• Nenhum resultado encontrado

This Chapter showed some fundamental aspects of light and its polarization states with special emphasis on the circular polarization, which will be in focus in this work. Furthermore, liquid crystals are examined, including their discovery, no-table phases, optical activity, continuum theory and textures. This was all focused around chiral nematic LCs, being the central research topic. It was also shown how calamitic LC molecules form chiral nematic phases, when the molecule itself presents chiral centres. Additionally, insight on colloidal LCs was given, where the Onsager hard rod model predicts a liquid crystalline behaviour due to en-tropic reasons. Further insight into cellulose, cellulose as a nanomaterial, its chemistry, morphology and the chiral nematic phase formation of aqueous CNC suspensions will be provided throughout the next two Chapters.

References Chapter 1

1. Feynman, R. P. Plenty of Room at the BottominAPS annual meeting(1959).

2. Scotten, J. TSMC and Samsung 5nm Comparison2019.

3. Iqbal, P., Preece, J. A. & Mendes, P. M.Nanotechnology: The “Top-Down” and

“Bottom-Up” ApproachesJan. 2012.

4. Drexler, K. E. Engines of creation(Anchor books, 1986).

5. Moore, G. E. Cramming more components onto integrated circuits. Electron-ics38,1–4 (1965).

6. Martin, E.Moore’s Law is Alive and WellOct. 2019.

7. Kanellos, M. Moore’s Law to roll on for another decadeFeb. 2003.

8. Intel. Excerpts from A Conversation with Gordon Moore: Moore’s Law Mar.

2005.

9. Krishna, V. D., Wu, K., Su, D., Cheeran, M. C. J., Wang, J.-P. & Perez, A.

Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiology75,47–54 (2018).

10. Mathew, J., Joy, J. & George, S. C. Potential applications of nanotechnology in transportation: A review. Journal of King Saud University - Science 31, 586–594 (2019).

11. Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials.

Nature Nanotechnology15,517–528 (2020).

12. Mahalik, N. P. Micromanufacturing and Nanotechnology(Springer, 2006).

13. Anu Mary Ealia, S. & Saravanakumar, M. P. A review on the classifica-tion, characterisaclassifica-tion, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering263,32019 (2017).

14. Ghassan, A. A. in (ed Mijan, N.-A.) Ch. 2 (IntechOpen, Rijeka, 2020).

15. Pitkethly, M. J. Nanomaterials – the driving force.Materials Today7,20–29 (2004).

16. Williams, R. S. & Alivisatos, P. Nanotechnology Research Directions: IWGN Workshop Report(eds Williams, R. S. & Alivisatos, P.) (Springer Netherlands, 2000).

17. Purcell, E. M. & Morin, D. J. Electricity and Magnetism3rd ed. (Cambridge University Press, Cambridge, 2013).

18. Gil, J. & Ossikovski, R. Polarized Light and the Mueller Matrix Approach(May 2016).

19. Douglas, B. The Molecular Basis of Optical Activity (Charney, Eliot). Journal of Chemical Education58,A29 (Jan. 1981).

20. Collings, P. J. & Hird, M. Introduction to Liquid Crystals Chemistry and Physics (eds Gray, G., Goodby, J. W. & Fukuda, A.) (Taylor & Francis, 2009).

21. Oswald, P. & Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments(Feb. 2005).

22. Weygand, C. Daniel Vorländer. 11. 6. 1867–8. 6. 1941. Berichte der deutschen chemischen Gesellschaft (A and B Series)76,A41–A58 (June 1943).

23. Müller, M. Crystals that Flow. Classic Papers from the History of Liquid Crystals. By Timothy J. Sluckin, David A. Dunmur, Horst Stegemeyer.

ChemPhysChem6,2437 (Nov. 2005).

24. Heilmeier, G. H., Zanoni, L. A. & Barton, L. A. DYNAMIC SCATTERING IN NEMATIC LIQUID CRYSTALS. Applied Physics Letters13, 46–47 (July 1968).

25. Takezoe, H. Historical Overview of Polar Liquid Crystals. Ferroelectrics468 (July 2014).

26. Castellano, J. Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry1–302 (Jan. 2005).

27. Jones, D. Soap, Science and Flat-Screen TVs: A History of Liquid Crystals, by David Dunmur and Tim Sluckin. Contemporary Physics - CONTEMP PHYS 52,613–614 (Nov. 2011).

28. Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter13,4176–

4209 (2017).

29. Gennes, P. & Prost, J. The Physics of Liquid Crystal(Jan. 1993).

30. Sergeyev, S., Pisula, W. & Geerts, Y. H. Discotic liquid crystals: a new generation of organic semiconductors. Chemical Society Reviews36,1902–

1929 (2007).

31. Hill, J. P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N. & Aida, T. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube. Science304,1481 LP –1483 (June 2004).

32. Lei, L. Bowlic Liquid Crystalsl. Molecular Crystals and Liquid Crystals 146, 41–54 (May 1987).

33. Hird, M. Banana-shaped and other bent-core liquid crystals. Liquid Crystals Today14,9–21 (June 2005).

34. Vill, V. & Hashim, R. Carbohydrate liquid crystals: structure–property relationship of thermotropic and lyotropic glycolipids. Current Opinion in Colloid & Interface Science7,395–409 (2002).

35. Friedel, G. Les états mésomorphes de la matière. Ann. Phys.9, 273–474 (1922).

36. Dierking, I. IntroductionMay 2003.

37. Hermans, P. H. & Platzek, P. Beiträge zur Kenntnis des Deformationsmech-anismus und der Feinstruktur der Hydratzellulose. Kolloid-Zeitschrift 88, 68–72 (1939).

38. Bisoyi, H. K. & Kumar, S. Discotic nematic liquid crystals: science and technology. Chemical Society Reviews39,264–285 (2010).

39. Kitzerow, H.-S. & Bahr, C. Chirality in Liquid Crystals. Chirality in Liquid Crystals(Jan. 2001).

40. Schütz, C., Bruckner, J. R., Honorato-Rios, C., Tosheva, Z., Anyfantakis, M.

& Lagerwall, J. P. F.From equilibrium liquid crystal formation and kinetic arrest to photonic bandgap films using suspensions of cellulose nanocrystals2020.

41. Dierking, I. The Nematic and Cholesteric PhasesMay 2003.

42. Heppke, G., Lötzsch, D. & Oestreicher, F. Esters of (S)-1,2-propanediol and (R,R)-2,3-butanediol — Chiral Compounds Inducing Cholesteric Phases with a Helix Inversion ·. Zeitschrift für Naturforschung A42(Mar. 1987).

43. Gray, G. W. & McDonnell, D. G. The Relationship Between Helical Twist Sense, Absolute Configuration and Molecular Structure for Non-Sterol Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals 34, 211–217 (Sept.

1976).

44. Liquid Crystals - Applications and Uses(ed Bahadur, B.) 604 (WORLD SCIEN-TIFIC, Sept. 1990).

45. Scharf, T. Polarized Light in Liquid Crystals and Polymers. Polarized Light in Liquid Crystals and Polymers(Jan. 2009).

46. Berreman, D. W. & Scheffer, T. J. Bragg Reflection of Light from Single-Domain Cholesteric Liquid-Crystal Films. Physical Review Letters25,577–

581 (Aug. 1970).

47. Berreman, D. W. & Scheffer, T. J. Reflection and Transmission by Single-Domain Cholesteric Liquid Crystal Films: Theory and Verification. Molecu-lar Crystals and Liquid Crystals11,395–405 (Nov. 1970).

48. Belyakov, V. Diffraction Optics of Complex-Structured Periodic Media: Local-ized Optical Modes of Spiral Media(Jan. 2019).

49. Dumanli, A. G., van der Kooij, H. M., Kamita, G., Reisner, E., Baumberg, J. J., Steiner, U. & Vignolini, S. Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces6, 12302–12306 (2014).

50. Frka-Petesic, B., Kamita, G., Guidetti, G. & Vignolini, S. Angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. Physical Review Materials3(2019).

51. Frka-Petesic, B., Kelly, J. A., Jacucci, G., Guidetti, G., Kamita, G., Crossette, N. P., Hamad, W. Y., MacLachlan, M. J. & Vignolini, S. Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response. Advanced Materials32,1906889 (May 2020).

52. De Vries, H. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallographica4,219 (1951).

53. Faryad, M. & Lakhtakia, A. The circular Bragg phenomenon. Advances in Optics and Photonics6, 225–292 (2014).

54. Podgornik, R. Principles of condensed matter physics. P. M. Chaikin and T. C. Lubensky, Cambridge University Press, Cambridge, England, 1995.

Journal of Statistical Physics83,1263–1265 (June 1996).

55. Poulin, P., Stark, H., Lubensky, T. C. & Weitz, D. A. Novel Colloidal Interac-tions in Anisotropic Fluids. Science275,1770 LP –1773 (Mar. 1997).

56. Manoharan, V. N. Colloidal matter: Packing, geometry, and entropy. Science 349,1253751 (Aug. 2015).

57. Smalyukh, I. Liquid Crystal Colloids. Annual Review of Condensed Matter Physics9(Mar. 2018).

58. BAWDEN, F. C., PIRIE, N. W., BERNAL, J. D. & FANKUCHEN, I. Liquid Crystalline Substances from Virus-infected Plants. Nature138,1051–1052 (1936).

59. Langmuir, I. The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates. The Journal of Chemical Physics6,873–896 (Dec. 1938).

60. Onsager, L. THE EFFECTS OF SHAPE ON THE INTERACTION OF COL-LOIDAL PARTICLES. Annals of the New York Academy of Sciences 51,627–

659 (1949).

61. Honorato-rios, C., Lehr, C., Schütz, C., Sanctuary, R., Osipov, M. A., Baller, J. & Lagerwall, J. Fractionation of cellulose nanocrystals : enhancing liq-uid crystal ordering without promoting gelation.NPG Asia Materials,1–11 (2018).

62. Abitbol, T., Kam, D., Levi-Kalisman, Y., Gray, D. G. & Shoseyov, O. Sur-face Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. Langmuir34(2018).

63. Hirai, A., Inui, O., Horii, F. & Tsuji, M. Phase Separation Behavior in Aque-ous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment. Langmuir25,497–502 (Jan. 2009).

64. Reid, M. S., Villalobos, M. & Cranston, E. D. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir33, 1583–1598 (Feb. 2017).

65. Dong, X. M., Kimura, T., Revol, J.-F. & Gray, D. G. Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites.Langmuir12,2076–2082 (1996).

66. Lagerwall, J., Schütz, C., Salajkova, M., Noh, J., Hyun Park, J., Scalia, G. &

Bergström, L. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Npg Asia Materials6,e80 (Jan. 2014).

67. Honorato-Rios, C., Kuhnhold, A., Bruckner, J. R., Dannert, R., Schilling, T.

& Lagerwall, J. P. F. Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions2016.

68. Bruckner, J. R., Kuhnhold, A., Honorato-Rios, C., Schilling, T. & Lagerwall, J. P. F. Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents. Langmuir32,9854–9862 (Sept. 2016).

69. Shafiei-Sabet, S., Hamad, W. Y. & Hatzikiriakos, S. G. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspen-sions. Cellulose21,3347–3359 (2014).

70. Ureña-Benavides, E. E., Ao, G., Davis, V. A. & Kitchens, C. L. Rheology and Phase Behavior of Lyotropic Cellulose Nanocrystal Suspensions. Macro-molecules44,8990–8998 (Nov. 2011).

71. Barberi, R., Boix, M. & Durand, G. Electrically controlled surface bistability in nematic liquid crystals. Applied Physics Letters55,2506–2508 (Dec. 1989).

72. Monkade, M., Boix, M. & Durand, G. Order Electricity and Oblique Nematic Orientation on Rough Solid Surfaces. EPL (Europhysics Letters)5,697 (July 2007).

73. Hiroshima, K. & Mochizuki, M. Influence of SiO Film-Thickness on Liquid Crystal Orientation. Japanese Journal of Applied Physics19,567–568 (1980).

74. Barbero, G. Surface geometry and induced orientation of a nematic liquid crystal. Lettere al Nuovo Cimento (1971-1985)29,553–559 (1980).

75. Sugimura, A. & Kawamura, T. Surface-Induced Nematic Ordering using SiO2Grating. Japanese Journal of Applied Physics23,137–141 (1984).

76. Dierking, I. Surface Anchoring and ElasticityMay 2003.

77. Jiawei, T., Chen, Z., Haijing, J., Mei, L., Di, L., Stephen, M. & Yan, X. Op-tically Ambidextrous Reflection and Luminescence in Self-Organized Left-Handed Chiral Nematic Cellulose Nanocrystal Films. CCS Chemistry3,932–

945 (Apr. 2021).

78. Li, C., Evans, J., Wang, N., Guo, T. & He, S. pH dependence of the chirality of nematic cellulose nanocrystals. Scientific Reports9,11290 (2019).

79. Bouligand, Y. Recherches sur les textures des états mésomorphes. 3. Les plages à éventails dans les cholestériques. Journal De Physique34,603–614 (1973).

80. Roman, M. & Gray, D. G. Parabolic Focal Conics in Self-Assembled Solid Films of Cellulose Nanocrystals. Langmuir21,5555–5561 (2005).

Chapt

2

Ce l lu l o s i c Na n o m a t e r i a l s

"Look deep into nature then you will understand everything better."

Albert Einstein

The following Chapter on Cellulosic Nanomaterials will deal with some back-ground on Cellulose, its history, chemistry and morphology and the path from cellulose micro- to nanocrystals, including acid hydrolysis breakdown. It will con-clude with fundamental structural, chemical and morphological characterization of the used cellulosic materials in this work.