• Nenhum resultado encontrado

Brief Concluding Remarks on Avicel and CNCs

130 °C are involved, while C-CNCs showed thermal stability for temperatures until 170 °C (see Figure 2.18b). For temperatures above this threshold the films start to degrade, which is accompanied by a loss of their chiral nanostructure.

distinct when moving from micro- to nanocellulose, indicating higher structural order.

The following Chapter will provide an in-depth study on the LC behaviour of CNC colloids. This includes a dispersion guide for spray dried C-CNCs using tip sonication treatment, where different energy inputs are studied to obtain a stable colloid and phase separation. Phase diagrams will be provided for both CNC types (HM-CNCs and C-CNCs) where an increase in CNC concentration is accompanied by an increase in anisotropic volume fraction, evidencing the valid-ity of the Onsager model. Finally, evaporation induced self-assembly condition optimization will be studied to improve photonic properties of the obtained films.

References Chapter 2

1. Xie, H., Du, H., Yang, X. & Si, C. Recent Strategies in Preparation of Cel-lulose Nanocrystals and CelCel-lulose Nanofibrils Derived from Raw CelCel-lulose Materials. International Journal of Polymer Science2018(ed Yuan, T.) 7923068 (2018).

2. Hon, D. N. .-S. Cellulose: a random walk along its historical path. Cellulose 1,1–25 (1994).

3. Zambrano, F., Starkey, H., Wang, Y., Abbati, C., Venditti, R., Pal, L., Jameel, H., Hubbe, M., Rojas, O. & Gonzalez, R. Using Micro-and Nanofibrillated Cellulose as a Means to Reduce Weight of Paper Products: A Review. Biore-sources15(Mar. 2020).

4. Lavanya, D., Kulkarni, P., Dixit, M., Raavi, P. K. & Krishna, L. N. V. Sources of cellulose and their applications- A review. International Journal of Drug Formulation and Research2,19–38 (Jan. 2011).

5. Hickey, R. J. & Pelling, A. E. Cellulose Biomaterials for Tissue Engineering 2019.

6. Wypych, G. in (ed Wypych, G. B. T. H. o. P. ( E.) 63–66 (ChemTec Publishing, 2016).

7. Smook, G. A. Handbook for pulp and paper technologists smook pdf in (2015).

8. Debolt, S. & Persson, S. Cellulose synthesis: a complex complex. Current opinion in plant biology11,252–257 (July 2008).

9. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S. & Youngs, H. Toward a Systems Approach to Understanding Plant Cell Walls. Science (New York, N.Y.)306,2206–2211 (Jan. 2005).

10. Hamad, W. Cellulose nanocrystals: Properties, production and applications(ed Wiley) 1–289 (Jan. 2017).

11. Pinkert, A., Marsh, K., Pang, S. & Staiger, M. Ionic Liquids and Their Inter-action with Cellulose. Chemical reviews109,6712–6728 (Sept. 2009).

12. Atalla, R. H. & VanderHart, D. L. Native cellulose: A composite of two distinct crystalline forms.Science223,283–285 (1984).

13. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D.

& Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials.

Angewandte Chemie International Edition50,5438–5466 (June 2011).

14. Schütz, C., Bruckner, J. R., Honorato-Rios, C., Tosheva, Z., Anyfantakis, M.

& Lagerwall, J. P. F.From equilibrium liquid crystal formation and kinetic arrest to photonic bandgap films using suspensions of cellulose nanocrystals2020.

15. Hengstenberg, J. & Mark, H. The form and size of the micelles of cellulose and rubber. Z. Krist69,271–284 (1928).

16. Kratky, O. & Sekora, A. Auffindung einer Längsperiodizität im Röntgen-Kleinwinkelbild einer jodierten Kunstseide. Zeitschrift für Naturforschung B 9,505–506 (1954).

17. Nickerson, R. F. & Habrle, J. A. Cellulose intercrystalline structure. Indus-trial & Engineering Chemistry39,1507–1512 (1947).

18. Rånby, B., Banderet, A. & Sillén, L. G. Aqueous Colloidal Solutions of Cellulose Micelles. Acta Chemica Scandinavica3,649–650 (1949).

19. Battista, O. A. & Smith, P. A. MICROCRYSTALLINE CELLULOSE. Industrial

& Engineering Chemistry54,20–29 (Sept. 1962).

20. Ruland, W. X-ray determination of crystallinity and diffuse disorder scatter-ing. Acta Crystallographica14,1180–1185 (Nov. 1961).

21. Yao, W., Weng, Y. & Catchmark, J. M. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose27,5563–5579 (2020).

22. Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal29,786–794 (Oct. 1959).

23. Łojewska, J., Miśkowiec, P., Łojewski, T. & Proniewicz, L. M. Cellulose oxida-tive and hydrolytic degradation: In situ FTIR approach. Polymer Degradation and Stability(2005).

24. Horikawa, Y., Hirano, S., Mihashi, A., Kobayashi, Y., Zhai, S. & Sugiyama, J. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. eng. Applied biochemistry and biotechnology188,1066–1076 (Aug. 2019).

25. Arseneau, D. F. Competitive Reactions in the Thermal Decomposition of Cellulose. Canadian Journal of Chemistry49,632–638 (Feb. 1971).

26. Kilzer, F. J. & Broido, A. Speculations on the nature of cellulose pyrolysis.

Pyrodynamics2,151–163 (1965).

27. Fortunato, E., Correia, N., Barquinha, P., Pereira, L., Goncalves, G. & Mar-tins, R. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Letters29,988–990 (2008).

28. Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., Chan, K. J., Clift, M. J. D., Cranston, E. D., Eichhorn, S. J., Fox, D. M., Hamad, W. Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K. J., Reid, M. S., Renneckar, S., Roberts, R., Shatkin, J. A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N. & Youngblood, J. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews47,2609–2679 (2018).

29. Nogi, M., Iwamoto, S., Nakagaito, A. N. & Yano, H. Optically Transparent Nanofiber Paper. Advanced Materials21,1595–1598 (Apr. 2009).

30. Gaspar, D., Fernandes, S. N., De Oliveira, A. G., Fernandes, J. G., Grey, P., Pontes, R. V., Pereira, L., Martins, R., Godinho, M. H. & Fortunato, E.

Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology25, 094008 (2014).

31. CelluForce2016.

32. Vanderfleet, O. M., Reid, M. S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M. K. R. & Cranston, E. D. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose26, 507–528 (2019).

33. Vanderfleet, O. M., Osorio, D. A. & Cranston, E. D. Optimization of cellu-lose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences376,20170041 (Feb. 2018).

34. Camarero Espinosa, S., Kuhnt, T., Foster, E. J. & Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis.

Biomacromolecules14,1223–1230 (Apr. 2013).

35. Mahmud, M. M., Perveen, A., Jahan, R. A., Matin, M. A., Wong, S. Y., Li, X. &

Arafat, M. T. Preparation of different polymorphs of cellulose from different acid hydrolysis medium. International Journal of Biological Macromolecules 130,969–976 (2019).

36. Araki, J., Wada, M., Kuga, S. & Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects142,75–82 (1998).

37. Araki, J., Wada, M. & Kuga, S. Steric Stabilization of a Cellulose Microcrys-tal Suspension by Poly(ethylene glycol) Grafting. Langmuir17, 21–27 (Jan.

2001).

38. Chang, P. S. & Robyt, J. F. Oxidation of Primary Alcohol Groups of Naturally Occurring Polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine Oxoam-monium Ion. Journal of Carbohydrate Chemistry15,819–830 (Sept. 1996).

39. Roman, M. & Winter, W. T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. eng.

Biomacromolecules5,1671–1677 (2004).

40. Dong, X. M., Revol, J. F. & Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose5,19–

32 (1998).

41. Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H. & Gray, D. G.

Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. In-ternational Journal of Biological Macromolecules14,170–172 (1992).

42. Hamad, W. Y. & Hu, T. Q. Structure–process–yield interrelations in nanocrys-talline cellulose extraction. The Canadian Journal of Chemical Engineering88, 392–402 (June 2010).

43. Lee, J. H., Park, S. H. & Kim, S. H. Surface Alkylation of Cellulose Nanocrys-tals to Enhance Their Compatibility with Polylactide. eng. Polymers12,178 (Jan. 2020).

44. Rojas, O. Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Ad-vanced Materials(Jan. 2016).

45. Dufresne, A. Nanocellulose, From Nature to High Performance Tailored Materi-alsENGL (De Gruyter, Berlin, Boston, 2012).

46. Cranston, E. D. & Gray, D. G. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. eng.

Biomacromolecules7,2522–2530 (Sept. 2006).

47. Grey, P., Fernandes, S. N., Gaspar, D., Fortunato, E., Martins, R., Godinho, M. H. & Pereira, L. Field-Effect Transistors on Photonic Cellulose Nanocrys-tal Solid Electrolyte for Circular Polarized Light Sensing. Advanced Func-tional Materials1805279,1–8 (2018).

48. Fernandes, S. N., Almeida, P. L., Monge, N., Aguirre, L. E., Reis, D., de Oliveira, C. L., Neto, A. M., Pieranski, P. & Godinho, M. H. Mind the Microgap in Iridescent Cellulose Nanocrystal Films. Advanced Materials29 (2017).

49. Dong, X. M., Kimura, T., Revol, J.-F. & Gray, D. G. Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites.Langmuir12,2076–2082 (1996).

50. Revol, J.-F., Godbout, L., Dong, X.-M., Gray, D. G., Chanzy, H. & Maret, G.

Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation.Liquid Crystals16,127–134 (Jan. 1994).

51. Dong, X., Revol, J. & Gray, D. Effect of microcrystallite preparation con-ditions on the formation of colloid crystals of cellulose. Cellulose5, 19–32 (1998).

52. Sarma, S. J., Ayadi, M., Brar, S. K. & Berry, R. Sustainable commercial nanocrystalline cellulose manufacturing process with acid recycling. Carbo-hydrate Polymers156,26–33 (2017).

53. Reid, M. S., Villalobos, M. & Cranston, E. D. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir33, 1583–1598 (Feb. 2017).

54. Fleming, K., Gray, D. G. & Matthews, S. Cellulose Crystallites. Chemistry – A European Journal7,1831–1836 (May 2001).

55. Imai, T., Boisset, C., Samejima, M., Igarashi, K. & Sugiyama, J. Unidirec-tional processive action of cellobiohydrolase Cel7A on Valonia cellulose mi-crocrystals. eng. FEBS letters432,113–116 (Aug. 1998).

56. Parker, R. M., Guidetti, G., Williams, C. A., Zhao, T., Narkevicius, A., Vig-nolini, S. & Frka-Petesic, B. The Self-Assembly of Cellulose Nanocrystals:

Hierarchical Design of Visual Appearance. Advanced Materials30,1704477 (May 2018).

57. Dong, X. M. & Gray, D. G. Effect of Counterions on Ordered Phase Forma-tion in Suspensions of Charged Rodlike Cellulose Crystallites. Langmuir13, 2404–2409 (Apr. 1997).

58. Beck, S. & Bouchard, J. Auto-catalyzed acidic desulfation of cellulose nanocrystals.Nordic Pulp & Paper Research Journal29,6–14 (2014).

59. Beck, S. & Bouchard, J. Effect of storage conditions on cellulose nanocrystal stability.Tappi Journal13,53–61 (May 2014).

60. Julien, S., Chornet, E. & Overend, R. P. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis27,25–43 (1993).

61. Kim, D.-Y., Nishiyama, Y., Wada, M. & Kuga, S. High-yield Carbonization of Cellulose by Sulfuric Acid Impregnation. Cellulose8,29–33 (2001).

62. Bardet, R., Roussel, F., Coindeau, S., Belgacem, N. & Bras, J. Engineered pig-ments based on iridescent cellulose nanocrystal films. Carbohydrate Polymers 122,367–375 (2015).

63. Wang, N., Ding, E. & Cheng, R. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer48,3486–3493 (2007).

64. Jiang, F., Esker, A. R. & Roman, M. Acid-catalyzed and solvolytic desulfa-tion of H2SO4-hydrolyzed cellulose nanocrystals. eng. Langmuir : the ACS journal of surfaces and colloids26,17919–17925 (Dec. 2010).

Chapt

3

Ce l lu l o s e Na n o c r y s ta l s a s P h o t o n i c F i l m s

"We just have to do what nature has always been doing."

David Attenborough

The previous Chapters gave some insights on liquid crystals, their proper-ties, textures and LC phases with special emphasis on the chiral nematic one.

It was also shown how colloidal suspensions of rod-like particles can form LC phases due to entropic reasons. This Chapter provides insight into the history and formation of chiral nematic structures in CNC suspensions and deals with some theories on the underlying fundamentals of chiral nematic order. The self-assembly in suspension can be retained after drying and iridescent solid films are obtained with properties reminiscent of short-pitch left-handed chiral nematic LCs. This provides LCPL reflection and RCPL transmission in the visible light spectrum. Some theories on CNC twisting will be given with special emphasis on the first studies of CNCs as LCs. It follows a thorough analysis on photonic film formation and how the macroscopic photonic aspects can be controlled through evaporation induced self-assembly. An in-depth investigation on the dispersion, phase separation behaviour and the resulting phase diagram of commercial CNCs from CelluForce© (C-CNCs) and lab produced CNCs (HM-CNCs) will be pro-vided. Furthermore, crucial analysis on the photonic films obtained from these suspensions will be provided. This Chapter effectively lays the foundation for the

implementation of the resulting films as photonic CPL filters in semiconducting optoelectronic devices in subsequent Chapters.