• Nenhum resultado encontrado

Sum´ ario do Cap´ıtulo

1 Cristais Anidros das Bases do ADN s˜ ao Semicondutores de Gap Largo

1.3 Sum´ ario do Cap´ıtulo

que as bases nucleot´ıdicas nos cristais anidros (e possivelmente para cadeias lineares) comportam-se como um semicondutor de gap largo para el´etrons se movimentando ao longo da dire¸c˜ao de empilhamento, enquanto o transporte de buracos ´e limitado no empilhamento envolvendo a timina.

O empilhamento de bases nucleot´ıdicas do ADN idˆenticas nos cristais anidros ´e res- pons´avel diretamente por suas caracter´ısticas semicondutoras. Por outro lado, o empilha- mento de bases do ADN distintas n˜ao mudar´a radicalmente a caracter´ıstica de transporte de cargas de um cristal hipot´etico formado a partir de duas ou mais bases. Estendendo esse racioc´ınio para o empilhamento de trˆes, quatro ou mais bases de ADN, seguindo qual- quer arranjo, pode-se concluir que a caracter´ıstica semicondutora das cadeias de ADN ´e devido principalmente ao empilhamento das bases nucleot´ıdicas, um resultado de sig- nificativa relevˆancia. Desvios de sua caracter´ıstica semicondutora pode ser atribu´ıda `a influˆencia das cadeias a¸c´ucar-fosfato, de mol´eculas de ´agua assim como de ´ıons [9]. Um

gap de energia direto 2,73 eV foi obtido para o cristal de guanina monohidratado atrav´es

de c´alculos de primeiros princ´ıpios utilizando o funcional LDA , 50 meV maior do que o

gap direto de 2,68 eV encontrado nesta tese para o cristal anidro de guanina. Nesse caso,

n˜ao se pode sugerir que s˜ao as mol´eculas de ´agua respons´aveis por esse acr´escimo devido ao fato de que procedimentos, figuras e, inclusive, o pacote (programa) de c´alculo s˜ao diferentes entre o apresentando por Ortmann et al. [25, 26], uma vez que tais diferen¸cas metodol´ogicas tamb´em podem levar a uma mudan¸ca na estimativa do gap de energia do cristal monohidratado da guanina.

1.3

Sum´ario do Cap´ıtulo

Resumindo, neste cap´ıtulo realizamos c´alculos DFT na obten¸c˜ao da geometria otimi- zada para os cristais anidros das quatro bases nucleot´ıdica do ADN, guanina (G), adenina (A), citosina (C) e timina (T) usando a aproxima¸c˜ao da densidade local (LDA) para o funcional de troca e correla¸c˜ao e estimamos os gaps de energia desses cristais a partir de medidas de absor¸c˜ao ´opticas. Os gaps obtidos por meios de c´alculos LDA mostram valores menores do que as medidas experimentais, como esperado, e os valores estimados a partir da absor¸c˜ao ´optica mostradas aqui s˜ao, em geral, menores do que os dados experimen- tais dispon´ıveis na literatura (exceto a guanina). A ordem crescente dos gaps de energia te´oricos (LDA) ´e G < A < C < T, enquanto a sequˆencia experimental n˜ao ´e consensual: a sequˆencia obtida nesta tese (a partir de medidas de absor¸c˜ao ´optica) ´e A < G < C < T, em contraste com as medidas espectroc´opicas de raios-X realizadas por MacNaughton et

64 1 Cristais Anidros das Bases do ADN s˜ao Semicondutores de Gap Largo

al. [60] que obtiveram a ordem G < C < A < T nos valoes dos gaps de energia. Para os

el´etrons e buracos se movendo ao longo de determinadas liga¸c˜oes de hidrogˆenio (paralelas ao plano molecular do cristal de uma dada base), as massas efetivas s˜ao geralmente eleva- das, exce¸c˜ao feita `a timina. Entretanto, quando os mesmos el´etrons se movem ao longo do eixo do empilhamento π − π, as massas efetivas ficam entre os 4,0 e 6,3 vezes a massa do el´etron livre (m0), sugerindo que as bases nucleot´ıdicas empilhadas comportam-se como

um semicondutor de gap largo para os el´etrons. O transporte de buracos perpendicular ao plano molecular tamb´em e favorecido pelo empilhamento das bases, exceto a timina. Finalmente, a fun¸c˜ao diel´etrica foi calculada para cada cristal anidro, onde foi observado uma anisotropia muito acentuada para a luz incidente polarizada nos casos da guanina, adenina e timina, mas n˜ao para a citosina.

65

Referˆencias

[1] WATSON, J. D.; CRICK, F. H. C. Molecular Structure of Nucleic Acids - a Structure for Deoxyribose Nucleic Acid. Nature, v. 171, n. 4356, p. 737–738, 1953.

[2] ELEY, D. D.; SPIVEY, D. I. Semiconductivity of Organic Substances .9. Nucleic Acid in Dry State. Transactions of the Faraday Society, v. 58, n. 470, p. 411–415, 1962. [3] GERVASIO, F. L. et al. Charge localization in DNA fibers. Physical Review Letters,

v. 94, n. 15, p. 158103, 2005.

[4] HOLMLIN, R. E.; DANDLIKER, P. J.; BARTON, J. K. Charge transfer through the DNA base stack. Angewandte Chemie-International Edition, v. 36, n. 24, p. 2715–2730, 1997.

[5] KASUMOV, A. Y. et al. Proximity-induced superconductivity in DNA. Science, v. 291, n. 5502, p. 280–282, 2001.

[6] PORATH, D. et al. Direct measurement of electrical transport through DNA molecu- les. Nature, v. 403, n. 6770, p. 635–638, 2000.

[7] PABLO, P. J. de et al. Absence of dc-conductivity in λ-DNA. Physical Review Letters, v. 85, n. 23, p. 4992–4995, 2000.

[8] GOMEZ-NAVARRO, C. et al. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior. Proceedings of the National Academy of

Sciences of the United States of America, v. 99, n. 13, p. 8484–8487, 2002.

[9] ENDRES, R. G.; COX, D. L.; SINGH, R. R. P. Colloquium: The quest for high- conductance DNA. Reviews of Modern Physics, v. 76, n. 1, p. 195–214, 2004.

[10] SPONER, J.; LESZCZYNSKI, J.; HOBZA, P. Nature of nucleic acid-base stacking: Nonempirical ab initio and empirical potential characterization of 10 stacked base di- mers. Comparison of stacked and H-bonded base pairs. Journal of Physical Chemistry, v. 100, n. 13, p. 5590–5596, 1996.

[11] FELICE, R. D. et al. Ab initio study of model guanine assemblies: The role of pi-pi coupling and band transport. Physical Review B, v. 65, n. 4, p. 045104, 2001.

[12] SPONER, J.; RILEY, K. E.; HOBZA, P. Nature and magnitude of aromatic stacking of nucleic acid bases. Physical Chemistry Chemical Physics, v. 10, n. 19, p. 2595–2610, 2008.

[13] LADIK, J.; BENDE, A.; BOGAR, F. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water. Journal of Chemical Physics, v. 128, n. 10, p. 105101, 2008.

66 Referˆencias [14] CZYZNIKOWSKA, Z. How does modification of adenine by hydroxyl radical influ- ence the stability and the nature of stacking interactions in adenine-cytosine complex?

Journal of Molecular Modeling, v. 15, n. 6, p. 615–622, 2009.

[15] CALZOLARI, A.; FELICE, R. D.; MOLINARI, E. Electronic properties of guanine- based nanowires. Solid State Communications, v. 131, n. 9-10, p. 557–564, 2004. [16] ROBERTAZZI, A.; PLATTS, J. A. Gas-phase DNA oligonucleotide structures. A

QM/MM and atoms in molecules study. Journal of Physical Chemistry A, v. 110, n. 11, p. 3992–4000, 2006.

[17] COOPER, V. R. et al. Stacking interactions and the twist of DNA. Journal of the

American Chemical Society, v. 130, n. 4, p. 1304–1308, 2008.

[18] GUERRA, C. F. et al. Hydrogen bonding in DNA base pairs: Reconciliation of theory and experiment. Journal of the American Chemical Society, v. 122, n. 17, p. 4117–4128, 2000.

[19] SADOWSKA-ALEKSIEJEW, A.; RAK, J.; VOITYUK, A. A. Effects of intra base- pairs flexibility on hole transfer coupling in DNA. Chemical Physics Letters, v. 429, n. 4-6, p. 546–550, 2006.

[20] MO, Y. R. Probing the nature of hydrogen bonds in DNA base pairs. Journal of

Molecular Modeling, v. 12, n. 5, p. 665–672, 2006.

[21] GERVASIO, F. L.; CARLONI, P.; PARRINELLO, M. Electronic structure of wet DNA. Physical Review Letters, v. 89, n. 10, p. 108102, 2002.

[22] HUBSCH, A. et al. Optical conductivity of wet DNA. Physical Review Letters, v. 94, n. 17, p. 178102, 2005.

[23] BARNETT, R. N. et al. Effect of base sequence and hydration on the electronic and hole transport properties of duplex DNA: Theory and experiment. Journal of Physical

Chemistry A, v. 107, n. 18, p. 3525–3537, 2003.

[24] KABELAC, M.; HOBZA, P. Hydration and stability of nucleic acid bases and base pairs. Physical Chemistry Chemical Physics, v. 9, n. 8, p. 903–917, 2007.

[25] ORTMANN, F.; HANNEWALD, K.; BECHSTEDT, F. Guanine crystals: A first principles study. Journal of Physical Chemistry B, v. 112, n. 5, p. 1540–1548, 2008. [26] ORTMANN, F.; HANNEWALD, K.; BECHSTEDT, F. Charge Transport in

Guanine-Based Materials. Journal of Physical Chemistry B, v. 113, n. 20, p. 7367– 7371, 2009.

[27] SILAGHI, S. D. et al. Dielectric functions of DNA base films from near-infrared to ultra-violet. Physica Status Solidi B-Basic Solid State Physics, v. 242, n. 15, p. 3047– 3052, 2005.

[28] ZHAO, Y.; TRUHLAR, D. G. How well can new-generation density functional methods describe stacking interactions in biological systems? Physical Chemistry Che-

Referˆencias 67

[29] WIJST, T. van der et al. Performance of various density functionals for the hydrogen bonds in DNA base pairs. Chemical Physics Letters, v. 426, n. 4-6, p. 415–421, 2006. [30] COOPER, V. R.; THONHAUSER, T.; LANGRETH, D. C. An application of the

van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases. Journal of Chemical Physics, v. 128, n. 20, p. 204102, 2008.

[31] SILVESTRELLI, P. L. van der Waals Interactions in Density Functional Theory Using Wannier Functions. Journal of Physical Chemistry A, v. 113, n. 17, p. 5224– 5234, 2009.

[32] BUGG, C. E. et al. Stereochemistry of Nucleic Acids and Their Constituents .10. Solid-State Base-Stacking Patterns in Nucleic Acid Constituents and Polynucleotides.

Biopolymers, v. 10, n. 1, p. 175–219, 1971.

[33] SPONER, J.; KYPR, J. Theoretical-Analysis of the Base Stacking in DNA - Choice of the Force-Field and a Comparison with the Oligonucleotide Crystal-Structures. Journal

of Biomolecular Structure & Dynamics, v. 11, n. 2, p. 277–292, 1993.

[34] TANIGUCHI, M.; KAWAI, T. Electronic structures of A- and B-type DNA crystals.

Physical Review E, v. 70, n. 1, p. 011913, 2004.

[35] OZEKI, K.; SAKABE, N.; TANAKA, J. Crystal Structure of Thymine. Acta Crystal-

lographica Section B-Structural Crystallography and Crystal Chemistry, B 25, p. 1038–

1045, 1969.

[36] PORTALONE, G. et al. The effect of hydrogen bonding on the structures of uracil and some methyl derivatives studied by experiment and theory. Acta Chemica Scandinavica, v. 53, n. 1, p. 57–68, 1999.

[37] MCCLURE, R. J.; CRAVEN, B. M. New Investigations of Cytosine and Its Mo- nohydrate. Acta Crystallographica Section B-Structural Science, v. 29, n. Jun15, p. 1234–1238, 1973.

[38] BARKER, D. L.; MARSH, R. E. Crystal Structure of Cytosine. Acta Crystallo-

graphica, v. 17, n. 12, p. 1581–1587, 1964.

[39] GUILLE, K.; CLEGG, W. Anhydrous guanine: a synchrotron study. Acta Crystal-

lographica Section C-Crystal Structure Communications, v. 62, p. O515–O517, 2006.

[40] MAHAPATRA, S. et al. Anhydrous adenine: Crystallization, structure, and cor- relation with other nucleobases. Crystal Growth & Design, v. 8, n. 4, p. 1223–1225, 2008.

[41] PAYNE, M. C. et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., v. 64, n. 4, p. 1045, 1992.

[42] SEGALL, M. D. et al. First-principles simulation: ideas, illustrations and the CAS- TEP code. Journal of Physics: Condensed Matter, v. 14, n. 11, p. 2717, 2002.

[43] HOHENBERG, P.; KOHN, W. Inhomogeneous electron gas. Physical Review, v. 136, p. 864B, 1964.

68 Referˆencias [44] KOHN, W.; SHAM, L. J. Self-consistent equations including exchange and correla-

tion effects. Physical Review, v. 140, p. 1133A, 1965.

[45] CEPERLEY, D. M.; ALDER, B. J. B. J. Ground state of the electron gas by a stochastic method. Physical Review Letters, v. 45, p. 566, 1980.

[46] PERDEW, J. P.; ZUNGER, A. Self-interaction correction to density-functional ap- proximations for many-electron systems. Physical Review B, v. 23, p. 5048, 1981. [47] ORTMANN, F.; SCHMIDT, W. G.; BECHSTEDT, F. Attracted by long-range elec-

tron correlation: Adenine on graphite. Physical Review Letters, v. 95, n. 18, p. 186101, 2005.

[48] ORTMANN, F.; BECHSTEDT, F.; HANNEWALD, K. Theory of charge transport in organic crystals: Beyond Holstein’s small-polaron model. Physical Review B, v. 79, n. 23, p. 235206, 2009.

[49] VANDERBILT, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, v. 41, n. 11, p. 7892–7895, 1990.

[50] PFROMMER, B. G. et al. Relaxation of Crystals with the Quasi-Newton Method.

J. Comput. Phys., v. 131, p. 133, 1997.

[51] HAMANN, D. R.; SCHLUTER, M.; CHIANG, C. Norm-Conserving Pseudopotenti- als. Physical Review Letters, v. 43, n. 20, p. 1494–1497, 1979.

[52] HENRIQUES, J. M. et al. Structural and electronic properties of CaSiO3 triclinic.

Chemical Physics Letters, v. 427, n. 1-3, p. 113–116, 2006.

[53] HANNEWALD, K.; BOBBERT, P. A. Anisotropy effects in phonon-assisted charge- carrier transport in organic molecular crystals. Physical Review B, v. 69, n. 7, p. 075212, 2004.

[54] THEWALT, U.; BUGG, C. E.; MARSH, R. E. Crystal Structure of Guanine Monohy- drate. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemis-

try, v. 27, n. Dec 15, p. 2358–2363, 1971.

[55] GODBY, R. W.; SCHLUTER, M.; SHAM, L. J. Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors. Physical Review B, v. 37, n. 17, p. 10159–10175, 1988.

[56] PERDEW, J. P.; LEVY, M. Physical Content of the Exact Kohn-Sham Orbital Energies - Band-Gaps and Derivative Discontinuities. Physical Review Letters, v. 51, n. 20, p. 1884–1887, 1983.

[57] LEVINE, Z. H.; ALLAN, D. C. Quasi-Particle Calculation of the Dielectric Response of Silicon and Germanium. Physical Review B, v. 43, n. 5, p. 4187–4207, 1991.

[58] SCHONBERGER, U.; ARYASETIAWAN, F. Bulk and Surface Electronic-Structures of MgO. Physical Review B, v. 52, n. 12, p. 8788–8793, 1995.

[59] WANG, S. Q.; YE, H. Q. First-principles study on the lonsdaleite phases of C, Si and Ge. Journal of Physics-Condensed Matter, v. 15, n. 12, p. L197–L202, 2003.

Referˆencias 69

[60] MACNAUGHTON, J.; MOEWES, A.; KURMAEV, E. Z. Electronic structure of the nucleobases. Journal of Physical Chemistry B, v. 109, n. 16, p. 7749–7757, 2005. [61] FOX, M. Optical Properties of Solids. New York, USA: Oxford University Press,

2001. (Oxford master series in condensed matter physics)).

[62] KRAMERS, H. A. M. The diffusion of the light by the atoms (traslated of italian). In: Atti del Congresso Internazionale dei Fisici. N. Zanichelli, Bologna, Italy: [s.n.], 1927. p. 545–557.

[63] KRONIG, R. D. L. On the Theory of Dispersion of X-Rays. J. Opt. Soc. Am., v. 12, n. 6, p. 547–557, 1926.

[64] LEBEGUE, S.; ARNAUD, B.; ALOUANI, M. Calculated quasiparticle and opti- cal properties of orthorhombic and cubic Ca2Si. Physical Review B, v. 72, n. 8, p. 085103[085108], 2005.

[65] HUMMER, K.; AMBROSCH-DRAXL, C. Electronic properties of oligoacenes from first principles. Physical Review B, v. 72, n. 20, p. 205205, 2005.

[66] WUNDERLICH, W.; OHTA, H.; KOUMOTO, K. Enhanced effective mass in doped SrTiO3 and related perovskites. Physica B-Condensed Matter, v. 404, n. 16, p. 2202– 2212, 2009.

71

2

Cristal Anidro da Guanina: