• Nenhum resultado encontrado

BIBLIOGRAFIA

Efeito de dois Fármacos Antineoplásicos (Cisplatina e

Dimetilaminopartenolídeo) a nível dos Parâmetros de Stresse Oxidativo no

Fígado de Murganhos com Cancro da Bexiga Induzido com N-Butil-N-(4-

[1] Kamangar, F., G.M. Dores, and W.F. Anderson. (2006) Patterns of cancer incidence,

mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. Journal Clinical Oncology, 24 (14),

2137-50.

[2] Organization, W.H. (2007). World Health Statistics. WHO Press, Geneva.

[3] Tomris O. (2006). Oxidative Stress and Apoptosis: Impact on Cancer Therapy. Journal of Pharmaceutical Sciences (96), 2181–96.

[4] Ramos-Vara, A.J., (2005). Technical Aspects of Immunohistochemistry. Vet. Pathol. (45), 405-426.

[5] Kusewitt D. F. and Rush L. J. (2013). Neoplasic and Tumour Biology. In “Pathologic Basis

of Veterinary Disease. 5ª Edição. Elsevier Health Sciences, (8), 289-320.

[6] Jose C., Bellance, and N., Rossignol R. (2010). Choosing between glycolysis and oxidative

phosphorylation: A tumor's dilemma? Biochim Biophys Acta. 1807 (6), 61-78.

[7] Coleman, W. B. and G. J. Tsongalis. (2006). Molecular mechanisms of human

carcinogenesis. EXS (96), 321-349.

[8] Hanahan, D. and R. A. Weinberg (2000). The hallmarks of cancer. Cell. 100 (1), 57-70.

[9] Hanahan, D. and R. A. Weinberg (2011). Hallmarks of cancer: the next generation. Cell. 144 (5), 646-674.

[10] Rabinovich, G. A., Gabrilovich D. and E. M. Sotomayor (2007). Immunosuppressive

strategies that are mediated by tumor cells. Annu Rev Immunol, (25), 267-296.

[11] Colotta, F., Allavena P., Sica A., Garlanda C. and Mantovani A. (2009). Cancer-related

inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30

(7), 1073-1081.

[12] Stamouli M., Panani A.D., Ferti A.D., Petraki C., Oliver R.T., Raptis S.A., and Young B.D. (2004). Detection of genetic alterations in primary bladder carcinoma with dual-color

[13] Jemal A, Bray F, Center MM, Ferlay J, Ward E, and Forman D (2011). Global cancer

statistics. CA Cancer J Clin, 61 (2), 134-156.

[14] Leppert, J. T. (2006). Prevention of Bladder Cancer: A Review. European Urology 49 (2), 226–34.

[15] Prabhu, B. (2014). Protective Effect of Diindolylmethane against N-Butyl-N-(4-

Hydroxybutyl) Nitrosamine-Induced Bladder Carcinogenesis. Journal of Experimental and

Clinical Medicine, 6 (4), 132–38.

[16] Stein JP and Skinner DG. (2006). Radical cystectomy for invasive bladder cancer. Long-

term results of a standard procedure. World Journal Urology, (3), 296 –304.

[17] American Cancer Society (2011). Global Cancer Facts and Figures 2nd Edition. Atlanta:

American Cancer Society.

[18] Braud F, Maffezzini M, Vitale V, Bruzzi P, Gatta G, Hendry WF, and Sternberg CN (2002). Bladder cancer. Critical Reviews in Oncology/Hematology (41), 89–106.

[19] Squire R.A. (1998). Classification and differential diagnosis of neoplasms, urinary tract,

rat. In: Monographs on Pathology of laboratory animals, Urinary system. Eds. Jones TC, Hard

GC, Mohr U, Second edition Springer, New York, (9), 69-74.

[20] Shirai T, Yoshiki T, and Itoh T. (1977). Synthesis of alpha-fetoprotein by human yolk sac

tumor transplanted into nude mice. European Urology 68, 847-849.

[21] Cohen S.M., and Friedell GH. (1982). Neoplasms of the urinary system. In: The mouse in

biomedical research. Academic press, New York, (5), 439-463.

[22] Oyasu R. (1995). Epithelial tumours of the lower urinary tract in humans and rodents. Food Chem Toxicol, (33), 747-755.

[23] Frith C.H, Eighmy J.J, Fukushima S, Cohen S.M, Squire R.A, and Chandra M. (1995).

Proliferative lesions of the lower urinary tract in rats. In: Guide for Toxicol Pathology.

[24] Okajima E, Hiramatsu T, Hirao K, Ijuin M, Hirao Y, Babaya K, Ikuma S, Ohara S, Shiomi T, Hijioka T, and Ohishi H. (1981). Urinary bladder tumors induced by N-butyl-N-

(4hydroxybutyl) nitrosamine in dogs. Cancer Res, (41), 89-105.

[25] Zhiming, H., Kosinska, W., Zhao, L. Z., Wu, R.X and Guttenplan, B.J. (2012). Tissue-

Specific Mutagenesis by N-Butyl-N-(4-Hydroxybutyl)nitrosamine as the Basis for Urothelial Carcinogenesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 742

(1-2), 92–95.

[26] George, and Suraj Konnath (2013). Chemoprevention of BBN-Induced Bladder

Carcinogenesis by the Selective Estrogen Receptor Modulator Tamoxifen. Translational

oncology, 6 (3), 244–55.

[27] Ronald A. L. (2005). 4-Hydroxybutyl(butyl)nitrosamine-Induced Urinary Bladder

Cancers in Mice: Characterization of FHIT and Survivin Expression and Chemopreventive Effects of Indomethacin. Carcinogenesis, 26 (3), 571–78.

[28] Lamson, D. W, and Brignall, M. S. (1999). Antioxidants in cancer therapy; their actions

and interactions with oncologic therapies. Altern. Med. Rev., Sanpoint, 23 (5), 304-29.

[29] Pieniążek J. Czepas J. Piasecka-Zelga, K. Gwoździński, and Koceva-Chyła. (2013).

Oxidative Stress Induced in Rat Liver by Anticancer Drugs Doxorubicin, Paclitaxel and Docetaxel. Advances in medical sciences, 58 (1), 104–11.

[30] Kartalou, M. and Essigmann, J. (2001). Mechanisms of resistance to cisplatin.

Fundamental and molecular mechanisms of mutagenesis. Jornal of Cambridge, (6), 23-43.

[31] Costa, G.M.R., Bastos, M.S.M.M., Medeiros, R., and Oliveira, A.P (2016). The NFĸB

Signaling Pathway in Papillomavirus-induced Lesions: Friend or Foe? Anticancer Research,

(36), 2073-2084.

[32] Roshak, A., Callahan, J., and Blake, S. (2002). Small-molecule inhibitors of NF-κB for the

treatment of inflammatory joint disease. Current Opinion in Pharmacology , (2), 316-321.

[33] Uwe, S. (2008). Anti-inflammatory interventions of NF-κB signaling: potential

[34] Jamieson E.R, and S.J, Lippard. (1999). Structure, Recognition , and Processing of

Cisplatin − DNA Adducts. Chemical Reviews, 99 (9), 2467–98.

[35] Yolanda I. C and Pedraza-Chaverri. J. (2009). Role of Oxidative and Nitrosative Stress in

Cisplatin-Induced Nephrotoxicity. Experimental and Toxicologic Pathology, 61 (3), 223–42.

[36] Ohmichi, M., Hayakawa, J., Tasaka, K., Kurachi, H., and Murata, Y. (2005). Mechanisms

of platinum drug resistance. Trends in Pharmacol Sci, 26 (3) 113-116.

[37] Sonali, S. (2015). Vetiver Oil (Java) Attenuates Cisplatin-Induced Oxidative Stress,

Nephrotoxicity and Myelosuppression in Swiss Albino Mice. Food and Chemical Toxicology,

(81), 120–28.

[38] Zeba, F., Afsar, M., Rizwan, S., Khan, A. A., and Khan. F. (2016). Oral Administration of

Nigella Sativa Oil Ameliorates the Effect of Cisplatin on Membrane Enzymes, Carbohydrate Metabolism and Oxidative Damage in Rat Liver. Toxicology Reports (3), 328–35.

[39] Lee, R. H., Song, J. M., Park, M.Y., and Kang, S. K. (2001). Cisplatin-induced apoptosis

by translocation of endogenous Bax in mouse collecting duct cells. Biochem. Pharmacol.,

Oxford, 62 (8), 1013-23.

[40] Longo, V., P. G. Gervasi, and V. Lubrano. (2011). Cisplatin Induced Toxicity in Rat

Tissues: The Protective Effect of Lisosan G. Food and Chemical Toxicology, 49 (1), 233–37.

[41] Wang, and Fugen. (2014). Protective Effects of N-Acetylcysteine on Cisplatin-Induced

Oxidative Stress and DNA Damage in HepG2 Cells. Experimental and Therapeutic Medicine,

8 (6), 1939–45.

[42] Shanmugam, R., Kussumanchi, P., Appaiah, H., Cheng, L., Crooks, P., Neelakantan, S., Peat, T., Klaunig, J., Matthews, W., Nakshatri, H., and Sweeney, J. C. (2011). A water soluble

parthenolide analogue suppresses in vivo tumor growth of two tobacco associated cancers, lung and bladder cancer, by targeting NF-kB and generating reactive oxygen species. Institute

journal of cancer, (12), 2481-2494.

[43] Amorim, R.H.M., Costa, G.M.R., Lopes, C., and Bastos, M.S.M.M. (2013). Sesquiterpene

[44] Akram, G., Sinjab, A., Herceg, Z. and Darwiche. N. (2013). Parthenolide: From Plant

Shoots to Cancer Roots. Drug Discovery Today, 18 (17-18), 894–905.

[45] Long, Jing, Ya-Hui Ding, Pan-Pan Wang, Quan Zhang, and Yue Chen. 2016. Total

Syntheses and Structure–activity Relationship Study of Parthenolide Analogues. Tetrahedron

Letters, 57 (8), 874–77.

[46] Bhakta, M. V., Koh, Y. S., Thakuri, B. C., and Sillanpää M. (2012). Parthenolide, a

Sesquiterpene Lactone, Expresses Multiple Anti-Cancer and Anti-Inflammatory Activities.

Inflammation, 35 (2), 560–65.

[47] El-Beshbishy, Hesham A., Saleh A. Bahashwan, Hamdy A. A. Aly, and Hesham A. Fakher. (2011). Abrogation of Cisplatin-Induced Nephrotoxicity in Mice by Alpha Lipoic Acid

through Ameliorating Oxidative Stress and Enhancing Gene Expression of Antioxidant Enzymes. European Journal of Pharmacology 668(1-2), 278–84.

[48] Francescato, C. D. H., Costa, S. R., Scavone, C., and Coimbra, M. T. (2007). Parthenolide

reduces cisplatin-induced renal damage. Elsevier, (2), 64-75.

[49] Halil Ozkol H., Musa D., Yasin Tuluce Y., and Koyuncu I. (2011). Ameliorative influence

of Urtica dioica L against cisplatininduced toxicity in mice bearing Ehrlich ascites carcinoma.

Drug and Chemical Toxicology, (5) 1–7.

[50] Yu Y. N., Chen H., and Li Y. (2009). Protect effect of bicyclol on cisplatin induced

nephrotoxicity in mice. Arch Toxicol, (83), 381–387.

[51] Gu, Xinsheng and Jose E. Manautou. (2013). Molecular Mechanisms Underlying

Chemical Liver Injury. Expert Rev Mol Med, (87), 67-97.

[52] Jaeschke, H. (2002). Mechanisms of Hepatotoxicity. Toxicological Sciences, 65 (2), 166– 76.

[53] Stehbens, and William E. (2003). Oxidative Stress, Toxic Hepatitis, and Antioxidants with

[54] Sturgill, Marc G. and George H. Lambert. (1997). Xenobiotic-Induced Hepatotoxicity:

Mechanisms of Liver Injury and Methods of Monitoring Hepatic Function. Clinical Chemistry,

(43), 1512–26.

[55] Oliveira, M. M., Teixeira, J. C., Vasconcelos-Nobrega, C., Félix, L. M., Sardão, V.A., Colaço, A. A., Oliveira, P. A., and Peixoto, F. P. (2011). Mitochondrial and Liver Oxidative

Stress Alterations Induced by N-Butyl-N-(4-Hydroxybutyl)nitrosamine: Relevance for Hepatotoxicity. Journal of Applied Toxicology, 33(6), 434–43.

[56] Shaloam, D. and Tchounwou. P. B. (2014). Cisplatin in Cancer Therapy: Molecular

Mechanisms of Action. European Journal of Pharmacology 740, 364–78.

[57] Gianluca, T., Vascotto, C. and Tiribelli, C. (2013). Alterations in the Redox State and Liver

Damage: Hints from the EASL Basic School of Hepatology. Journal of Hepatology, (58), 365–

74.

[58] Karp, G. (2010) Cell and Molecular Biology – Concepts and Experiments. 2th Edition, Wiley, USA, 34- 56.

[59] Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E. and Chan, D.C. (2003).

Mitofusions Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology, (160), 189-200.

[60] Frey, T.G. and Mannella, C.A. (2000). The internal structure of mitochondria. Trends in Biochemical Sciences, (25), 319-324.

[61] Houten, B.V., Woshner, V. and Santos, J.H. (2006). Role of mitochondrial DNA in toxic

responses to oxidative stress. DNA Repair, (5), 145-152.

[62] Sas, K., Robotka, H., Toldi, J. and Vécse, L. (2007). Mitochondria, metabolic

disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. Journal of Neurological Sciences, (257), 221-239.

[63] Dudkina, N.V., Kouril, R., Peters, K., Braun, H. and Boekema, E.J. (2010). Structure and

[64] Kehrer J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, (149), 43–50.

[65] Karima, B., Massart, J., Robin M. A., Borgne-Sanchez, A. and Fromenty, B. (2011). Drug-

Induced Toxicity on Mitochondria and Lipid Metabolism: Mechanistic Diversity and Deleterious Consequences for the Liver. Journal of Hepatology, 54 (4), 773–94.

[66] Maor, Y. and S. Malnick. (2013). Liver Injury Induced by Anticancer Chemotherapy and

Radiation Therapy. Internacional Journal Corporation, (2), 4-8.

[67] Bodea, F., Bocea, A., and Decea, N. (2010). L-carnitine decreases oxidative stress induced

by experimental hypobaric hypoxia. Pediatric Endocrinology, Diabetes and Metabolism, 16 (2),

78-81.

[68] Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J. (2007). Free

radicals and antioxidants in normal physiological functions and human disease. The

international journal of biochemistry & cell biology, 39 (1), 44-84.

[69] Sordillo, L.M. and Aitken, S.L. (2009). Impact of oxidative stress on the health and

immune function of dairy cattle. Veterinary Immunology and Immunopathology, (128), 104-

109.

[70] Pisoschi, A.M. and Pop, A. (2015). The role of antioxidants in the chemistry of oxidative

stress: A review. European Journal of Medicinal Chemistry, (97), 55-74.

[71] Pacheco L., and Gonsebatt. J. M. (2009). The Role of Antioxidants and Antioxidant-Related

Enzymes in Protective Responses to Environmentally Induced Oxidative Stress. Mutation

Research - Genetic Toxicology and Environmental Mutagenesis, 674 (1-2), 137–47.

[72] Navrot, N., Rouhier, N., Gelhaye, E., and Jacquot, J. P. (2007). Reactive oxygen species

generation and antioxidant systems in plant mitochondria. Physiologia Plantarum, 129 (1),

185-195.

[73] Wu, J.Q., Kosten, T.R. and Zhang, X.Y. (2013). Free radicals, antioxidant defense

systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry,

[74] Mehrotra, S., Kakkar, P., and Viswanathan, P. (1991). Mitochrondrial damage by active

oxygen species in vitro. Free Radical Biology and Medicine, 10 (5), 277-285.

[75] Abreu, R. M., Santos, D. J., and Moreno, A. J. (2000). Effects of carvedilol and its analog

BM-910228 on mitochondrial function and oxidative stress. Journal of Pharmacology and

Experimental Therapeutics, 295 (3), 1022-1030.

[76] Huc, L., Lemarié, A., Guéraud, F., and Héliès-Toussaint, C. (2012). Low concentrations

of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicology in Vitro, 26 (5), 709-717.

[77] Sousa, T., J. Afonso, F. Carvalho, and A. Albino-Teixeira. (2012). Lipid Peroxidation and

Antioxidants in Arterial Hypertension. Lipid peroxidation, (30), 345–92.

[78] Nordberg, J. and Arnér, E.S.J. (2001). Reactive oxygen species, antioxidants, and the

mammalian thioredoxin system. Free radical biology & Medicine, (31), 1287-1312.

[79] Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006). Free radicals,

metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions,

(160), 1-40.

[80] Marrs, K.A. (1996). The functions and regulation of Glutathione-S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology, (47), 127-158.

[81] Gornall, A. G., Bardawill, C. J., and David, M. M. (1949). Determination of serum proteins

by means of the biuret reaction. Journal of Biological Chemistry, 177 (2), 751-766.

[82] Payá, M., Halliwell, B., and Hoult, J. R. S. (1992). Interactions of a series of coumarins

with reactive oxygen species: Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochemical Pharmacology, 44 (2), 205-214.

[83] del Río, L. A., Ortega, M. G., López, A. L., and Gorgé, J. L. (1977). A more sensitive

modification of the catalase assay with the Clark oxygen electrode: Application to the kinetic study of the pea leaf enzyme. Analytical Biochemistry, 80 (2), 409-415.

[85] Hatton, P. J., Dixon, D., Cole, D. J., and Edwards, R. (1996). Glutathione Transferase

Activities and Herbicide Selectivity in Maize and Associated Weed Species. Pesticide Science,

46 (3), 267-275.

[86] Carlberg, I., and Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology, (113), 484-490.

[87] Ottolenghi, A. (1959). Interaction of ascorbic acid and mitochondrial lipides. Archives of Biochemistry and Biophysics, 79 (0), 355-363.

[88] Halliwell, B., and Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine. New York: Oxford University Pres, (4), 120-140.

[89] Brown, R., and Kelly, F. (1996). Peroxides and other products. Free Radicals, a practical approach, (40), 119-131.

[90] Kappus, H. (1985). Lipid peroxidation: mechanisms, analysis, enzymology and biological

relevance. Oxidative stress, (43), 273-310.

[91] Hissin, P. J., and Hilf, R. (1976). A fluorometric method for determination of oxidized and

reduced glutathione in tissues. Analytical Biochemistry, 74 (1), 214-226.

[92] Volkl, A., and Fahimi, H. D. (1985). Isolation and characterization of peroxisomes from

the liver of normal untreated rats. European Journal of Biochemistry, 149 (2), 257-265.

[93] Dykens, J. A., andWill, Y. (2008). Drug-induced mitochondrial dysfunction. United States of America, Wiley, (87), 678-988.

[94] Melo, T.;Videira, R. A.,Andre, S.;Maciel, E., Francisco, C.S., Oliveira-Campos, A. M., Rodrigues, L. M., Domingues, M. R., Peixoto, F., and Manuel Oliveira, M. (2012). Tacrine and

its analogues impair mitochondrial function and bioenergetics: a lipidomic analysis in rat brain. J Neurochem, (120), 998-1013.

[95] Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., and Angelini, C. (2012). Assessement

of mitochondrial chain enzymatic activities on tissues and cultured cells. Nature America, (1)

[96] Sorg, O. (2004). Oxidative stress: a theoretical model or a biological reality. Comptes Rendus Biologies, 327 (7), 649-662.

[97] Duridano, B. and Milka S. Setchenska. (2003). Effect of Cisplatin and Cobalt Chloride on

Antioxidant Enzymes in the Livers of Lewis Lung Carcinoma-Bearing Mice : Protective Role of Heme Oxygenase. Toxicology Letters, (138), 235–42.

[98] Mathema, Vivek Bhakta, Young Sang Koh, Balkrishna Chand Thakuri, and Mika Sillanpää (2012). Parthenolide, a Sesquiterpene Lactone, Expresses Multiple AntiCancer and

Anti-Inflammatory Activities. Inflammation, 35 (2), 560–65.

[99] Al-Malki. L. A., Sayed. R.A.A, (2014). Thymoquinone attenuates cisplatin-induced

hepatotoxicity via nuclear factor kappa- β. BMC Complementary and Alternative Medicine,

(14), 282.

[100] Fasihi M., Ghodratizadeh S., and Ghodratizadeh S. (2012). Protective Effect of Captopril

on Cisplatin Induced Hepatotoxicity in Rat. American-Eurasian Journal of Toxicological

Sciences 4 (3), 131-134.

[101] Ko J. W., Lee C. I., Park H.S., Moon C, Kang S.S., Kim H.S., and Kim C.J. (2014). Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats. Laboratory Animal Research, 30 (4), 174-180.

[102] Nishikawa, Makiya, Mitsuru Hashida, and Yoshinobu Takakura. (2009). Catalase

Delivery for Inhibiting ROS-Mediated Tissue Injury and Tumor Metastasis. Advanced Drug

Delivery Reviews, (61), 319–26.

[103] Mohamed T. E and Elkady A.A. (2016). Erdosteine Modulates Hepatotoxic Effect on

Rats Treated with Cisplatin. Arab Journal of Nuclear Science and Applications, 94 (4 ), 86-93.

[104] Naqshbandi A., W Khan W., Rizwan S., and Khan F. (2012). Studies on the protective

effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human and Experimental Toxicology,

(5), 1–12.

[105] Naseem I., Hassan I., Alhazza I.M., and Chibber S. (2014). Protective effect of riboflavin

on cisplatin induced oxicities: A gender-dependent study. Journal of trace Elements, (14), 157-

[106] Dkhil A.M., Al-Quraishy S., Aref A., Othman S.M., El-Deib K., and Moneim A. E.A. (2013). The Potential Role of Azadirachta indica Treatment on Cisplatin-Induced

Hepatotoxicity and Oxidative Stress in Female Rats. Oxidative Medicine and Cellular

Longevity, (1), 9.

[107] Menezes, C.C., Fonseca, B.M., Loro, L.V., Santi, A., Cattaneo, R., Clasen, B., Pretto, A., and Morsch, M.V. (2011). Roundup Effects on Oxidative Stress Parameters and Recovery

Pattern of Rhamdia quelen. Archive Environmental Toxicology, (60), 665–671.

[108] Cagin, Y.F. (2015). Protective Effects of Apocynin on Cisplatin-Induced Hepatotoxicity

in Rats. Archives of Medical Research, (46), 517–26.

[109] Pratibha.R, Sameer.R, Rataboli P.V, Bhiwgade D.A, and Dhume C.Y. (2006). Enzymatic

studies of cisplatin induced oxidative stress in hepatic tissue of rats. European Journal of

Pharmacology, (53), 290–293.

[110] Townsend, D. M., Tew, K. D., and Tapiero, H. (2003). The importance of glutathione in

human disease. Biomedicine & Pharmacotherapy, 57 (3), 145-155.

[111] Lee, and Sung Kwon. (2015). Glutathione S-Transferase Pi (GST-Pi) Inhibition and Anti-

Inflammation Activity of the Ethyl Acetate Extract of Streptomyces Sp. Strain MJM 8637. Saudi

Journal of Biological Sciences, 22 (6), 744–51.

[112] Farooqui, Zeba, Mohammad Afsar, Sana Rizwan, Aijaz Ahmed Khan, and Farah Khan. (2016). Oral Administration of Nigella Sativa Oil Ameliorates the Effect of Cisplatin on

Membrane Enzymes, Carbohydrate Metabolism and Oxidative Damage in Rat Liver.

Toxicology Reports, (3), 328–35.

[113] Yu H. (2005). Kinetic Studies on the Glutathione Peroxidase Activity of Selenium-

Containing Glutathione Transferase. Comparative biochemistry and physiology, 141 (3), 382–

89.

[114] Sordillo, L.M. and Aitken, S.L. (2009). Impact of oxidative stress on the health and

immune function of dairy cattle. Veterinary Immunology and Immunopathology, (128), 104-

[115] Dasari, Shaloam and Paul Bernard Tchounwou. (2014). Cisplatin in Cancer Therapy:

Molecular Mechanisms of Action. European Journal of Pharmacology, (740), 364–78.

[116] Martins, N. M., N. A. G. Santos, C. Curti, M. L. P. Bianchi, and A. C. Santos, (2008).

Cisplatin Induces Mitochondrial Oxidative Stress with Resultant Energetic Metabolism Impairment, Membrane Rigidification and Apptosis in Rat Liver. Journal of applied toxicology

(28), 337–44.

[117] Waseem, Mohammad, Priyanka Pandey, Babita Tomar, Sheikh Raisuddin, and Suhel Parvez. (2014). Ameliorative Action of Curcumin in Cisplatin-Mediated Hepatotoxicity: An in

Vivo Study in Wistar Rats. Archives of Medical Research, (45), 462–68.

[118] Bocea, A., and Decea, N. (2010). L-carnitine decreases oxidative stress induced by

experimental hypobaric hypoxia. Pediatric Endocrinology, Diabetes and Metabolism, 16 (2),

78-81.

[119] Hassan, Z. K., Elobeid, M. A., Virk, P., Omer, S. A., ElAmin, M., Daghestani, M. H., and AlOlayan, E. M. (2012). Bisphenol A induces hepatotoxicity through oxidative stress in rat

model. Oxidative Medicine and Cellular Longevity, (4), 194-829.

[120] Townsend, D. M., Tew, K. D., and Tapiero, H. (2003). The importance of glutathione in

human disease. Biomedicine & Pharmacotherapy, 57 (3), 145-155.

[121] El-Beshbishy, Hesham A., Saleh A. Bahashwan, Hamdy A. A. Aly, and Hesham A. Fakher. (2011). Abrogation of Cisplatin-Induced Nephrotoxicity in Mice by Alpha Lipoic Acid

through Ameliorating Oxidative Stress and Enhancing Gene Expression of Antioxidant Enzymes. European Journal of Pharmacology, 668 (1-2), 278–84.

[122] Gaona-Gaona L., Molina-jijóna E., Tapiab E., Zazuetac C., Hernández-Pandod R., Calderón-Olivera M., Zarco-Márqueza G., Pinzóne E., and Pedraza-Chaverria J. (2011).

Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology, (286), 20– 27.

[123] Kart, Asim, Yilmaz Cigremis, Musa Karaman, and Hasan Ozen. (2010). Caffeic Acid

Phenethyl Ester (CAPE) Ameliorates Cisplatin-Induced Hepatotoxicity in Rabbit.

[124] Nasr, and Ashraf Y. (2014). Protective Effect of Aged Garlic Extract against the

Oxidative Stress Induced by Cisplatin on Blood Cells Parameters and Hepatic Antioxidant Enzymes in Rats. Toxicology Reports, (1), 682–91.

[125] Rehman M.U. (2014). Alleviation of Hepatic Injury by Chrysin in Cisplatin Administered

Rats: Probable Role of Oxidative and Inflammatory Markers. Pharmacological Reports, 66 (6),

1050–59.

[126] Kharbangar. A., Khynriam. D., and Prasad, S.B. (2000). E¡ect of cisplatin on mitochondrial

protein, glutathione, and succinate dehydrogenase in Dalton lymphoma-bearing mice. Cell

Biology and Toxicology, (16), 363-373.

[127] Volkl, A., and Fahimi, H. D. (1985). Isolation and characterization of peroxisomes from

the liver of normal untreated rats. European Journal of Biochemistry, 149 (2), 257-265.

[128] Longo, V., P. G. Gervasi, and V. Lubrano. (2011). Cisplatin Induced Toxicity in Rat

Tissues: The Protective Effect of Lisosan G. Food and Chemical Toxicology, 49 (1):233–37.

[129] Neustadt J., and Pieczenik S. R. (2008) Medication-induced mitochondrial damage and

disease. Mol. Nutr. Food Res, (52), 780 – 788.

[130] Fernández-Rojas B., Rodríguez-Rangel D. S., Granados-Castro L. F., Negrette-Guzmán M., Contreras -León J. C., Hernández-Pando R., Molina-Jijón E., Reyes J., Zazueta C., and Pedraza-Chaverri J. (2015) C-phycocyanin prevents cisplatin-induced mitochondrial

dysfunction and oxidative stress. Mol. Cell. Biochem, (406), 183-97.

[131] Kruidering M., Van de Water B., De Heer E., Mulder G. J., and Nagelkerke J. F. (1996)

Cisplatin-Induced Nephrotoxicity in Porcine Proximal Tubular Cells: Mitochondrial Dysfunction by Inhibition of Complexes I to IV of the Respiratory Chain. The journal of

Documentos relacionados