas. 2011. 69 f. Dissertação (mestrado) – Universidade Estadual Paulista, Faculdade de Odontologia de São José dos Campos, 2011. Disponível em: <http://hdl.handle.net/11449/95875>. Acesso em: 6 dez. 2016.

135 HENCH, L. L.; PASCHALL, H. A. Direct chemical bond of bioactive glass- ceramic materials to bone and muscle. Journal of Biomedical Materials Research Part A, v.7, p. 25-42, May 1973.

136 NING, C. Q.; ZHOU, Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials, v.23, p. 2909-2915, 2002..

137 YOSHIDA, A.; MIYAZAKI, T.; ISHIDA, E.; ASHIZUKA, M. Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction. Materials Transactions, v. 45, p. 994-998, 2004.

138 LEE, K. H.; RHEE, S. H. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite. Biomaterials, v. 30, p. 3444– 3449, 2009.

139 LIU, W.; CHANG, J. S. etting properties and biocompatibility of dicalcium silicate with varying additions of tricalcium aluminate. Journal of Biomaterials Applications, v. 27, p. 171-178, 2011.

140 OLIVEIRA, I. R.; PANDOLFELLI, V. C. Propriedades e bioatividade de um cimento endodôntico à base de aluminato de cálcio. Cerâmica, v. 33, n. 6, p. 364- 370, 2011.

141 SILVA JUNIOR, P.E.; ORÉFICE, R.L. Compósitos bioativos obtidos a partir da inserção de vidro bioativo em matriz de poli(metacrilato de metila). Polímeros, São Carlos, v. 11, n. 3, p. 109-115, set. 2001.

142 KHORAMI, M. et al. In vitro bioactivity and biocompatibility of lithium substituted 45S5 bioglass. Materials Science and Engineering C, v. 31, p. 1584–1592, 2011.

143 DAMMASCHKE, T. et al. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental Mater, v. 21, p. 731–738, 2005.

144 PENEL, G.; LEROY, G.; REY, C.; et al. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int, v. 63, p. 475–481, 1998.

145 MARKOVIÉ, S. et al. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morpholog. Biomed. Mater, v. 6, , p. 045005, 2011.

146 DEMIRTAS, T.T. et al. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Materials Science and Engineering:C, v. 49, p. 713-719, 2015.

147 SILVA, M.J. Skeletal Aging and Osteoporosis: Biomechanics and

Documentos relacionados