• Nenhum resultado encontrado

AGEITEC – Agência Embrapa de Informação Tecnológica. Tipos de solo Bioma Caatinga. EMPRABA Empresa Brasileira de Pesquisa Agropecuária. 2017 Disponível em:<http://www.agencia.cnptia.embrapa.br/gestor/bioma_caatinga/arvore/CONT0 00g5twggzh02wx5ok01edq5snbmwc3w.html> Acesso em: 08 out 2017

ALEWELL, C., et al. Sediment source attribution from multiple land use systems with CSIA.

Biogeosciences Discuss., 12, 2015, p.14245–14269.

_____________. Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (Central Switzerland). Biogeosciences 13, 2016, p.1587–1596.

ARMENTA, S.; GUARDIA, M. Vibrational spectroscopy in soil and sediment analysis.

Trends in Environmental Analytical Chemistry. 2, 2014 p. 43-52.

ARNDT, A, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 123, 2013 p.53–86.

BADGER, R. A Relation Between Internuclear Distances and Bond Force Constants. The

Journal of Chemical Physics. California Vol.2, 1934 p.128-131

BANOWETZ, G.M., et al. Fatty acid methyl ester analysis to identify sources of soil in surface water. Journal of Environmental Quality 35, 2006 p.133–140.

BENAVIDES, Z. C., et al. Consumo e abastecimento de água nas bacias hidrográficas dos

rios Guapi-Macacu e Caceribu, RJ. Rio de Janeiro, RJ: Embrapa Solos, 2009. 171p.

BISHOP, J.L., et al. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, Twickenham, v. 43, 2008 p. 53-54

BLAKE, W.H., et. al. Tracing crop-specific sediment sources in agricultural catchments.

Geomorphology 2012 p.139–140, p.322–329.

BORGES, R.; HORA, M. Vulnerabilidade Social na área do COMPERJ: o Assentamento

BOUTTON, T. W. Stable carbon isotope ratios of natural materials: I. sample preparation and mass spectrometric analysis. In: COLEMAN, D.C.; FRY, B. Carbon isotope

techniques. San Diego: Academic Press, 1991. cap. 10, p. 155-171.

BRERETON, R. Introduction to Multivariate Calibration in Analytical Chemistry. The

Analyst Tutorial Review. University of Bristol: Bristol, vol.125 2000 p.2125-2154.

BRUKER. Opus spectroscopy software version 7, Quant user manual. Bruker Optik Ettlingen, Germany, 2011

CARVALHAL, F, RODRIGUES, S., BERCHEZ, F. Mata Atlântica. Projeto Ecossistemas

Costeiros. Instituto de Biociências USP. 2009. Disponível em:< http://www.ib.usp.br/ecosteiros/textos_educ/mata/index.htm> Acesso em: 20 out. 2017

CARVALHO, D. C. et al. Carbono, Nitrogênio e Abundância Natural de δ13C do Solo em Coberturas Florestais. Floresta Ambient., Seropédica, Epub v. 24, 2017. Disponível em:<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-

80872017000100114&lng=en&nrm=iso>. Acesso em: 08 Set. 2017.

CEQUIER-SÁNCHEZ, E., RODRIGUEZ, C., RAVELO, A., ZARATE, R. Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Sample of Different Natures. Journal of Agricultural and Food Chemistry. Vol.56. 2008 p.4297-4303

CHIKARAISHI, Y., NARAOKA H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry. 63, 2003 p.361–371. CIOSLOWSKY, J. GUANGHUA, L. CASTRO, R. Badger’s rule revisited. Chemical Physics

Letters. 331. 2000 p.497-501

CLOERN, J.E.; CANUEL, E.A.; HARRIS, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography, 47, 2002 p.713–729.

COLLISTER, J.W. et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Organic Geochemistry 21: 1994 p. 619–627. COOPER, R. J., et al. High-temporal resolution fluvial sediment source fingerprinting with

COPLEN, T. B.; Reporting of stable Hydrogen, Carbon, and Oxygen Isotopic Abundances.

Pure & Appl. Chem. Vol. 66, No 2, 1994, p.273-276

COSTA, H. Subsídios para gestão dos recursos hídricos das bacias hidrográficas dos Rios

Macacu, São João, Macaé e Macabu. Rio de Janeiro: SEMA, 1999. 281p.

_________. Enchentes no estado do Rio de Janeiro: uma abordagem geral. Rio de Janeiro: SEMADS, 2001. 160 p.

COWIE, G.L.; HEDGES, J.I. Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature 369, 1994 p. 304–307

CRAIG, H. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica

Acta, vol. 3, 1953 p.53-92

CRITICAL ECOSYSTEM PARTNERSHIP FUND (CEPF). Perfil do Ecossistema Mata Atlântica Hotspot Biodiversidade Brasil. 2001. 29p. Disponível em: <http://www.cepf.net/Documents/Final.Portuguese.AtlanticForest.pdf> Acesso em: 01 out. 2017

DANTAS, J. R. C.; ALMEIDA, J. R.; LINS, G. A. Impactos ambientais na bacia hidrográfica de Guapi/Macacu e suas consequências para o abastecimento de água nos municípios do leste da Baía de Guanabara. Série Gestão e Planejamento

Ambiental, n10. Rio de Janeiro: CETEM/MCT,2008. 26p.

DAWSON, T. E. Water sources of plants as determined from xylem-water isotopic composition: perspectives on plant competition, distribution, and water relations. In: EHLERINGER, J.R.; HALL, A.E.; FARQUHAR, G.D. (eds) Stable isotopes and plant

carbonwater relations. Academic Press, USA: 1993 p. 465–496

DE LOS SANTOS-VILLALOBOS, S.; BRAVO-LINARES, C. ANJOS, R. M.; CARDOSO, R. P.; GIBBS, M.; SWALES, A, et al. The CSSIAR v.1.00 software: A new tool based

on SIAR to assess soil redistribution using Compund Specific Stable Isotopes.

SoftwareX 2017; 6: 13-18

DEMYAN, M. S.; et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid‐infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. European Journal of Soil Science. v. 63(2), 2012 p.189-199.

ENNIS, C.; MARCUS, N. Biological Consequences of Global Climate Change. Sausalito, California, 1996 63p.

FERNANDES, R. et al. Comparison of different methods for the determination of total

organic carbon and humic substances in Brazilian soils. Rev. Ceres, Viçosa: v.62,

n.5, 2015 p. 496-501. Disponivel em:

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-

737X2015000500496&lng=en&nrm=iso>. Acesso em: 06 Set 2017.

FIDALGO, E. C. C.; et al. Uso e cobertura da terra na bacia hidrográfica do rio Guapi-

Macacu. Rio de Janeiro, RJ: Embrapa Solos, 2008, 31p.

FIDALGO, E. C. C.; et al. Dinâmica de uso e cobertura da terra das bacias Guapi-Macacu

e Caceribu – Relatório e mapa de uso e cobertura da terra das bacias Guapi- Macacu e Caceribu. Rio de Janeiro, RJ: Embrapa Solos, 2011, 18 p.

FIRJAN – FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DO RIO DE JANEIRO. COMPERJ – Potencial de Desenvolvimento Produtivo. Estudo para o

Desenvolvimento do Estado do Rio de Janeiro, FGV, n.1, maio 2008. 43p.

FOGEL, M.L., TUROSS N. Extending the limits of paleodietry studies of humans with compound specific carbon isotope analysis of amino acids. Journal of

Archaeological Science, 30, 2003. p.535–545.

FRY, B. Stable Isotope Ecology. LA: Springer, 2006, 316p.

FU, Y. et al. Comparative analysis of three regression methods for the winter wheat biomass estimation using hyperspectral measurements. Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE), Paris: Atlantis Press, 2013. p.1733-1736

GELADI, P., KOWALSKI, B.R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1986 p.1–17

GIBBS, M. M. Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method. Estuaries and Coasts, v. 31(2), 2008. p. 344- 359.

___________ Protocols on the use of Compound-Specific Stable Isotope to identify and

apportion soil source from land use. Joint FAO/IAEA Division of Nuclear Techniques

in Food and Agriculture. 2010. 103p.

GLASER, B.; ZECH W. Reconstruction of climate and landscape changes in a high mountain lake catchment in the Gorkha Himal, Nepal during the Late Glacial and Holocene as deduced from radiocarbon and compound-specific stable isotope analysis of terrestrial, aquatic and microbial biomarkers. Organic Geochemistry, 36, 2005 p.1086–1098.

GRAHAM, M.C. et al. Investigation of extraction and clean-up procedures used in the quantification and stable isotopic characterization of PAHs in contaminated urban soils. Science of the Total Environment. 306, 2006, p.81-89

GRIFFITHS, P.R.; FULLER, M.P. Mid infrared spectrometry of powdered samples. In: R.J., Clark, R.E., Hester, eds. Advances in Infrared and Raman Spectroscopy London: Heyden and Son, 1982 pp.63-129.

GROB, R. L. Modern Practice of Gas Chromatography. 4 ed. John Wiley & Sons, 2004, 1054p.

GUERRERO, C. et al. Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy? Soil & Tillage Research Elsevier 2015 9p.

GUERRERO, C. et al. Assessment of soil organic carbon at local scale with spiked NIR calibrations: effects of selection and extra-weighting on the spiking subset.

European Journal of Soil Science n65, 2014 p.248-263.

HANCOCK, G.J., REVILL, A.T., Erosion source discrimination in a rural Australian catchment using compound-specific isotope analysis (CSIA). Hydrol. Process. 27, 2013. p.923–932.

HARKNESS, D. D. Radiocarbon dates from Antarctica. Br. Antarct. Surv. Bull. 47, 1979,

p.43-59

HAYES, J.M., et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry 16, 1990 p.1115– 1128.

HAYNES, R. J. Uptake and assimilation of mineral nitrogen by plants. In: HAYNES, R. J.

Mineral nitrogen in the plant-soil system. Madison: Academic Press, 1986. cap.6, p.

303-378.

HICKS, W.; ROSSEL, R.; TUOMI, S. Developing the Australian mid-infrared spectroscopic database using data from Australian Soil Resource Information System. Soil

Research. 2015 10p.

HOOGSTEEN, M. J. J., et al. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil

Science. V. 66(2), 2015 p. 320-328.

HORA, M. (coord). Projeto Macacu, Recursos Hidricos – CRH, UFF vol1 74p. Disponivel em: < http://www.uff.br/projetomacacu/relatorios/volume_1_crh.pdf> Acesso em: 29 ou 2017

IAEA – INTERNATIONAL ATOMIC ENERGY AGENCY, 2014. Guidelines for Using Fallout

Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies.

International Atomic Energy Agency Publication IAEA-TECDOC-1741.

IBEKWE, A.M., KENNEDY A.C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 206 1999 p.151– 161.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA Mapa de solos do

Brasil. Embrapa. 2014. Disponível em:

<https://mapas.ibge.gov.br/tematicos/solos.html> Acesso em: 16 out. 2017

ICMBIO – INSTITUTO CHICO MENDES DE CONSERVACAO DA BIODIVERSIDADE,

Gestão Integrada APA de Guapimirim e ESEC Guanabara, 2012. Disponível em

<http://www.icmbio.gov.br/apaguapimirim/> Acesso em: 23 out. 2017

IPCC – INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Sumario para os

Formuladores de Politicas. Quarto relatório de Avalição do GT1 do IPCC, 2007 25p.

JASEN, B., et al. The applicability of accelerated solvent extraction (ASE) to extract lipid biomarkers from soil. Applied Geochemistry 21, 2006, p. 1006-1015.

KOBRINA, Y. Infrared Microspectroscopic Cluster Analysis of Bone and Cartilage. Finland, 2014. 103p. Dissertation in Forestry and Natural Sciences.

MADEJOVÁ, J.; BALAN, E.; PETIT, S. Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. In Advances in the

Characterization of Industrial Minerals, CHRISTIDIS GE (ed.). European

Mineralogical Union and the Mineralogical Society of Great Britain and Ireland: London, UK; 2011 p.171– 226.

MAESSCHALK, R.D.; JOUAN-RIMBAUD D.; MASSART, D. The mahalanobis distance.

Chemometrics and Intelligent Laboratory Systems 50, 2000, p. 1-18.

MARTENS, H.; NÆS T., Near-infrared Technology in Agricultural and Food Industries.

American Association of Cereal Chemists, St. Paul, MN, 1987, 57p.

MARTIN, N.B. et al. Economia agrícola paulista: Características e potencialidades. Infor.

Econ., 21 1991 p.1-201.

MARTINELLI, 1991

McCARTY, G.W. et al. Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement. Soil. Sci. Soc. AM. J. vol.66, 2002. p.640-646.

MICHENER, R.H.; SCHELL, D.M. Stable isotope ratios as tracers in marine aquatic food webs. In: LAJTHA, K.; MICHENER, R.H. (eds) Stable isotopes in ecology and

environmental science. Blackwell, London, 1994 pp 138–157

MMA – MINISTERIO DO MEIO AMBIENTE Biomas Mata Atlântica. Disponível em: < http://www.mma.gov.br/biomas/mata-atlantica> Acesso em: 01 nov. 2017

MONTANARELLA, L. Trends in land degradation in Europe. In: SIVAKUMAR, M.V.K. & NDIANG'UI, N., eds. Climate and land degradation. New York, Springer, 2007. p.83- 104.

MORGAN, R.P.C. Soil Erosion & Conservation. 3ed. Blackwell Publishing Ltd. 2005. 303p.

NAES, T. et al. A user-friendly guide to Multivariate Calibration and Classification. NIR Publications, Chichester, UK, 2004 335p.

NAES, T. The Design of Calibration in Near Infra-red Reflectance Analysis by Clusterisng.

Journal of Chemometrics, vol. 1, 1987, p.121-134

NGUYEN, T.; JANIK, L. RAUPACH, M. Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy in Soil Studies. Aust. J. Soil Res. 29, 1991, p.49-67.

O’LEARY, M.H., Carbon isotope fractionation in plants, Phytochemistry 20, 1981 553 ONU. Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento

Sustentável. Disponível em: <https://nacoesunidas.org/pos2015/agenda2030/.>

Acesso em: 23 ago. 2017.

OSUNA, V. et al. Priority areas for watershed service conservation in the Guapi-Macacu region of Rio de Janeiro, Atlantic Forest, Brazil. Ecological Processes, 2014, 21p.

PALMER, G. et al. Climate change, climate variation and extreme biological reponses.

Philos Trans. R. Soc. Lond. Biol. Sci. 2017 15p.

PARK, R.; EPSTEIN, S., Carbon isotope fractionation during photosynthesis. Geochim.

Cosmochim. Acta 21, 1960 110p.

PARNELL, A. C., et al. Bayesian stable isotope mixing models. Environmetrics. 2013. 13p.

PEDREIRA, B. C. C. G.; et al. Dinâmica de uso e cobertura da terra nas bacias

hidrográficas do Guapi-Macacu e Caceribu – RJ. Rio de Janeiro, RJ: Embrapa

Solos, 2009, 66 p.

PERKINS, W.D. Fourier Transform Infrared Spectroscopy. Advantages of FT-IR J. Chem.

Educ. 64 p A269-A271.

PESSENDA, L. C. R. et al. The use of carbon isotopes (13C,14C) in soil to evaluate

vegetation changes during the Holocene in central Brazil. Radiocarbon, vol.38, no 2, 1996 p.191-201.

PETERSON, B.; FRY, B. Stable Isotopes in Ecosystem Studies. Ann. Rev. Ecol. Syst. 18, 1987, p.293-320.

PHILLIPS, D. L.; GREGG, J. W. Source partitioning using stable isotopes: coping with too many sources. Ecosystems Ecology Oecologia 136, 2003, p.261-269

PIMENTEL, D.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1995 p.1117-1123.

RAMOS, G. S. Espécies florestais indicadas para restauração de ambientes ciliares da bacia hidrográfica do rio Guapi-Macacu. VIII CBA-Agroecologia – Ambiente e

REIFFARTH, D. G. et al. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review. Science of the Total Environment, 565, 2016, p.8-27

RIBEIRO, M. C. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 149, 2009, p.1141-1153.

RODRIGUES, J. Espectroscopia de Infravermelhos (FTIR) – Laboratório Online, 2014. Disponível em: <http://www.fciencias.com/2014/11/13/espectroscopia-de- infravermelhos-ftir-laboratorio-online/> Acesso em: 03 nov. 2017

ROSSEL, R. A.; BEHRENS T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158 (1-2), 2010, p.46–54

ROSSEL, R. et al. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 2005, p.59-75

RUMPEL, C. et al. Qualification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry 32, 2001, p.831-839.

SCHUMACHER, B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency. National Exposure Research Laboratory, Las Vegas, 23p. Disponível em: <http://bcodata.whoi.edu/LaurentianGreatLakes_Chemistry/bs116.pdf> Acesso em: 13 nov 2017

SENA, M.; POPPI, R. Avaliação do uso de métodos quimiométricos em analise de solos.

Quimica Nova, 23(4), 2000 p.547-556.

SHARMA, S. Applied multivariate techniques. New York: John Wiley & Sons, 1996.

SHARP, Z. Principles of Stable Isotope Geochemsitry. 2nd Edition. 2017 384p.

SHELDON, K.; DILLON, M. Beyond the Mean: Biological Impacts of Cryptic Temperature Change. Integrative and Comparative Biology, 2016, 10p.

SHI, T. et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil. 336, 2013 p. 366-375

SODERBERG, T. Organic Chemistry with a Biological Emphasis. Vol. 1 Chaps. 1-8, University of Minnesota, 2016 467p.

SORIANO-DISLA, J. et al. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties, Applied Spectroscopy Reviews, 49:2, 2014, p.139-186

SORRENSON, W.J. & MONTOYA, L.J. Implicações econômicas da erosão do solo e do

uso de algumas práticas conservacionistas no Paraná. Londrina, IAPAR, 1989.

104p.

SOSMA – FUNDAÇÃO SOS MATA ATLÂNTICA. Atlas dos remanescentes florestais da

mata atlântica período 2011-2012. 2013. Disponível em: <https://www.sosma.org.br/wp-content/uploads/2013/06/atlas_2011-

2012_relatorio_tecnico_2013final.pdf> Acesso em: 16 out. 2017

STENBERG, B. et al. Visible and Near Infrared Spectroscopy in Soil Science. In SPARKS, D. Advances in Agronomy, Vol. 107, Burlington: Academic Press, 2010, p.163-215.

STUART, B. Infrared Spectroscopy: Fundamentals and Applications. Analytical Techniques in the Science, 2004, 221p.

TELLES, T.; GUIMARAES, M.; DECHEN, S. The costs of soil erosion. Rev. Bras. Ciênc.

Solo, Viçosa , v. 35, n. 2, 2011 p. 287-298.

TERRA, F. Espectroscopia de refletância do visível ao infravermelho médio aplicada aos estudos qualitativos e quantitativos de solos. Universidade de São Paulo, Escola Superior de Agricultura, 2011. 375 p.

THERMO FISHER SCIENTIFIC Flash EA for IRMS Operationg Manual, 2011 212p.

THOMPSON, D.; FIDALGO, E. C. C. Vulnerabilidade dos Solos à Erosão: Estimativa da

Perda de Solos na Bacia Hidrográfica do Rio Guapi-Macacu-RJ. Rio de Janeiro,

RJ: Embrapa Solos, 2009. 30p.

TIECHER, T., et al. Tracing Sediment Sources Using Mid-Infrared Spectroscopy Land Degrad. Develop., 28, 2017 p.1603–1614.

TINTI, A., et al. Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture, 16(1), 2015 p.1-22

UNDP – UNITED NATIONS DEVELOPMENT PROGRAMME, Making Globalization Work

for All. 2007 48p.

UNICAMP – UNIVERSIDADE ESTADUAL DE CAMPINAS. Carta de Nuclídeos, 2017.

Disponível em<

http://www.ifi.unicamp.br/~fauth/3RadioatividadeeParticulas/1AlfaBetaGama/Alfab etaegama.html> Acesso em: 20 out. 2017

VASQUEZ, G. M.; GRUNWALD, S.; SICKMAN, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 146, 2008 p.14-25

VOGEL, J. C. Variability of carbon isotope fractionation during photosynthesis. In: EHLERINGER, J. R.; HALL, A. E.; FARQUHAR, G. D. (Ed.). Stable isotopes and

plant carbon: water relations. San Diego: Academic Press, 1993. cap.4, p. 29-46.

WADA, E. Stable 15 N and 13 C isotope rations in aquatic ecosystems. Proc. Jpn. Acad. Ser. B. vol. 85, 2009 p.98-107

WALRAVEN, N., et al. Trace element concentrations and stable lead isotopes in soils as tracers of lead pollution in Graft-DeRijp, Netherlands. J. Geochem. Explor. 59, 1997, p.47–58

WANG, X., WANG, J.; ZHANG, J. Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. Ed. David L. Kirchman. PLoS ONE 7.8, 2012.

WARD, J. H. Hierarquical grouping to optimize an objective function. Journal of the

American Statistical Association, v. 58, 1963 p. 236 – 244.

WHITE, P.; POTTER, T.; STRICKLAND, T. Pressurized Liquid Extraction of Soil Microbial Phospholipid and Neutral Lipid Fatty Acids. J. Agric. Food Chem. 57, 2009, p.7171- 7177.

WICKHAM, S. M.; TAYLOR, H. P. Stable isotope constraints on the origin and depth of penetration of hydrothermal fkuids associated with Hercynian regional metamorphism and crustal anataxis in the Pyrenees. Contrib. Mineral Petrol, 95,

WILLIAMS, M.A.; MYROLD D.D.; BOTTOMLEY P.J. Carbon flow from 13C-labeled straw and root residues into the phospholipid fatty acids of a soil microbial community under field conditions. Soil Biology and Biochemistry 38 2006 p.759–768.

WOLD, S.; MARTENS, H.; WOLD, H. The multivariate calibration problem in chemistry solved by the PLS method. In: KÅGSTRÖM B., RUHE A. (eds) Matrix Pencils. Lecture Notes in Mathematics, Berlin: Springer, vol 973., 1983. p. 286-293

WRIGHT, A.; WANG, Y.; REDDY, K. R. Loss-on-Ignition Method to Assess Soil Organic Carbon in Calcareous Everglades Wetlands, Coomunications in soil Science and

Plant Analysis, 39, 2008, p.3074-3083

WU, Y., et al. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma 150, 2009, p.171-178.

YANG, H.; MOUAZEN, A.M. Vis/near and mid-infrared spectroscopy for predicting soil N and C at a farm scale. In Infrared Spectroscopy-Life and Biomedical Sciences, Theophanides T (ed.). Intech Press: Rijeka, Croatia; 2012, p.185–210.

ZAPATA, F., Handbook for the Assessment of Soil Erosion and Sedimentation Using

Environmental Radionuclides. Kluwer Academic Publishers, 1a Ed., New York,