• Nenhum resultado encontrado

Nesta seção, provamos o Teorema 4.3.

Lema 4.12. Nas hipóteses do Teorema4.8, o sistema dinâmico correspondente é gradiente.

Demonstração. Consideremos o funcional de Lyapunov Ψ(S(t)z) = E(t), onde E(t) é a

energia do sistema. Então, d dtΨ(u(t)) =−k∇ut(t)k 2 2+ 1 2 Z ∞ 0 µ′(s)k∆ηt(s)k22ds≤ 0.

4.4 Caracterização do atrator global 59 Portanto, o funcional de Lyapunov é decrescente. Suponhamos agora que, para uma trajetória z(t) = (u(t), ut(t), ηt), temos Ψ(z(t)) = z(t) para todo t≥ 0. Logo,

d dtΨ(z(t)) = 0, ∀ t ≥ 0, ou seja, k∇ut(t)k22+ 1 2 Z ∞ 0 −µ ′(s)k∆ηt(s)k2 2ds = 0, ∀ t ≥ 0.

Como ambos termos do lado esquerdo possuem o mesmo sinal, concluímos que k∇ut(t)k22 = 0 e

Z ∞

0

µ′(s)k∆ηt(s)k22ds = 0, ∀ t ≥ 0.

Assim, ut(t) = 0 e ηt = 0, para todo t. Assim, concluímos que z(t) = (u, 0, 0), o que

mostra que z(t) é uma solução estacionária do problema (4.5)-(4.8). Conforme a Definição 1.29, mostramos que Ψ(t) é um funcional de Lyapunov estrito sobre H. Portanto, o sistema em questão é gradiente.

Prova do Teorema 4.3: Como foi mostrado que o sistema(H, S(t)) é gradiente, segue do Teorema 1.30 que, o único atrator global A de (H, S(t)) é caracterizado por

A = M+(N ),

Referências Bibliográficas

[1] R. A. Adams & J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.

[2] L. An & A. Peirce, A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math. 55 (1995) 136-155.

[3] D. Andrade, M. A. Jorge Silva & T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Meth. Appl. Sci. 35 (2012) 417-426. [4] Rawlilson O. Araújo, T. F. Ma & Yuming Qin, Long-time behavior of a quasilinear

viscoelastic equation with past history, J. Differential Equations 254 (2013) 4066-4087. [5] A. V. Babin & M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics

and its Applications 25, North-Holland, Amsterdam, 1992.

[6] A. Benaissa & A. Guesmia, Energy decay for the wave equations of φ-Laplacian type with weakly nonlinear dissipation, Electron. J. Differential Equations (2008), no. 109, 1-22.

[7] H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Paris, Masson, 1983. 61

[8] M. M. Cavalcanti, V. N. Domingos Cavalcanti & J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Meth. Appl. Sci. 24 (2001) 1043-1053.

[9] M. M. Cavalcanti & H. Portillo Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003) 1310-1324.

[10] I. Chueshov & I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst. 15 (2006) 777-809.

[11] I. Chueshov & I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195, no. 912, Providence, 2008. [12] I. Chueshov & I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model

with supercritical nonlinearity, Comm. Partial Differential Equations 36 (2011) 67-99. [13] I. Chueshov & I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010.

[14] C. M. Dafermos Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970) 297-308.

[15] A. Eden, C. Foias, B. Nicolaenko & R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, vol. 37, John Wiley & Sons, New York, 1994.

[16] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, 1998.

[17] M. Fabrizio & A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992.

Referências Bibliográficas 63 [18] C. Giorgi, M. Grasseli & V. Pata, Well-posedness and longtime behavior of the phase- field model with memory in a history space setting, Quart. Appl. Math. 59 (2001) 701- 736.

[19] C. Giorgi, J. E. Muñoz Rivera & V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl. 260 (2001) 83-99.

[20] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, 1988.

[21] X. Han & M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Meth. Appl. Sci. 32 (2009) 346-358.

[22] X. Han & M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal. 70 (2009) 3090-3098.

[23] M. A. Jorge Silva & T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory, J. Math. Phys. 54, article 021505 (2013).

[24] M. A. Jorge Silva & T. F. Ma, On a viscoelastic plate equation with history setting and perturbation ofp-Laplacian type, IMA J. Appl. Math. (a aparecer em 2013).

[25] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney, 1978.

[26] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris 1969.

[27] W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonl. Analysis 73 (2010) 1890-1904.

[28] W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonl. Analysis 71 (2009) 2257-2267.

[29] A. E. H. Love, Treatise on Mathematical Theory of Elasticity, Dover Publications, New York, 1944.

[30] J. Málek & D. Pražák, Large time behavior via the method of l-trajectories, J. Differential Equations 181 (2002) 243-279.

[31] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl. 341 (2008) 1457-1467.

[32] S. A. Messaoudi & N.-e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonl. Analysis 68 (2008) 785-793.

[33] S. A. Messaoudi & N.-e. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr. 282 (2009) 1443-1450.

[34] S. A. Messaoudi & N.-e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Meth. Appl. Sci. 30 (2007) 665-680.

[35] A. Miranville & S. Zelik, Handbook of Differential Equations, Evolutionary Equations, Volume 4, Chapter 3, C.M. Dafermos and M. Pokorny, Editors, Elsevier, 2008.

[36] J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math. 52 (1994) 628-648.

[37] J. Y. Park & S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys. 50, article 083505 (2009).

[38] V. Pata & A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl. 11 (2001) 505-529.

[39] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences Vol. 44, Springer-Verlag, New York, 1983.

Referências Bibliográficas 65 [40] M. Renardy, W. J. Hrusa & J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics 35, Longman, Harlow, 1987.

[41] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. 146 (1987)

65-96.

[42] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.

[43] S.-T. Wu, Arbitrary decays for a viscoelastic equation, Boundary Value Problems 2011 (2011):28.

[44] Yang Zhijian, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys. 51, article 092703 (2010) .

[45] Yang Zhijian, Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Math. Phys. 53, article 032702 (2012) .

[46] Yang Zhijian, Global attractors and their Hausdorff dimensions for a class of Kirchhoff models, J. Math. Phys. 51, article 032701 (2010) .

[47] Yang Zhijian, Longtime behavior for a nonlinear wave equation arising in elasto- plastic flow, Math. Meth. Appl. Sci. 32 (2009) 1082-1104.

[48] Yang Zhijian & Jin Baoxia, Global attractor for a class of Kirchhoff models, J. Math. Phys. 50, article 032701 (2009) .

Documentos relacionados