• Nenhum resultado encontrado

6- DISCUSSÃO

7.0 CONCLUSÃO

Concluindo, os resultados apresentados neste projeto sugerem que o tratamento com células tronco reduz a dor neuropática diabética através da modulação das citocinas pró-inflamatórias e anti-inflamatórias.

Pela primeira vez demonstramos a interação de células tronco com receptores P2X4 que são ativados pelo ATP endógeno no GRD.

Demonstramos, também pela primeira vez, um dos efeitos parácrinos das células tronco através da ativação dos seus receptores P2X4 na liberação de grande quantidade de BDNF.

Neste trabalho pudemos observar que os efeitos analgésicos das células tronco se dão independentemente do processo de regeneração das fibras nervosas periféricas.

Mecanismos de controle anti-inflamatórios endógenos e o receptor P2X4 tornam-se possíveis alvos farmacológicos de interesse para o desenvolvimento de novos medicamentos que atuem no controle da hiperalgesia neuropática diabética, de maneira mais precisa e objetiva, a fim de reduzir os efeitos colaterais dos pacientes em tratamento.

Estes dados, até o momento, também sugerem fortemente que o uso de CTM administradas no espaço subaracnóideo (intratecal) é uma terapia viável para o controle da dor neuropática diabética, uma vez que não há disponível no mercado drogas ou outras terapias eficientes.

REFERENCIAS BIBLIOGRÁFICAS

ABBAS, ABUL K.; LICHTMAN, ANDREW H.; PILLAI, S. Imunologia celular e molecular. 8. ed. [s.l: s.n.].

ABBRACCHIO, M. P.; BURNSTOCK, G. Purinergic signalling: Pathophysiological rolesJapanese Journal of Pharmacology, out. 1998.

ALMARESTANI, L.; LONGO, G.; RIBEIRO-DA-SILVA, A. Autonomic fiber sprouting in the skin in chronic inflammation. v. 7, p. 1–7, 2008.

ANDÓ, R. D. et al. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain. British journal of pharmacology, v. 159, n. 5, p. 1106–1117, mar. 2010.

AOKI, E. et al. Localization of nitric oxide-related substances in the peripheral nervous tissues. Brain Research, v. 620, n. 1, p. 142–145, ago. 1993.

APPLETON, I.; TOMLINSON, A.; WILLOUGHBY, D. A. Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Advances in pharmacology (San Diego, Calif.), v. 35, p. 27–78, 1996.

ASANUMA, H.; MELDRUM, D. R.; MELDRUM, K. K. Therapeutic Applications of Mesenchymal Stem Cells to Repair Kidney Injury. Journal of Urology, v. 184, n. 1, p. 26–33, jul. 2010.

BARBACID, M. The Trk family of neurotrophin receptors. Journal of Neurobiology, v. 25, n. 11, p. 1386–1403, nov. 1994.

BASBAUM, A. I. et al. NIH Public Access. v. 139, n. 2, p. 267–284, 2010. BASBAUM, A. I. et al. Cellular and Molecular Mechanisms of Pain. NIH Public Access, v. 139, n. 2, p. 267–284, 2010.

BESSON, J. M. The neurobiology of pain. v. 353, p. 1610–1615, 1999. BESSOU, P. et al. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. Journal of neurophysiology, v. 34, n. 1, p. 116–131, 1971.

BODDEKE, E. W. Involvement of chemokines in pain. European journal of pharmacology, v. 429, n. 1–3, p. 115–9, 19 out. 2001.

BOMBEIRO, A. L. et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. v. 10, n. June, p. 1–14, 2016. BRODAL, A. Neurological anatomy in relation to clinical medicine. Oxford University Press, 1969.

BULLETIN, K. W.-B. MEDICAL; 1977, UNDEFINED. Somaesthetic pathways. academic.oup.com, [s.d.].

BURNSTOCK, G. Purinergic Nerves. Pharmacological Reviews, v. 24, n. 3, 1972. BURNSTOCK, G.; KENNEDY, C. Is there a basis for distinguishing two types of P2-purinoceptor? General Pharmacology: The Vascular System, v. 16, n. 5, p. 433–440, jan. 1985.

BURNSTOCK, G. Historical review: ATP as a neurotransmitterTrends in Pharmacological SciencesElsevier Ltd, , 2006.

BURNSTOCK, G. Purinergic signalling and disorders of the central nervous system. Nature reviews. Drug discovery, v. 7, n. 7, p. 575–90, jul. 2008. CAMPAGNOLI, C. et al. Identification of mesenchymal stem/progenitor cells in human first- trimester fetal blood, liver, and bone marrow. Blood, v. 98, n. 8, p. 2396–2402, 15 out. 2001.

CAO, C.; MATSUMURA, K.; WATANABE, Y. Induction of cyclooxygenase-2 in the brain by cytokines. Annals of the New York Academy of Sciences, v. 813, p. 307–9, 15 mar. 1997.

CAO, D.-L. et al. Chemokine CXCL1 enhances inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CXCR2. Experimental neurology, v. 261, p. 328–36, nov. 2014.

CAPLAN, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of cellular physiology, v. 213, n. 2, p. 341–7, nov. 2007.

CARTAROZZI, L. P. et al. Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Research Bulletin, v. 112, p. 14–24, 2015.

CASEY, K. Chasing Pain: The search for a neurobiological mechanism (implications for practice and theory) View project. [s.l: s.n.]. Disponível em: <https://www.researchgate.net/publication/285016812>. Acesso em: 30 out. 2019.

CAUNA, N., ROSS, L. . The stuture of human digital pacinian corpucles and its funtional significance. J. Anatomy, v. 92, p. 1–20, 1958.

CHAITANYA NC, MUTHUKRISHNAN A, KRISHNAPRASAD CMS,

SANJUPRASANNA G, PILLAY P, MOUNIKA B. An insight and update on the analgesic properties of vitamin c. Journal of pharmacy & Bioallied Sciences. 2018;10(3):119-125. DOI:10.4103/JPBS.JPBS_12_18.

CHAITANYA NC, M. B. An Insight and Update on the Analgesic Properties of Vitamin C. Journal of Pharmacy & Bioallied Sciences., v. 10(3)., p. 119–125, 2018.

CHEN, L. et al. Differential expression of ATP-gated P2X receptors in DRG between chronic neuropathic pain and visceralgia rat models. Purinergic signalling, v. 12, n. 1, p. 79–87, mar. 2016.

CHEN, Y.; LI, G.; HUANG, L. M. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Molecular Pain, v. 8, n. 1, p. 9, 2012.

CHEN, Y. et al. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 43, p. 16773–8, 28 out. 2008.

CHENG, K.-I. et al. Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats. European journal of pain (London, England), v. 18, n. 2, p. 162–73, fev. 2014.

CHIU, S.-L.; CHEN, C.-M.; CLINE, H. T. Insulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity, and Circuit Function In Vivo. Neuron, v. 58, n. 5, p. 708–719, jun. 2008.

CHOWDHURY, S. K. R.; DOBROWSKY, R. T.; FERNYHOUGH, P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. 2011.

CHOWDHURY, T. A. et al. Human leucocyte antigen and insulin gene regions and nephropathy in type I diabetes. Diabetologia, v. 42, n. 8, p. 1017–20, ago. 1999.

CHU, Q. et al. Systemic Insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy. Molecular therapy : the journal of the American Society of Gene Therapy, v. 16, n. 8, p. 1400–8, ago. 2008.

CUNHA, F. Q. et al. Interleukin-8 as a mediator of sympathetic pain. British journal of pharmacology, v. 104, n. 3, p. 765–7, nov. 1991.

DALLENBACH, K. Pain: History and Present Status. The American Journal of Psychology, v. 347, 1939.

DAVIES, A. M. The role of neurotrophins in the developing nervous system. Journal of Neurobiology, v. 25, n. 11, p. 1334–48, nov. 1994.

DAVIES, A. M. The role of neurotrophins in the developing nervous system. Journal of Neurobiology, v. 25, n. 11, p. 1334–1348, nov. 1994.

DAVIS, K. D.; MOAYEDI, M. Central mechanisms of pain revealed through functional and structural MRI. Journal of Neuroimmune Pharmacology, jun. 2013.

DAWES, J. M.; MCMAHON, S. B. Chemokines as peripheral pain mediatorsNeuroscience Letters, 17 dez. 2013.

DE LA MONTE, S. M. Intranasal insulin therapy for cognitive impairment and neurodegeneration: Current state of the artExpert Opinion. Drug Delivery, dez. 2013.

DE PREUX CHARLES, A.-S. et al. Global transcriptional programs in peripheral nerve endoneurium and DRG are resistant to the onset of type 1 diabetic neuropathy in Ins2 mice. PloS one, v. 5, n. 5, p. e10832, 26 maio 2010.

DECARTES, R. L´homme et un Traitté de la ormation du Foetus du Mesme Autheur. [s.l: s.n.]. DELEO, J. A.; YEZIERSKI, R. P. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain, v. 90, n. 1–2, p. 1–6, 1 fev. 2001.

DEVOR, M.; OBERMAYER, M. Membrane differentiation in rat dorsal root ganglia and possible consequences for back pain. Neuroscience letters, v. 51, n. 3, p. 341– 6, 26 out. 1984.

DOLOR, S. F.-R. L. A. DE; 1995, UNDEFINED. Hiperalgesia inflamatórial, óxido nítrico y control periférico del dolor. [s.d.].

DOMINICI, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, v. 8, n. 4, p. 315–317, 2006.

DONEGAN, M. et al. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia, v. 61, n. 12, p. 2000–8, dez. 2013.

DUBLIN, P.; HANANI, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain, behavior, and immunity, v. 21, n. 5, p. 592–8, jul. 2007.

DURHAM, P. L.; RUSSO, A. F. Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 23, n. 3, p. 807–15, 1 fev. 2003.

EMMETT, D. S. et al. Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology (Baltimore, Md.), v. 47, n. 2, p. 698–705, fev. 2008. ENGLAND, S. et al. Bradykinin evokes a Ca2+-activated chloride current in non- neuronal cells isolated from neonatal rat dorsal root ganglia. The Journal of physiology, v. 530, n. Pt 3, p. 395–403, 1 fev. 2001.

ERICES, A.; CONGET, P.; MINGUELL, J. J. Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology, v. 109, n. 1, p. 235–42, abr. 2000.

FELMY, F. et al. P2X 4 receptors induced in spinal. Nature, v. 424, n. August, p. 1– 6, 2003.

FERNYHOUGH, P.; CALCUTT, N. A. Abnormal calcium homeostasis in peripheral neuropathies. Cell calcium, v. 47, n. 2, p. 130–9, fev. 2010.

FERREIRA, S. H. Hiperalgesia inflamatórial, óxido nítrico y control periférico del dolor. Rev Latino Americana de Dolor, v. 12, p. 6–17, 1995.

FERREIRA, S. H. Prostaglandins, aspirin-like drugs and analgesia. Nature: New biology, v. 240, n. 102, p. 200–3, 13 dez. 1972.

FERREIRA, S. H.; LORENZETTI, B. B.; POOLE, S. Bradykinin initiates cytokine- mediated inflammatory hyperalgesia. British journal of pharmacology, v. 110, n. 3, p. 1227–31, nov. 1993.

FERREIRA, S. H.; VANE, J. R. Prostaglandins: Their disappearance from and release into the circulation. Nature, v. 216, n. 5118, p. 868–873, 1967.

FERRINI, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl-homeostasis. Nature Neuroscience, v. 16, n. 2, p. 183–192, 2013. FOTUHI, M. et al. Modifiable factors that alter the size of the hippocampus with ageing. NATURE REVIEWS | NEUROLOGY, v. 8, p. 189–202, 2012.

FRANK, L. et al. Effects of BDNF infusion on the regulation of TrkB protein and message in adult rat brain. Experimental neurology, v. 145, n. 1, p. 62–70, maio 1997. GOLD, M. S.;

GEBHART, G. F. Nociceptor sensitization in pain pathogenesis. Nature Medicine, v. 16, n. 11, p. 1248–1257, 14 nov. 2010.

GOODENOUGH, D. A.; PAUL, D. L. Gap Junctions. [s.d.].

GOSSELIN, R.-D. et al. Glial Cells and Chronic Pain. The Neuroscientist, v. 16, n. 5, p. 519–531, 25 out. 2010.

GROTH, R.; AANONSEN, L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain, v. 100, n. 1–2, p. 171–81, nov. 2002.

HAMILTON, S. G. ATP and Pain. Pain Practice, v. 2, n. 4, p. 289–294, dez. 2002. HANANI, M. Satellite glial cells in sensory ganglia: from form to function. Brain research. Brain research reviews, v. 48, n. 3, p. 457–76, jun. 2005.

HANANI, M. Role of satellite glial cells in gastrointestinal pain. Frontiers in cellular neuroscience, v. 9, p. 412, 2015. HARPER, B. Y. A. A.; LAWSON, S. N. CONDUCTION VELOCITY IS RELATED TO MORPHOLOGICAL CELL. p. 31– 46, 1985. HAYEK, S. M.;

HANES, M. C. Intrathecal therapy for chronic pain: current trends and future needs. Current pain and headache reports, v. 18, n. 1, p. 388, jan. 2014.

HE, M.-L.; GONZALEZ-IGLESIAS, A. E.; STOJILKOVIC, S. S. Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs. The Journal of biological chemistry, v. 278, n. 47, p. 46270–7, 21 nov. 2003. HEINBECKER, P., ET AL. No Title. Neurol. Psycjoatry, v. 29, p. 771–189, 1933.

HIRSCHBERG, R.; DING, H. Mechanisms of insulin-like growth factor-I-induced accelerated recovery in experimental ischemic acute renal failure. Mineral and electrolyte metabolism, v. 24, n. 4, p. 211–9, 1998.

HOFSTETTER, J., SUCKOW, MA., AND HICKMAN, D. Morphophisiology. 2. ed. Burlington: [s.n.].

HOLTON, P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. The Journal of Physiology, v. 145, n. 3, p. 494–504, 12 mar. 1959.

HONDA, T. et al. Balance of inflammatory response in stable gingivitis and progressive periodontitis lesions. Clinical and Experimental Immunology, v. 144, n. 1, p. 35–40, abr. 2006.

HUANG, L.; MASSA, L.; KARLE, J. The Kernel Energy Method: application to a tRNA. Proceedings of the National Academy of Sciences of the United States of America, v. 103, n. 5, p. 1233–7, 31 jan. 2006.

HUANG, T.-Y. et al. Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Research, v. 1036, n. 1–2, p. 42–49, mar. 2005. IGGO, A., MUIR, A. . Te Structure and Function of lowly adapting touch corpuscle in hairy skin. J Physiol., v. 200, p. 76–796, 1969.

JACKSON, C. A. et al. Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology, v. 336, n. 2, p. 173–183, 5 jun. 2005.

JI, R.-R.; BERTA, T.; NEDERGAARD, M. Glia and pain: Is chronic pain a gliopathy? Pain, v. 154, p. S10–S28, dez. 2013.

KANNO, Y.; NATURE, W. L.-; 1964, UNDEFINED. Low-resistance coupling between gland cells. Some observations on intercellular contact membranes and intercellular space. Springer, [s.d.].

KANNO, Y.; LOEWENSTEIN, W. R. Low-resistance coupling between gland cells. Some observations on intercellular contact membranes and intercellular space. Nature, v. 201, n. 4915, p. 194–195, 1964.

KANO, M. R. et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. Journal of cell science, v. 118, n. Pt 16, p. 3759–68, 15 ago. 2005.

KAPLAN, D. R.; STEPHENS, R. M. Neurotrophin signal transduction by the Trk receptor. Journal of neurobiology, v. 25, n. 11, p. 1404–17, nov. 1994.

KAWANO, A. et al. Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochemical and biophysical research communications, v. 420, n. 1, p. 102–7, 30 mar. 2012.

KHAKH, B. S.; ALAN NORTH, R. P2X receptors as cell-surface ATP sensors in health and diseaseNatureNature Publishing Group, , 3 ago. 2006.

KHALID, S.; TUBBS, R. S. Neuroanatomy and Neuropsychology of Pain. v. 9, n. 10, p. 1–14, 2017. KING, A. J. The use of animal models in diabetes research. British Journal of Pharmacology, v. 166, n. 3, p. 877–894, jun. 2012.

KITAMURA, N. et al. Constitutive activity of transient receptor potential vanilloid type 1 triggers spontaneous fi ring in nerve growth factor-treated dorsal root ganglion neurons of rats. IBRO Reports, v. 5, n. August, p. 33–42, 2018.

KLAUMANN, P. R.; WOUK, A. F. P. F.; SILLAS, T. PATOFISIOLOGIA DA DOR. Archives of Veterinary Science, v. 13, n. 1, 15 jul. 2008.

KOBAYASHI, K. et al. Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. The Journal of comparative neurology, v. 481, n. 4, p. 377–90, 24 jan. 2005.

KOEHLER, P. J.; STAHNISCH, F. W. Three Twentieth-Century Multiauthored Neurological Handbooks – A Historical Analysis and Bibliometric Comparison Three Twentieth-Century Multiauthored Neurological Handbooks – A Historical Analysis and Bibliometric Comparison. v. 5213, 2014.

KÖMHOFF, M. et al. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. The American journal of physiology, v. 272, n. 4 Pt 2, p. F460-8, abr. 1997.

LAI, J. et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin- resistant sodium channel, NaV1.8. Pain, v. 95, n. 1–2, p. 143–52, jan. 2002.

LANDAU, W.; GH, B. Pain from dermal, periosteal, and fascial endings and from inflammation: Electrophysiological study employing differential nerve blocks. A.M.A. Archives of Neurology & Psychiatry, v. 69, n. 4, p. 490–504, 1 abr. 1953.

LAWSON, S. N. et al. Primary sensory neurones: neurofilament, neuropeptides, and conduction velocity. Brain research bulletin, v. 30, n. 3–4, p. 239–43, 1993.

LE BLANC, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet, v. 371, n. 9624, p. 1579–1586, maio 2008.

LE PICHON, C. E.; CHESLER, A. T. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Frontiers in neuroanatomy, v. 8, p. 21, 2014.

LEDDA, M. Ratios between number of neurglial cells and number and volume of nerve cells in the spinal ganglia of two species of reptlies and three species of mamals. Tissue & cell, v. 36, p. 55–62, 2004.

LEE-KUBLI, C. A. et al. Animal Models of Diabetes-Induced Neuropathic Pain. In: Current topics in behavioral neurosciences. [s.l: s.n.]. v. 20p. 147–170.

LI, M. et al. Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-β. Clinical and experimental immunology, v. 178, n. 3, p. 516– 24, dez. 2014.

LIU, F.-Y. et al. Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain research, v. 1427, p. 65–77, 3 jan. 2012.

LORENZETTI, B. B. et al. Cytokine-induced neutrophil chemoattractant 1 (CINC-1) mediates the sympathetic component of inflammatory mechanical hypersensitivitiy in rats. European cytokine network, v. 13, n. 4, p. 456–61, [s.d.].

M, A. Neurophysiology of pain. Send to Neurol Sc, v. Suppl 2, p. S57- 60., 2003. M, A.; AGUGGIA, M. Neurophysiology of pain. Send to Neurol Sc, v. Suppl 2, p. S57- 60., maio 2003.

MALIK, R. A. et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia, v. 48, n. 3, p. 578–585, 2005.

MCCARBERG, B. H.; BILLINGTON, R. Consequences of neuropathic pain: quality- of-life issues and associated costs. The American journal of managed care, v. 12, n. 9 Suppl, p. S263-8, jun. 2006.

MCCLESKEY, E. W.; GOLD, M. S. ION CHANNELS OF NOCICEPTION. Annual Review of Physiology, v. 61, n. 1, p. 835–856, mar. 1999.

MCMAHON, S. B.; BEVAN, S. Inflammatory mediators and modulators of painChurchill Livingstone (Elsevier Health Sciences), , 2005. Disponível em: <https://kclpure.kcl.ac.uk/portal/en/publications/inflammatory-mediators-and- modulators-of-pain(fe8d0ba9-2f3c-4d44-a1f5-f00593426506)/export.html>. Acesso em: 3 nov. 2018.

MÉLIK-PARSADANIANTZ, S.; ROSTÈNE, W. Chemokines and neuromodulation. Journal of neuroimmunology, v. 198, n. 1–2, p. 62–8, 31 jul. 2008.

MELZACK, R.; CASEY, K. L. Sensory, motivational, and central control determinants of pain: a new conceptual model. The skin senses, v. 1, p. 423–443, 1968. MENKE, A.; ORCHARD, T. J. HHS Public Access. v. 24, n. 5, p. 773–774, 2015.

MERIGHI, A. et al. BDNF as a pain modulator. Progress in Neurobiology, v. 85, n. 3, p. 297–317, jul. 2008. MEŞE, G.; RICHARD, G.; WHITE, T. W. Gap junctions:

Basic structure and functionJournal of Investigative DermatologyNature Publishing Group, , 2007.

MILLAN, M. J. THE INDUCTION OF PAIN : AN INTEGRATIVE REVIEW. v. 57, n. 98, 1999. MILLER, K. E.; RICHARDS, B. A.; KRIEBEL, R. M. Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase- immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain research, v. 945, n. 2, p. 202–11, 2 ago. 2002.

MIZUKAMI, H.; YAGIHASHI, S. Exploring a new therapy for diabetic polyneuropathy - the application of stem cell transplantation. Frontiers in endocrinology, v. 5, p. 45, 2014. MOALEM, G.; TRACEY, D. J. Immune and inflammatory mechanisms in neuropathic pain. Brain Research Reviews, v. 51, n. 2, p. 240–264, ago. 2006.

MOAYEDI, M., DAVIS, K. Theory of pain: from specificity to gate control. Journal of neurophysiology, v. 109, p. 5–12, 201AD.

MORGADO, C. et al. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes, Obesity and Metabolism, v. 13, n. 2, p. 150–159, fev. 2011.

MORIARTY, O. et al. Impaired cued and spatial learning performance and altered cannabinoid CB₁ receptor functionality in the substantia nigra in a rat model of diabetic neuropathy. Behavioural brain research, v. 303, p. 61–70, 15 abr. 2016.

NARUSE, K. et al. Transplantation of Bone Marrow-Derived Mononuclear Cells Improves Mechanical Hyperalgesia, Cold Allodynia and Nerve Function in Diabetic Neuropathy. PLoS ONE, v. 6, n. 11, p. e27458, 18 nov. 2011.

NIKOLAKOPOULOU, P. et al. Streptozotocin-induced β-cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain. Scientific reports, v. 8, n. 1, p. 11335, 2018.

O’BRIEN, P. D.; SAKOWSKI, S. A.; FELDMAN, E. L. Mouse models of diabetic neuropathy. ILAR Journal, v. 54, n. 3, p. 259–272, 2014.

O’NEILL, G. P.; FORD-HUTCHINSON, A. W. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS letters, v. 330, n. 2, p. 156–60, 13 set. 1993.

OTOSHI, K. et al. The Reactions of Glial Cells and Endoneurial Macrophages in the Dorsal Root Ganglion and Their Contribution to Pain-Related Behavior After Application of Nucleus Pulposus Onto the Nerve Root in Rats. Spine, v. 35, n. 1, p. 10–17, jan. 2010.

PABREJA, K. et al. Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. European journal of pharmacology, v. 661, n. 1–3, p. 15–21, 1 jul. 2011.

PAGE N, N. V. Intranasal Ketamine for the Management of Incidental Pain during Wound Dressing in Cancer Patients: A Pilot Study. Indian Journal of Palliative Care., v. ;24(1), p. :58-60, [s.d.].

PANNESE, E. The satellite cells of the sensory ganglia. Advances in anatomy, embryology, and cell biology, v. 65, p. 1–111, 1981.

PANNESE, E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. Advances in anatomy, embryology, and cell biology, v. 226, p. 1– 63, 2018.

PARADA, C. A. et al. Tumor necrosis factor receptor type-1 in sensory neurons contributes to induction of chronic enhancement of inflammatory hyperalgesia in

rat. The European journal of neuroscience, v. 17, n. 9, p. 1847–52, maio 2003. PD

LEVINE JDWALL, R TAIWO YMELZACK, J. B. Inflammatory Paine. 3rd ed ed. [s.l.] Textbook of Pain, 1994. PECORARO, R. E.; REIBER, G. E.; BURGESS, E. M. Pathways to diabetic limb amputation. Basis for prevention. Diabetes care, v. 13, n. 5, p. 513–21, maio 1990.

PIOTROWSKI, W.; FOREMAN, J. C. Some effects of calcitonin gene‐related peptide in human skin and on histamine release. British Journal of Dermatology, v. 114, n. 1, p. 37–46, 1986.

PITTENGER, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science, v. 284, n. 5411, p. 143–147, 2 abr. 1999.

POMONIS, J. D. et al. Expression and Localization of Endothelin Receptors: Implications for the Involvement of Peripheral Glia in Nociception. The Journal of Neuroscience, v. 21, n. 3, p. 999–1006, 1 fev. 2001.

POP-BUSUI, R.; SIMA, A.; STEVENS, M. Diabetic neuropathy and oxidative stress. Diabetes/Metabolism Research and Reviews, v. 22, n. 4, p. 257–273, jul. 2006. POWIS, R. A.; GILLINGWATER, T. H. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. Journal of anatomy, v. 228, n. 3, p. 443–51, mar. 2016.

PUBLISHER, C. C. T. The skin senses. [s.d.]. PULLI, B. et al. Measuring Myeloperoxidase Activity in Biological Samples. PLoS ONE, v. 8, n. 7, p. e67976, 5 jul. 2013.

RAGHAVENDRA, V.; TANGA, F.; DELEO, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. The Journal of pharmacology and experimental therapeutics, v. 306, n. 2, p. 624–30, ago. 2003.

RAJA, S. N.; MEYER, R. A.; CAMPBELL, J. N. Peripheral mechanisms of somatic pain. Anesthesiology, v. 68, n. 4, p. 571–90, abr. 1988. REAUX-LE GOAZIGO, A. et al. Cellular and subcellular localization of CXCL12 and CXCR4 in rat nociceptive structures: physiological relevance. [s.d.]. REY, R. et al. The history of pain. [s.l.] Springer, 1995.

RIBEIRO, A. et al. Substrate Three-Dimensionality Induces Elemental Morphological Transformation of Sensory Neurons on a Physiologic Timescale. v. 18, 2012.

RIEDEL, W.; NEECK, G. Nociception, pain, and antinociception: current concepts. Zeitschrift fur Rheumatologie, v. 60, n. 6, p. 404–15, dez. 2001.

RIVERA, E. J. et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. Journal of Alzheimer’s disease : JAD, v. 8, n. 3, p. 247–68, dez. 2005.

ROCHA, A. P. C. et al. Dor: Aspectos atuais da sensibilização periférica e central. Revista Brasileira de Anestesiologia, v. 57, n. 1, p. 94–105, 2007.

RUFFINI, A. Sur un nouvel organe nerveux terminal et sur la presence des corpuscules Golgi-Mazzoni dens le conoctif souscutane de la pulpe des doigts de L´homme de L´Academie Royale. L´Academie Royalle, p. 249–265, [s.d.]. SAKAKI, H. et al. P2X4 receptor regulates P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells. Biochemical and biophysical research communications, v. 432, n. 3, p. 406–11, 15 mar. 2013.

SATO, K. et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, v. 109, n. 1, p. 228–34, 1 jan. 2007.

SCHRIJVERS, B. F.; FLYVBJERG, A.; DE VRIESE, A. S. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney international, v. 65, n. 6, p. 2003–17, jun. 2004.

SEAQUIST, E. R. The Final Frontier: How Does Diabetes Affect the Brain? Diabetes, v. 59, n. 1, p. 4–5, 1 jan. 2010. SEITZ, K. Medicaid DRGs: a public perspective. Michigan hospitals, v. 22, n. 1, p. 15–7, jan. 1986.

SENGUL, G.; PUCHALSKI, R. B.; WATSON, C. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse. Anatomical record (Hoboken, N.J. : 2007), v. 295, n. 5, p. 837–45, maio 2012.

SHERRINGTON, C. The integrative action of the nervous system. [s.l.] CUP Archive, 1952. SHERWOOD, E. R.; TOLIVER-KINSKY, T. Mechanisms of the inflammatory response. Best practice & research. Clinical anaesthesiology, v. 18, n. 3, p. 385–405, set. 2004.

SHIBATA, T. et al. Transplantation of bone marrow-derived mesenchymal stem cells

Documentos relacionados