• Nenhum resultado encontrado

Levando em consideração que não foi possível obter as células knockout para o gene da TcMPx e que a expressão da Cas9 não era tóxica para as células, a TcMPx parece ser essencial para a sobrevivência do parasita. Entretanto, não é possível se descartar também algum problema na técnica utilizada que impossibilitou a geração do knockout do gene.

7. Referências bibliográficas

ANTINORI, Spinello et al. Chagas disease in Europe: a review for the internist in the globalized world. European journal of internal medicine, v. 43, p. 6-15, 2017.

ARIAS, Diego G. et al. Redox metabolism in Trypanosoma cruzi: functional

characterization of tryparedoxins revisited. Free Radical Biology and Medicine, v. 63, p. 65-77, 2013.

ATWOOD, Jar et al. The Trypanosoma cruzi proteome. Science, v. 309, n. 5733, p. 473-476, 2005.

BELLOFATTO, Vivian; PALENCHAR, Jennifer B. RNA interference as a genetic tool in trypanosomes. In: RNAi. Humana Press, 2008. p. 83-94.

BRASIL - MINISTÉRIO DA SAÚDE. Secretaria de Vigilância em Saúde. Guia de vigilância em saúde [Internet]. Brasília: Ministério da Saúde; 2014. Disponível em: http://portalsaude.saude.gov.br/images/pdf/2015/ fevereiro/06/guia-vigilancia-saude- atualizado-05-02-15.pdf

BRASIL. MINISTÉRIO DA SAUDE. Portal da Saúde. Doença de Chagas. Brasília, DF,

2015. Disponível em:

http://portalarquivos.saude.gov.br/images/pdf/2015/agosto/03/2014-020..pdf. Acesso em 13/10/2017.

BRICEÑO-LEÓN, Roberto. Chagas disease in the Americas: an ecohealth perspective. Cadernos de Saúde Pública, v. 25, p. S71-S82, 2009.

CARLIER, Yves et al. Trypanosomiase américaine ou maladie de Chagas. EMC- Maladies infectieuses, p. 21, 2002.

CASTELLANI, OLGA; RIBEIRO, L. V.; FERNANDES, J. F. Differentiation of

Trypanosoma cruzi in culture. Journal of Eukaryotic Microbiology, v. 14, n. 3, p.

CASTRO, Helena et al. Complementary antioxidant defense by cytoplasmic and mitochondrial peroxiredoxins in Leishmania infantum. Free Radical Biology and Medicine, v. 33, n. 11, p. 1552-1562, 2002.

CASTRO, Helena; TOMÁS, Ana M. Peroxidases of trypanosomatids. Antioxidants & redox signaling, v. 10, n. 9, p. 1593-1606, 2008.

CDC, 2017. https://www.cdc.gov/parasites/chagas/ Acesso em Dez/2017.

CHO, Seung Woo et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology, v. 31, n. 3, p. 230, 2013.

CLAYTON, C. E. Genetic manipulation of kinetoplastida. Parasitology Today, v. 15, n. 9, p. 372-378, 1999.

CONG, Le et al. Multiplex genome engineering using CRISPR/Cas systems. Science, p. 1231143, 2013.

COURA, José Rodrigues et al. Morbidity of Chagas heart disease in the microregion of Rio Negro, Amazonian Brazil: a case-control study. Memórias do Instituto Oswaldo Cruz, v. 108, n. 8, p. 1009-1013, 2013.

CRAWFORD, Dana R.; DAVIES, K. J. Adaptive response and oxidative stress. Environmental health perspectives, v. 102, n. Suppl 10, p. 25, 1994.

DAROCHA, Wanderson D. et al. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma

cruzi. Molecular and biochemical parasitology, v. 133, n. 2, p. 175-186, 2004.

DE ARAÚJO, S. Marques; CHIARI, E. Caracterizaço biológica de clones das cepas Y, CL e MR de Trypanosoma cruzi em camundongos C3H isogênicos. Mem Inst Oswaldo Cruz, v. 83, n. 2, p. 175-181, 1988.

DE FIGUEIREDO PELOSO, Eduardo et al. Role of Trypanosoma cruzi peroxiredoxins in mitochondrial bioenergetics. Journal of bioenergetics and biomembranes, v. 43, n. 4, p. 419, 2011.

DIAS, João Carlos Pinto et al. II Consenso Brasileiro em doença de Chagas, 2015. Epidemiologia e Serviços de Saúde, v. 25, n. ESP, p. 7-86, 2016.

DNDI. https://www.dndi.org/diseases-projects/chagas/ Acesso em Dezembro/2017.

FERREIRA, Humberto de Oliveira. Tratamento da forma indeterminada da doença de Chagas com nifurtimox e benzonidazol. Revista da Sociedade Brasileira de Medicina Tropical, v. 23, n. 4, p. 209-211, 1990.

FINZI, Jane K. et al. Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Molecular and biochemical parasitology, v. 133, n. 1, p. 37-43, 2004.

FIOCRUZ. FUNDAÇÃO OSWALDO CRUZ. Doença de Chagas. 2009. Disponível em: http://www.fiocruz.br/chagas. Acesso em: 13/10/2017.

FLOHE, L.; HECHT, H. J.; STEINERT, P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radical Biology and Medicine, v. 27, n. 9-10, p. 966-984, 1999.

FRAGATA FILHO, A. A. et al. Validade do tratamento etiológico da fase crônica da doença de Chagas com benznidazol. Arq Bras Cardiol, v. 65, n. Supl I, p. 71, 1995.

GADELHA, F. R. et al. Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes. Experimental parasitology, v. 133, n. 3, p. 287-293, 2013.

GRAÇA-SOUZA, Aurélio V. et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect biochemistry and molecular biology, v. 36, n. 4, p. 322-335, 2006.

GIORGIO, Marco et al. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?. Nature reviews Molecular cell biology, v. 8, n. 9, p. 722, 2007.

HALLIWELL, Barry. Oxidants and human disease: some new concepts. The FASEB Journal, v. 1, n. 5, p. 358-364, 1987.

HELER, Robert et al. Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature, v. 519, n. 7542, p. 199, 2015.

KRAUTH-SIEGEL, R. Luise; COMINI, Marcelo A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1780, n. 11, p. 1236-1248, 2008.

LANDER, Noelia et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio, v. 6, n. 4, p. e01012-15, 2015.

MACEDO, Andréa M.; OLIVEIRA, Riva P.; PENA, Sérgio DJ. Chagas disease: role of parasite genetic variation in pathogenesis. Expert reviews in molecular medicine, v. 4, n. 5, p. 1-16, 2002.

MANTA, Bruno et al. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1830, n. 5, p. 3199-3216, 2013.

MARTINS-MELO, Francisco Rogerlândio et al. Prevalence of Chagas disease in Brazil: a systematic review and meta-analysis. Acta tropica, v. 130, p. 167-174, 2014.

MEHTA, Ashish; SHAHA, Chandrima. Apoptotic Death in Leishmania donovani Promastigotes in Response to Respiratory Chain Inhibition Complex II Inhibition Results in Increased Pentamidine Cytotoxicity. Journal of Biological Chemistry, v. 279, n. 12, p. 11798-11813, 2004.

MOREL, C. et al. Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proceedings of the National Academy of Sciences, v. 77, n. 11, p. 6810-6814, 1980.

MOUTIEZ, Mireille et al. Compared reactivities of trypanothione and glutathione in conjugation reactions. Chemical and pharmaceutical bulletin, v. 42, n. 12, p. 2641- 2644, 1994.

MURRAY, P.R.; ROSENTHAL, K.S.; KOBAYASHI, G.S. & PFALLER, M.A. Microbiologia Médica. 3 ed. Rio de Janeiro, Guanabara Koogan, 2006.

NOGOCEKE, Everson et al. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biological chemistry, v. 378, n. 8, p. 827-836, 1997.

NOGUEIRA, Fernanda B. et al. Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitology research, v. 104, n. 4, p. 835-844, 2009.

PELOSO, E. F. et al. Trypanosoma cruzi mitochondrial tryparedoxin peroxidase is located throughout the cell and its pull down provides one step towards the understanding of its mechanism of action. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, v. 1864, n. 1, p. 1-10, 2016.

PENG, Duo et al. CRISPR-Cas9-mediated single-gene and gene family disruption in

PEREIRA, Karen Signori et al. Chagas' disease as a foodborne illness. Journal of food protection, v. 72, n. 2, p. 441-446, 2009.

PIACENZA, Lucía et al. Peroxiredoxins play a major role in protecting Trypanosoma

cruzi against macrophage-and endogenously-derived peroxynitrite. Biochemical

Journal, v. 410, n. 2, p. 359-368, 2008.

PIACENZA, Lucía et al. Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Current opinion in microbiology, v. 12, n. 4, p. 415-421, 2009.

PIACENZA, LUCÍA et al. Enzymes of the antioxidant network as novel determiners of

Trypanosoma cruzi virulence. International journal for parasitology, v. 39, n. 13, p.

1455-1464, 2009.

PIÑEYRO, María Dolores et al. Peroxiredoxins from Trypanosoma cruzi: virulence factors and drug targets for treatment of Chagas disease?. Gene, v. 408, n. 1, p. 45- 50, 2008.

PIÑEYRO, María Dolores et al. Tryparedoxin peroxidases from Trypanosoma cruzi: high efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite. Archives of biochemistry and biophysics, v. 507, n. 2, p. 287-295, 2011.

SHEN, Bin et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature methods, v. 11, n. 4, p. 399, 2014.

SILVA, Thiago M. et al. O 2 consumption rates along the growth curve: new insights into Trypanosoma cruzi mitochondrial respiratory chain. Journal of bioenergetics and biomembranes, v. 43, n. 4, p. 409, 2011.

SILVEIRA, Antônio Carlos. Os novos desafios e perspectivas futuras do controle. Revista da Sociedade Brasileira de Medicina Tropical, v. 44, n. A00101s1, p. 122-124, 2011.

WAGNER, Jeffrey C. et al. Efficient CRISPR-Cas9–mediated genome editing in

Plasmodium falciparum. Nature methods, v. 11, n. 9, p. 915, 2014.

WILKINSON, Shane R. et al. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. Journal of Biological Chemistry, v. 275, n. 11, p. 8220-8225, 2000.

WILKINSON, Shane R. et al. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. Journal of Biological Chemistry, v. 277, n. 19, p. 17062-17071, 2002.

WILKINSON, Shane R. et al. RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. Journal of Biological Chemistry, v. 278, n. 34, p. 31640-31646, 2003.

WILKINSON, Shane R.; KELLY, John M. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine, v. 11, 2009.

WHO, 2017. WORLD HEALTH ORGANIZATION. Chagas disease (American trypanosomiasis). Geneva: World Health Organization, 2015. Disponível em: http://www.who.int/mediacentre/factsheets. Acesso em 12 de novembro de 2017.

8. Anexos

DECLARAÇÃO

Em observância ao §5º do Artigo 1º da Informação CCPG-UNICAMP/001/15, referente a Bioética e Biossegurança, declaro que o conteúdo de minha Dissertação de Mestrado, intitulada “Avaliação da importância funcional da triparedoxina peroxidase mitocondrial para o

Trypanosoma cruzi”, desenvolvida no Programa de Pós-Graduação em

Biologia Funcional e Molecular do Instituto de Biologia da Unicamp, não versa sobre pesquisa envolvendo seres humanos, animais ou temas afetos a Biossegurança.

Assinatura:

Nome do(a) aluno(a): Giulia De Andrade Marinho

Assinatura:

Nome do(a) orientador(a): Fernanda Ramos Gadelha

Documentos relacionados