• Nenhum resultado encontrado

Os sólidos compostos de céria, tungstênio e nióbio apresentaram maior desempenho, se mostrando mais ácidos. O óxido de nióbio e tungstênio no entanto, se mostraram mais estáveis durante o processo mantendo a atividade durante o tempo reacional. A seletividade foi majoritária para a hidroxiacetona (acetona), sendo seguida pro acroleína.

As diferentes caracterizações juntamente com os ensaios catalíticos mostraram a diferença de atividade dos materiais sintetizados por rotas diferentes. Os materiais sintetizados por rota de impregnação úmida apresentaram no geral maior dispersão dos centros metálicos, que pode ser evidenciada pelas análises de MEV, assim como peloes testes catalíticos. As análises de isoterma de adsorção (utilizando o método BET) também apontaram modificações a partir do método de síntese. Houve não só modificação na área mas também modificações com relação ao porosidade do material. O método de impregnação tente a gerar materiais mesoporosos.

As análises de TPR mostraram que as fases pretendidas foram formadas. Essa técnica também evidenciou o quanto o óxido de cobre ficou comprometido com a estrutura dos materiais. Além disse, os testes catalíticos mostraram que a inserção dos óxidos modificou a acidez dos materiais.

Com relação às metodologias utilizadas (Pechini e impregnação), os resultados mostraram que os materiais sintetizados via impregnação apresentaram desempenho superior. Este fato está associado à maior exposição dos sítios promovida pelo método. A mudança de atmosfera modificou sensivelmente a conversão e a seletividade.

Dentre os materiais sintetizados, as series de nióbio, tungstênio e cério se mostraram mais ácidas como apontado pelas isotermas de piridina e confirmado pelos ensaios catalíticos. A serie contendo Nb se destacou pela estabilidade na atividade.

A serie de tungstênio mostrou mudança de seletividade provocada pelo método síntese. Isso deve ter sido ocasionado pelo favorecimento da diminuição de sítios ácidos de Lewis quando se passou de da rota Pechini para impregnação úmida, ou seja, a seletividade mudou de acetol para acroleína.

A série de materiais contendo cério apesar de apresentar propriedades oxirredutoras, não mostrou destaque no desempenho por conta destas propriedades. No entanto, o material se mostrou poroso, ácido e bastante ativo. Foi observado diminuição de atividade no decorrer do teste catalítico.

Os materiais contendo antimônio se apresentaram pouco ativos, e portanto, pouco ácido. Isso pode ser evidenciado tanto pelas isotermas de piridina, quanto pela reação modelo de desidratação do etanol.

As isotermas de nitrogênio apontaram que os materiais contendo Sb apresentaram características microporosas, além disso, a temperatura de fusão do óxido (600°C) é próxima da temperatura de calcinação dos catalisadores (500°C) o que pode ter favorecido o recobrimento do catalisador pelo óxido de antimônio. A baixa acidez, a microporosidade e o recobrimento resultaram na baixa atividade do material na reação de desidratação do glicerol.,

REFERÊNCIAS

[1] SUPRUN, W. et al. Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol. Journal of Molecular Catalysis A: Chemical, v. 342–343, p. 91–100, 2011.

[2] MARTINS, T. et al. Microporous and Mesoporous Materials Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Microporous and Mesoporous Materials, v. 275, n. May 2018, p. 244–252, 2019.

[3] MAURICIO, B.; ANDRADE, H. M. C.; MASCARENHAS, A. J. S. Microporous and Mesoporous Materials Oxidative dehydration of glycerol over alternative H , Fe-MCM-22 catalysts : Sustainable production of acrylic acid. Microporous and Mesoporous Materials, v. 278, n. October 2018, p. 366–377, 2019.

[4] LÓPEZ, A. et al. Study of hydrotalcite-supported transition metals as catalysts for crude glycerol hydrogenolysis. Molecular Catalysis, v. 468, n. January, p. 9–18, 2019.

[5] BAGNATO, G. et al. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in

Conventional and Membrane Reactors. Membranes, v. 7, p. 1–31, 2017.

[6] MONTEMORE, J. W. M. AND M. M. Scaling the rough heights. Nature Chemistry, v. 7, n. May, p. 378–380, 2015.

[7] STILES, A. B. Catalyst Supports and Supported Catalysts: theorical and applied concepts. 1o ed. Boston: Butterworth, 1987.

[8] VALENTINI, A. et al. Synthesis of Ni nanoparticles in microporous and mesoporous Al and Mg oxides. Microporous and Mesoporous Materials, v. 68, n. 1–3, p. 151–157, Mar. 2004.

[9] SANTOS, R. C. R. et al. Simple synthesis of Al2O3 sphere composite from hybrid process with improved thermal stability for catalytic applications. Materials Chemistry and Physics, v. 160, p. 119–130, Apr. 2015.

[10] FITZGERALD, J. J. et al. Dehydration Studies of a High-Surface-Area Alumina (Pseudo-boehmite) Using Solid-State 1 H and 27 Al NMR. Journal American Ceramic Society, v. 119, p. 7832–7842, 1997.

[11] ARDI, M. S.; AROUA, M. K.; HASHIM, N. A. Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, v. 42, p. 1164–1173, Feb. 2015.

[12] LACERDA, L. C. T. Parâmetros estruturais e termodinâmicos de um catalisador bifuncional para desidratação oxidativa do glicerol em ácido acrílico. 2016. 1-64 f. Dissertação de Mestrado-Universidade Federal de Lavras, Lavras. 2016.

by sequential extraction monitored by 1H NMR. Fuel Processing Technology, v. 132, p. 99– 104, Apr. 2015.

[14] www.graosesoja.com.br. Disponível em:

http://www.graosesoja.com.br/graficos_soja_19.php Acesso: 18 maio 2018.

[15] POTT, R. W. M.; HOWE, C. J.; DENNIS, J. S. The purification of crude glycerol

derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresource Technology, v. 152, p. 464–470, Jan. 2014.

[16] HUNSOM, M.; AUTTHANIT, C. Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH. Chemical Engineering Journal, v. 229, p. 334–343, Aug. 2013.

[17] TAN, H. W.; ABDUL AZIZ, A. R.; AROUA, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, v. 27, p. 118–127, 2013.

[18] GARCIA, J. I.; GARCIA-MARIN, H.; PIRES, E. Glycerol based solvents: synthesis, properties and applications. Green Chemistry, v. 16, p. 1007–1033, 2014.

[19] GARCÍA, J. I.; GARCÍA-MARÍN, H.; PIRES, E. Glycerol based solvents : synthesis , properties and. Green Chemistry, 2014.

[20] MA, T. et al. Dehydration of glycerol to acrolein over Wells – Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts. Chemical Engineering Journal, v. 316, p. 797–806, 2017.

[21] LAURIOL-GARBAY, P. et al. New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, v. 280, p. 68–76, 2011.

[22] MOTA, C. J. A.; PINTO. Transformações Catalíticas do Glicerol para Inovação na Indústria Química Catalytic Transformations of Glycerol for Innovation in the Chemical industry. Rev. Virtual Quim, v. 9, n. 1, p. 135–149, 2017.

[23] ZHOU, C. C. et al. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society reviews, v. 37, p. 527–549, 2008.

[24] DIEUZEIDE, M. L.; JOBBAGY, M.; AMADEO, N. Vapor-Phase Hydrogenolysis of Glycerol to 1,2-Propanediol over Cu/ Al 2 O 3 Catalyst at Ambient Hydrogen Pressure. Industrial & Engineering Chemistry Research, v. 55, p. 2527–2533, 2016.

[25] NAKAGAWA, Y.; TOMISHIGE, K. Catalysis Science & Technology Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, v. 1, p. 179–190, 2011.

[26] MONTES, V. et al. Synthesis of different ZnO-supported metal systems through

microemulsion technique and application to catalytic transformation of glycerol to acetol and 1,2-propanediol. Catalysis Today, v. 223, p. 129–137, 2014.

[27] GANDARIAS, I. et al. Liquid-phase glycerol hydrogenolysis to 1 , 2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, v. 282, n. 1, p. 237–247, 2011.

[28] GUO, X. et al. Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Applied Catalysis A: General, v. 371, p. 108–113, 2009.

[29] XIAO, Z. et al. Insights into the reaction pathways of glycerol hydrogenolysis over Cu- Cr catalysts. Journal of Molecular Catalysis A: Chemical, v. 365, p. 24–31, 2012. [30] NANDA, M. R. et al. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive. Fuel, v. 117, p. 470–477, 2014. [31] ROY, D.; SUBRAMANIAM, B.; CHAUDHARI, R. V. Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid. ACS Catalysis, p. 548–551, 2011.

[32] ZHU, H. et al. Bioresource Technology Production of acetol from glycerol using engineered Escherichia coli. Bioresource Technology, v. 149, p. 238–243, 2013.

[33] BRAGA, T. P. Efeito das propriedades físico-químicas de catalisadores contendo cobre na conversão seletiva do glicerol em acetol. 2012. 126 f. Tese de Doutorado- Universidade Federal do Ceará, Fortaleza. 2012.

[34] M. H. MOHAMAD, R. A. E W. M. Z. W. Y. A Review of acetol: Application and Production. American Journal of Applied Sciences, v. 8, n. 11, p. 1135, 2011.

[35] HAIDER, M. H. et al. Efficient green methanol synthesis from glycerol. Nat Chem, v. 7, n. 12, p. 1028–1032, Dec. 2015.

[36] CARRIÇO, C. S. et al. MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, v. 334, p. 34–41, Feb. 2016.

[37] ESTEVEZ, R. et al. Production of acrolein from glycerol in liquid phase on

heterogeneous catalysts. Chemical Engineering Journal, v. 282, p. 179–186, Dec. 2015. [38] CECILIA, J. A. et al. WO3 supported on Zr doped mesoporous SBA-15 silica for

glycerol dehydration to acrolein. Applied Catalysis A: General, v. 516, p. 30–40, Apr. 2016. [39] SOLTANIEH, M. et al. Impact of support on the catalytic behavior of Mo/γ-Al2O3 and Mo/MgO catalysts on the desulfurization reaction. Applied Catalysis A: General, v. 516, p. 41–50, Apr. 2016.

[40] GARCIA-SANCHO, C. et al. Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. “Applied Catalysis B, Environmental,” v. 179, p. 139– 149, 2015.

[41] CECILIA, J. A. et al. V and V–P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein. Catalysis Today, v. 254, p. 43–52, Oct. 2015.

[42] YU, W.; POROSO, M. D.; CHEN, J. G. Review of Pt-Based Bimetallic Catalysis : From Model Surfaces to Supported Catalysts. Chemical Reviews, v. 112, p. 5780–5817, 2012. [43] DALIL, M. et al. Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, v. 421, p. 146–155, 2016.

[44] YUN, D. et al. Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate. Journal of Catalysis, v. 341, p. 33–43, 2016.

[45] ALHANASH, A.; KOZHEVNIKOVA, E. F.; KOZHEVNIKOV, I. V. Applied Catalysis A : General Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Applied Catalysis A: General, v. 378, p. 11–18, 2010.

[46] WU, C.-T. et al. A non-syn-gas catalytic route to methanol production. Nature Communications, v. 3, p. 1050, 2012.

[47] HAIDER, M. H. et al. Efficient green methanol synthesis from glycerol. Nature Chemistry, v. 7, p. 1028–1032, 2015.

[48] WANG, Z. et al. Cooperativity of Brønsted and Lewis Acid Sites on Zeolite for Glycerol Dehydration. ACS Catalysis, v. 4, p. 1144–1147, 2014.

[49] ZHANG, H. et al. Dehydration of Glycerol to Acrolein over Hierarchical ZSM ‑ 5 Zeolites : E ff ects of Mesoporosity and Acidity. ACS Catalysis, v. 5, p. 2548–2558, 2015. [50] KATRYNIOK, B.; DUMEIGNIL, F. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, v. 3, p. 1819–1834, 2013.

[51] YAN, W.; SUPPES, G. J. Low-Pressure Packed-Bed Gas-Phase Dehydration of Glycerol to Acrolein. Ind. eng. Chem. Res., v. 48, n. 3, p. 3279–3283, 2009.

[52] WISCHERT, R. et al. γ‑Alumina: The Essential and Unexpected Role of Water for the Structure, Stability, and Reactivity of " Defect " Sites. Journal american Chemistry Society, v. 134, p. 14430–14449, 2012.

[53] YUE, C. et al. Applied Catalysis B : Environmental Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Enviromental, v. 163, p. 370– 381, 2015.

[54] ZHANG, Y. et al. Mesoporous Ti-W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol. Journal of Materials Chemistry A, v. 1, p. 3724– 3732, 2013.

[55] NAKAGAWA, Y.; TOMISHIGE, M. T. AND K. Catalytic materials for the

hydrogenolysis of glycerol to 1, 3-propanediol. Journal of Materials Chemistry A, v. 2, p. 6688–6702, 2014.

, and TiO 2 -supported Nb- and W-oxide catalysts. Journal of Catalysis, v. 307, p. 170–184, 2013.

[57] ZEMNUKHOVA, L. A.; PANASENKO, A. E. A novel composite material based on antimony ( III ) oxide and amorphous silica. Journal os Solid State Chemistry, v. 201, p. 9– 12, 2013.

[58] AKBARI, A.; ALAVI, S. M. The effect of cesium and antimony promoters on the performance of Ti-phosphate-supported vanadium ( V ) oxide catalysts in selective oxidation of o-xylene to phthalic anhydride. Chemical Engineering Research and Design, v. 2, p. 286–296, 2015.

[59] NOWAK, I.; ZIOLEK, M. Niobium Compounds : Preparation , Characterization , and Application in Heterogeneous Catalysis. Chemical Reviews, v. 99, p. 3603–3624, 1999. [60] CHAI, S. H. et al. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst. Journal of Catalysis, v. 250, p. 342–349, 2007.

[61] SHIJU, N. R. et al. Glycerol Valorization: Dehydration to Acrolein Over Silica- Supported Niobia Catalysts. Top Catalysis, v. 53, p. 1217–1223, 2010.

[62] LAURIOL-GARBEY, P. et al. Acido-base properties of niobium-zirconium mixed oxide catalysts for glycerol dehydration by calorimetric and catalytic investigation. Applied

Catalysis B: Environmental, v. 106, p. 94–102, 2011.

[63] BRAGA, V. S. et al. Copper oxide and niobium pentoxide supported on silica-alumina : Synthesis , characterization , and application on diesel soot oxidation. Journal of Catalysis, v. 247, p. 68–77, 2007.

[64] GAWANDE, M. B. et al. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Chemical Reviews, v. 116, p. 3722–3811, 2016.

[65] SANTOS, R. C. R. et al. Role of Cu, Ni and Co metals in the acidic and redox properties of Mo catalysts supported on Al2O3 spheres for glycerol conversion. Catalysis Science & Technology, 2016.

[66] DJINOVIĆ, P.; LEVEC, J.; PINTAR, A. Effect of structural and acidity/basicity changes of CuO-CeO2 catalysts on their activity for water-gas shift reaction. Catalysis Today, v. 138, p. 222–227, 2008.

[67] PAKHARUKOVA, V. P. et al. Structure of Copper Oxide Species Supported on Monoclinic Zirconia. The Journal of Physical Chemistry C, v. 119, 2015.

[68] DANOV, S. M. et al. Modifi cation of Aluminum Oxide as a Method for Controlling Its Activity and Stability in Vapor-Phase Dehydration of Glycerol into Acrolein. Russian Journal of Applied Chemistry , v. 87, n. 9, p. 1279–1283, 2014.

[69] VIVIER, L.; DUPREZ, D. Ceria-based solid catalysts for organic chemistry. ChemSusChem, v. 3, n. 6, p. 654–678, 2010.

[70] PAIER, J.; PENSCHKE, C.; SAUER, J. Oxygen Defects and Surface Chemistry of Ceria : Quantum Chemical Studies Compared to Experiment. Chemical Reviews, v. 113, p. 3949–3985, 2013.

[71] MONTINI, T. et al. Fundamentals and Catalytic Applications of CeO 2 ‑ Based Materials. Chemical Reviews, p. A-AK, 2015.

[72] MA, A.; LESZEK, K. New, intermediate polymorph of CeAlO 3 with hexagonal structure – formation and thermal stability. CrystEngComm, v. 17, p. 2273–2278, 2015. [73] PINTAR, A.; BATISTA, J.; HOˇ, S. TPR, TPO, and TPD examinations of

Cu0.15Ce0.85O2-y mixed oxides prepared by co-precipitation , by the sol – gel peroxide route , and by citric acid-assisted synthesis. Journal of Colloid and Interface Science, v. 285, p. 218–231, 2005.

[74] PINTAR, A.; BATISTA, J.; HOˇ, S. Nanostructured Cu x Ce 1 − x O 2 − y mixed oxide catalysts : Characterization and WGS activity tests. Journal of Colloid and Interface Science, v. 307, p. 145–157, 2007.

[75] GAO, Y. et al. Catalysis Science & Technology Structural features and catalytic performance. Catalysis Science & Technology, v. 5, p. 1568–1579, 2015.

[76] H.J. WOELK, B. HOFFMANN, G. MESTL, R. S. Experimental archaeology: Investigation on the copper-aluminum-silicon-oxygen system. Journal of the American Ceramic Society, v. 85, p. 1876, 2002.

[77] T. JAMES, M. PADMANABHAN, K.G.K. WARRIER, S. S. CuAl2O4 formation and its effect on α-Al2O3 phase evolution on calcination of metal ion doped boehmite xerogels. Materials Chemistry and Physics, v. 103, p. 248–254, 2007.

[78] J. GUO, H. LOU, H. ZHAO, D. CHAI, X. Z. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004.

[79] SOBRINHO, R. G. F. Preparação e caracterização de filmes de platina metálicos preparados utilizando o método dos precursores poliméricos. 2005. 2005.

[80] PECHINI, M. Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitorUSA, 1967.

[81] BRAGA, T. P. et al. Catalytic properties of cobalt and nickel ferrites dispersed in mesoporous silicon oxide for ethylbenzene dehydrogenation with CO2. Catalysis Science & Technology, v. 1, n. 8, p. 1383–1392, 2011.

[82] BRAGA, T. P.; ESSAYEM, N.; VALENTINI, A. Synthesis of Cu–M x O y /Al 2 O 3 (M = Fe, Zn, W or Sb) catalysts for the conversion of glycerol to acetol: effect of texture and acidity of the supports. RSC Adv., v. 5, p. 93394–93402, 2015.

[83] LESSING, P. S. Mixed-Cation Oxide Powders Via Polymeric Precursors. American Ceramic Society Bulletin, v. 68, p. 1002–1007, 1989.

[84] VIEIRA, F. T. G. Influência dos contra-íons (antimônio ou molibdênio) em

pigmentos a base de TiO2:Cr. 2007. 120 f. Dissertação de Mestrado-Universidade Federal da Paraíba, João Pessoa. 2007.

[85] SANTOS, R. C. R. Catalisadores bimetálicos de óxido de Mo-Cu (Ni-Co) suportado em alumina para conversão do glicerol a intermediários químicos. 2016. 181 f. Tese de Doutorado-Universidade Federal do Ceará, Fortaleza. 2016.

[86] JOSÉ LUIZ FIGUEIREDO, F. R. R. Catálise Heterogênea. 1o ed. Lisboa: Fundação da Calouste Gulbenkian, 1987.

[87] STORCK, S.; BRETINGER, H.; MAIER, W. F. Characterization of micro-and

mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A: General , v. 174, p. 137–146, 1998.

[88] LEOFANTI, G. et al. Surface area and pore texture of catalysts. Catalysis Today , v. 41, p. 207–219, 1998.

[89] GROEN, J. C.; PEFFER, L. A. A.; E EREZ-RAM I IREZ, J. P. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials , v. 60, p. 1–17, 2003.

[90] BARRETT, E. P.; JOYNER, L. G.; HALENDA, P. P. THE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES They represent a new class of silicon com- The Determination of Pore Volume and Area Distributions in Porous Substances. I.

Computations from Nitrogen Isotherms. Journal American Chemistry Society, v. 73, p. 373–380, 1951.

[91] SCHMALL, M. Catálise Heterogênea. 1o ed. Rio de Janeiro: [s.n.].

[92] ZHANG, H. et al. Studies on the SbOx species of SbOx/SiO2 catalysts for methane- selective oxidation to formaldehyde. Applied Catalysis A: General, v. 305, n. 1, p. 110–119, 2006.

[93] SEUBSAI, A. et al. Epoxidation of propylene to propylene oxide with molecular oxygen over Sb2O3-CuO-NaCl/SiO2 catalysts. Journal of Industrial and Engineering Chemistry, v. 32, p. 292–297, 2015.

[94] ALMOHALLA, M. et al. Comparative study of bioethanol transformation catalyzed by Ru or Pt nanoparticles supported on KL zeolite. Catal. Sci. Technol, v. 6, 2014.

[95] ZHANG, Y. et al. Effect of calcination temperature on catalytic properties of

PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Catalysis Communications, v. 8, p. 1009–1016, 2006.

[96] GUO, L. et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chemical Physics Letters, v. 318, n. 1–3, p. 49–52, Feb. 2000.

[97] PILLEP, B.; BEHRENS, P. Mechanical and thermal spreading of antimony oxides on the TiO2 surface: dispersion and properties of surface antimony oxide species. The Journal of

Physical Chemistry B, v. 103, p. 9595–9603, 1999.

[98] JIAO, S. et al. Hydrothermal synthesis and magnetic properties of CuSb2O6

nanoparticles and nanorods. Journal of Nanopaticle Research, v. 9, p. 605–610, 2007. [99] BRAGA, T. P.; VALENTINI, A.; ESSAYEM, N. RSC Advances Synthesis of Cu – M x O y / Al 2 O 3 ( M = Fe , Zn , W or Sb ) catalysts for the conversion of glycerol to acetol : e ff ect of texture and acidity of the supports. RSC ADVANCES, v. 5, p. 93394–93402, 2015. [100] ZAKI, M. I. et al. Temperature-programmed and X-ray diffractometry studies of

hydrogen-reduction course and products of WO 3 powder : Influence of reduction parameters. Thermochimica Acta, v. 523, p. 90–96, 2011.

[101] DIRK C. VERMMAIRE, P. C. V. B. The Preparation of W03 / Ti02 and W03 / A1203 and Characterization Reduction. Journal of Catalysis, v. 116, p. 309–317, 1989.

[102] WACHS, I. E. et al. Molecular structure and reactivity of the group V metal oxides. Catalysis Today, v. 57, n. 3–4, p. 323–330, Apr. 2000.

[103] PAIVA JR, J. B. DE et al. Characterization and catalytic behavior of MoO3/V2O5/Nb2O5 systems in isopropanol decompositionBrazilian Journal of Chemical Engineeringscielo, , 2006.

[104] ZIOLEK, M. Niobium-containing catalysts—the state of the art. Catalysis Today, v. 78, n. 1–4, p. 47–64, Feb. 2003.

[105] XIAOXIANG WANG, YUN SHI, SUJING LI, W. L. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction NOx with NH3. Applied Catalysis B: Environmental, v. 220, p. 234–250, 2018. [106] ANNA E. LEWANDOWSKA, M. A. B. In situ TPR/TPO-Raman studies of dispersed and nano-scaled mixed V-Nb oxides on alumina. Catalysis Today, v. 118, p. 323–331, 2006. [107] PENGPANICH, S. et al. The Effect of Nb Loading on Catalytic Properties of Ni/Ce 0.75 Zr 0.25 O 2 Catalyst for Methane Partial Oxidation. Journal of Natural Gas

Chemistry, v. 16, p. 227–234, 2007.

[108] ZIÓŁEK, M. et al. Effect of sulfur dioxide on nitric oxide adsorption and decomposition on Cu-containing micro- and mesoporous molecular sieves. Topics in Catalysis, v. 11, n. 1, p. 343–350, 2000.

[109] LEWANDOWSKA, A. et al. MCM-41 mesoporous molecular sieves supported nickel—physico-chemical properties and catalytic activity in hydrogenation of benzene. Journal of Molecular Catalysis A: Chemical, v. 188, n. 1–2, p. 85–95, Sep. 2002. [110] LI, X. et al. High calcium resistance of CeO2-WO3 SCR catalysts: Structure

investigation and deactivation analysis. Chemical Engineering Journal, v. 317, p. 70–79, 2017.

CeO2−Al2O3 Mixed Oxide. Fibre Chemistry, v. 48, n. 4, p. 271–275, 2016.

[112] LEDWA, K. A.; KĘPIŃSKI, L. Dispersion of ceria nanoparticles on γ-alumina surface functionalized using long chain carboxylic acids. Applied Surface Science, v. 400, p. 212– 219, 2017.

[113] POURKHALIL, M. et al. Synthesis of CeOx/γ-Al2O3 catalyst for the NH3-SCR of NOx. Materials Research Bulletin, v. 97, n. Supplement C, p. 1–5, 2018.

[114] DIEUZEIDE, M. L.; JOBBAGY, M.; AMADEO, N. Vapor-Phase Hydrogenolysis of Glycerol to 1,2-Propanediol over Cu/ Al 2 O 3 Catalyst at Ambient Hydrogen Pressure. Industrial & Engineering Chemistry Research, v. 55, p. 2527–2533, 2016.

[115] PINHEIRO, A. N. et al. Copper promoter effect on acid-base and redox sites of Fe/Al2O3catalysts and their role in ethanol-acetone mixture conversion. Catalysis Science and Technology, v. 8, n. 2, p. 443–458, 2018.

[116] SEUBSAI, A. et al. Epoxidation of propylene to propylene oxide with molecular oxygen over Sb 2 O 3 – CuO – NaCl / SiO 2 catalysts. Journal of Industrial and Engineering Chemistry, v. 32, p. 292–297, 2015.

[117] BRAGA, T. P. et al. Cu, Fe, or Ni doped molybdenum oxide supported on Al 2 O 3 for the oxidative dehydrogenation of ethylbenzene. Chinese Journal of Catalysis, v. 36, p. 712– 720, 2015.

[118] THOMMES, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied

Chemistry, v. 87, n. 9–10, p. 1051–1069, 2015.

[119] RAYBAUD, P. et al. Theoretical Study of the Dehydration Process of Boehmite to γ - Alumina Xe. J. Phys. Chem. B, v. 105, p. 5121–5130, 2001.

[120] H, P. U. S. et al. Dehydration Studies of a High-Surface-Area Alumina. J. Am. Chem. Soc., v. 7863, n. 5, p. 7832–7842, 1997.

[121] KROKIDIS, X. et al. Theoretical Study of the Dehydration Process of Boehmite to γ- Alumina. The Journal of Physical Chemistry B, v. 105, n. 22, p. 5121–5130, Jun. 2001. [122] D’IPPOLITO, S. A. et al. Propane Oxidative Dehydrogenation on V–Sb/ZrO2 Catalysts. Catalysis Letters, v. 122, n. 3–4, p. 252–258, 26 May 2008.

[123] KNÖZINGER, H.; RATNASAMY, & P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. 1978.

[124] LEE, H. B. C. M. D. No Title. Applied Catalysis A: General, v. 154, p. 55–74, 1997. [125] BRAGA, T. P.; ESSAYEM, N.; VALENTINI, A. Synthesis of Cu–M x O y /Al 2 O 3 (M = Fe, Zn, W or Sb) catalysts for the conversion of glycerol to acetol: effect of texture and acidity of the supports. RSC Advances, v. 5, p. 93394–93402, 2015.

[126] QIN, L.-Z.; SONG, M.-J.; CHEN, C.-L. Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO 3 /ZrO 2 catalysts in a fixed-bed reactor. Green Chemistry, v. 12, p. 1466–1472, 2010.

[127] MARTIN, A. et al. Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. European Journal of Lipid Science and Technology, v. 115, n. 1, p. 9–27, 2013.

[128] WANG, Y.; ZHOU, J.; GUO, X. Catalytic hydrogenolysis of glycerol to propanediols: a review. RSC Adv., v. 5, p. 74611–74628, 2015.

[129] YUN, Y. S. et al. Understanding the Reaction Mechanism of Glycerol Hydrogenolysis over a CuCr2O4Catalyst. ChemSusChem, v. 10, n. 2, p. 442–454, 2017.

Documentos relacionados