• Nenhum resultado encontrado

No presente trabalho foi realizada a síntese dos pós de TiO2 dopados com ferro e co-dopados com chumbo e vice-versa. O método de síntese utilizado foi o sonoquímico, que se mostrou eficiente para a síntese desse tipo de material.

As análises de DRX mostraram que os pós de titânia se encontram na fase anatase e que a dopagem e co-dopagem ocorreram com sucesso, não mostrando fases secundárias.

A microscopia eletrônica de transmissão mostrou uma morfologia aglomerada e esférica para a amostra de TiO2 pura, dopada com 0,5 %, 1% de chumbo e dopada com 0,25% de ferro e co-dopada com 0,25% de chumbo mostrou uma morfologia irregular e aglomerada. As demais amostras apresentaram morfologia irregular, porém desaglomerada. O tamanho médio das partículas pode ser calculado e as partículas se mostraram muito pequenas, como visto nas fotomicrografias. O resultado de EDS confirmou a presença dos dopantes e co- dopantes na estrutura e o cálculo da distância interplanar confirmou que o TiO2 se encontra na fase anatase.

A energia de banda das amostras diminuiu com a adição dos dopantes e co- dopantes, principalmente aquelas amostras que continham uma maior quantidade de ferro na sua estrutura. A redução do Egap mostrou que os pós podem possuir um bom comportamento sob a luz visível para a degradação do azul de metileno.

A análise de área superficial através do método BET mostrou que a adição de íons dopantes na estrutura do dióxido de titânio reduziu a área superficial em relação a amostra pura, corroborando com os resultados de gap.

A adição dos dopantes e co-dopantes no TiO2 reduziram a atividade fotocatalítica do material sob irradiação UV, visto que a quantidade de dopante e co- dopante ultrapassaram os valores considerados como “ótimos”. Já para as amostras que estavam dentro do valor “ótimo”, a atividade fotocatalítica teve um bom desempenho em relação as que ultrapassavam esse valor ótimo. Para as amostras degradadas sob radiação solar, todas tiveram um aumento na atividade fotocatalítica quando comparada com as amostras irradiadas sob luz UV, principalmente as amostras que cumpriram a regra do valor ótimo, mostrando melhores resultados quando comparado a titânia pura e comercial, corroborando com o resultado de gap que com a dopagem trouxe o titânio para a faixa do visível. A análise do mecanismo

de catálise mostrou que os buracos estão fortemente ligados a atividade fotocatalítica do TiO2 co-dopado, enquanto que os radicais OH• não participam fortemente dessa reação.

Na análise antimicrobiana, as amostras TiO2:1%Fe:3%Pb, TiO2:1%Pb1%Fe e TiO2:1%Pb:3%Fe apresentaram sinergismo frente as duas bactérias, diferente do restante das amostras que foram co-dopadas. Além disso, as amostras TiO2:1%Fe:3%Pb e TiO2:1%Pb:1%Fe apresentaram um diâmetro maior que o diâmetro mínimo exigido para a eficiência da ação antimicrobiana, se comportando como bons agentes antimicrobianos.

Apesar da propriedade de fotocatálise ser reduzida com o aumento dos íons dopantes e co-dopantes, o aumento da concentração no dióxido de titânio fez com que a propriedade antimicrobiana fosse melhorada, concluindo que o material se trata de um pó multifuncional que pode ser utilizado tanto como agente antimicrobiano e como catalisador para degradação de poluentes orgânicos dos efluentes.

REFERÊNCIAS

1. MARIEN, C.B., et al., Sol-gel synthesis of TiO2 nanoparticles: Effect of pluronic p123 on particle’s morphology and photocatalytic degradation of paraquat. Environmental Science and Pollution Research, 2017. 24(14): p. 12582-12588.

2. SACCO, O., et al., Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. Journal of Cleaner Production, 2018. 175: p. 38-49.

3. DODOO-ARHIN, D., et al., The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon, 2018. 4(7).

4. PENG, Y., et al., Antibacterial photocatalytic self‐cleaning poly (vinylidene fluoride) membrane for dye wastewater treatment. Polymers for Advanced Technologies, 2018. 29(1): p. 254-262.

5. ESHAGHI, A. e H. MORADI, Optical and photocatalytic properties of the Fe-doped TiO2 nanoparticles loaded on the activated carbon.Advanced Powder Technology, 2018.

6. ALI, F., et al., Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations.Process Safety and Environmental Protection, 2018. 117: p. 307-314.

7. SHARMA, A., AHMAD J., eFLORA, S., Application of advanced oxidation processes and toxicity assessment of transformation products. Environmental research, 2018.

8. ANDRADE NETO, N. F., et al., Study of the photocatalysis and increase of antimicrobial properties of Fe3+ and Pb2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method. Materials Science in Semiconductor Processing, 2019. 93: p. 123-133.

9. LI, W., Influence of electronic structures of doped TiO2 on their photocatalysis. physica status solidi (RRL)–Rapid Research Letters, 2015. 9(1): p. 10-27.

10. FOSTER, H.A., et al., Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied microbiology and biotechnology, 2011. 90(6): p. 1847-1868.

11. SASANI, A., et al., Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface. Applied Surface Science, 2016. 384: p. 298-303.

12. CONG, Y., et al., Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). The Journal of Physical Chemistry C, 2007. 111(28): p. 10618-10623.

13. MOHR, L.C., et al.Efeito antimicrobiano de nanopartículas de ZnO E TiO2 frente as bactérias S. aureus e E. coli. em: Revista do Congresso Sul Brasileiro de Engenharia de Alimentos. 2018.

14. KANG, M., et al., Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nanoletters, 2017. 17(3): p. 1610-1615. 15. ALFARO, A.G. R. e MUÑOZ, U.M.;Síntesis de nanopartículas de TiO2-Fe-N

por métodos de sol-gel, y su caracterización. Jóvenes en la ciencia, 2017. 3(2): p. 1928-1932.

16. KAMAT, P.V., TiO2 nanostructures: recent physical chemistry advances. 2012, ACS Publications.

17. AMRAOUI, R., et al., The electronic structure and optical properties of rutile TiO2 co-doped with nickel and cerium.Chinese Journal of Physics, 2017. 55(6): p. 2393-2399.

18. PHATTALUNG, S.N., LIMPIJUMNONG, S., e YU, J.;Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity.Applied Catalysis B: Environmental, 2017. 200: p. 1-9. 19. ZHENG, M., et al., Effects of PVP on structure of TiO2 prepared by the sol-

gel process. Materials Science and Engineering: B, 2001. 87(2): p. 197-201. 20. SHI, J., et al., Hydrothermal synthesis of graphene wrapped Fe-doped

TiO2 nanospheres with high photocatalysis performance. Ceramics International, 2018. 44(7): p. 7473-7480.

21. ZHANG, Y., et al., Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning. Composites Part B: Engineering, 2015. 80: p. 355-360.

22. ANANDAN, S. e ASHOKKUMAR, M., Sonochemical synthesis of Au–TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrasonics sonochemistry, 2009. 16(3): p. 316-320.

23. BANG, J.H. e SUSLICK, K.S.,Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials, 2010. 22(10): p. 1039- 1059.

24. KUMAR, C.S., UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. 2013: Springer.

25. GOUVEIA, P.S., et al., Sintese e Caracterizacao de Nanocompositos Ni: SiO2 Processados na Forma de Filmes Finos. Química Nova, 2005. 28(5): p. 842.

26. LI, Q., et al., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 2008. 42(18): p. 4591-4602.

27. KANG, T., et al., Surface design of magnetic nanoparticles for stimuli- responsive cancer imaging and therapy. Biomaterials, 2017. 136: p. 98- 114.

28. DUNCAN, T.V., Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 2011. 363(1): p. 1-24.

29. QUINA, F.H., Nanotecnologia e o meio ambiente: perspectivas e riscos. Química Nova, 2004. 27(6): p. 1028-1029.

30. BAVYKIN, D.V., FRIEDRICH, J.M., e WALSH, C., Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 2006. 18(21): p. 2807-2824.

31. ENYASHIN, A.N. e SEIFERT, G.Structure, stability and electronic properties of TiO2 nanostructures. Physica status solidi (b), 2005. 242(7): p. 1361-1370.

32. MORADI, V., et al., Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Applied Surface Science, 2018. 427: p. 791-799.

33. CORONADO, D.R., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605.

34. TRAN, M. H. e JEONG, H. K., Modification of titanium dioxide by solution plasma. Journal of Physics and Chemistry of Solids, 2018.

35. CARP, O., HUISMAN, C. L., eRELLER, A., Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry, 2004. 32(1-2): p. 33-177. 36. SHEN, S., et al., Titanium Dioxide Nanostructures for

Photoelectrochemical Applications. Progress in Materials Science, 2018. 37. TAVARES, M.T.S., Síntese hidrotérmica assistida por micro-ondas de

TiO2, e aplicação em nanocompósito. 2013, Universidade Federal do Rio Grande do Norte.

38. BICKLEY, R.I., et al., A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991. 92(1): p. 178-190. 39. YAMASHITA, Y., et al., The synthesis of a porous-type of TiO2 with rutile

structure. Advanced Powder Technology, 2018.

40. DIEBOLD, U., The surface science of titanium dioxide. Surface science reports, 2003. 48(5-8): p. 53-229.

41. REDDY, K.M., MANORAMA, S. V., e REDDY, A.R., Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003. 78(1): p. 239-245.

42. EL-SHEIKH, S.M., et al., Visible light activated carbon and nitrogen co- doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 2017. 173: p. 258-268. 43. PASCHOALINO, M.P., Utilização da fotocatálise heterogénea na

desinfecção de atmosferas confinadas. 2006.

44. MIAO, J., ZHANG, R. e ZHANG, L.,Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Materials Research Bulletin, 2018. 97: p. 109-114.

45. JHUANG, Y. Y. e CHENG, W. T., Fabrication and characterization of silver/titanium dioxide composite nanoparticles in ethylene glycol with alkaline solution through sonochemical process. Ultrasonics sonochemistry, 2016. 28: p. 327-333.

46. RAHMAN, M., et al., Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. Journal of Physics and Chemistry of Solids, 1999. 60(2): p. 201-210.

47. ARMELAO, L., et al., Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 2007. 18(37): p. 375709.

48. NASIRIAN, M., BUSTILLO-LECOMPTE,C.F., e MEHRVAR, M., Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV- assisted thermal synthesis. Journal of environmental management, 2017. 196: p. 487-498.

49. MALENGREAUX, C.M., et al., Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO

2 catalysts produced by aqueous sol-gel processing. Journal of Alloys and Compounds, 2017. 691: p. 726-738.

50. ZHU, J., et al., Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol−gel route. The Journal of Physical Chemistry C, 2007. 111(51): p. 18965-18969.

51. AMBATI, R. e COGATE, P. R., Ultrasound assisted synthesis of iron doped TiO2 catalyst. Ultrasonics sonochemistry, 2018. 40: p. 91-100.

52. RAHMAN, M., et al., Investigation of solid state Pb doped TiO2 solar cell. Solar energy materials and solar cells, 1997. 48(1-4): p. 123-130.

53. YU, J., et al., Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films. Journal of sol-gel science and technology, 2002. 24(1): p. 39-48.

54. ARAÚJO, K.S., et al., Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água-An Interdisciplinary Journal of Applied Science, 2016. 11(2).

55. BRITO, N. N. e SILVA, V.B.M., Processo oxidativo avançado e sua aplicação ambiental. REEC-Revista Eletrônica de Engenharia Civil, 2012. 3(1).

56. TEIXEIRA, C. e JARDIM, W.,Caderno Temático Volume 3–Processos Oxidativos Avançados. Universidade de Campinas UNICAMP, 2004.

57. SENA, M.S., Avaliação do potencial fotocatalítico do molibdato de cério obtido pelo método EDTA/citrato na degradação do azul de metileno. 2016, Brasil.

58. ROCHA, O.R.S., Avaliação de diferentes processos oxidativos avançados no tratamento de resíduos de petróleo. 2010.

59. NOGUEIRA, R. F. e JARDIM, W. F., A fotocatálise heterogênea e sua aplicação ambiental. Química nova, 1998. 21(1): p. 69-72.

60. VALVERDE, R.P., et al., Viabilidade no tratamento de efluente industrial através da utilização de reagente de fenton e fotocatálise heterogênea. REEC-Revista Eletrônica de Engenharia Civil, 2016. 11(1).

61. HERRMANN, J. M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis today, 1999. 53(1): p. 115-129.

62. HOUAS, A., et al., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 2001. 31(2): p. 145-157.

63. STEFAN, M.I., Advanced oxidation processes for water treatment: fundamentals and applications. 2017: IWA publishing

64. FIOREZE, M., SANTOS, E.P., e SCHMACHTENBERG. N., Processos oxidativos avançados: fundamentos e aplicação ambiental. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 2014. 18(1): p. 79- 91.

65. CHAHAR, V., et al., Study of Antimicrobial Activity of Silver Nanoparticles Synthesized using Green and Chemical Approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018.

66. ANDRADE NETO, N.F., Estudo das atividades fotocatalítica e antimicrobiana de partículas de AgCl impregnadas com CuO obtidas via síntese sonoquímica.Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, 2017, Brasil.

67. RODRIGUES-SILVA, C., et al., Ocorrência e degradação de quinolonas por processos oxidativos avançados. Química Nova, 2014. 37(5): p. 868- 885.

68. VLIETINCK, A., VANDEN BERGHE, D., Screening methods for antibacterial and antiviral agents from higher plants, in Methods in plant biochemistry/Hostettmann, K.[edit.]. 1991. p. 47-69.

69. AL-JAWAD, S.M., TAHA, A. A., e SALIM, M. M., Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial

activity. Optik-International Journal for Light and Electron Optics, 2017. 142: p. 42-53.

70. AlOTAIBI, A.M., et al., Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin Films. Chemistry of Materials, 2018. 30(4): p. 1353-1361.

71. DODOO-ARHIN, D., et al., The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon, 2018. 4(7): p. e00681.

72. RAJ, P. P. e RAO, Y. B., Study and Synthesis of Manganese Doped TiO2 Nanoparticles. 2017.

73. RAMAKRISHNAN, V.M., et al., Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Materials Research Bulletin, 2018. 97: p. 351-360.

74. SANTIAGO COLÍN, D.M., et al., Sonochemical coupled synthesis of Cr- TiO2 supported on Fe3O4 structures and chemical simulation of the degradation mechanism of Malachite Green dye. Journal of Photochemistry and Photobiology A: Chemistry, 2018.

75. ALMEIDA, J.R., Síntese sonoquímica de novos nanohíbridos de óxido de vanádio/polímero condutor. 2014.

76. SANTOS, J.G., Obtenção de dióxido de titânio rutilo em temperaturas inferiores às usadas industrialmente a partir de diferentes precursores. 2004.

77. POKHREL, N., P.K. VABBINA, and N. PALA, Sonochemistry: science and engineering. Ultrasonics sonochemistry, 2016. 29: p. 104-128.

78. YU, C., JIMMY, C. Y., e CHAN, M., Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. Journal of Solid State Chemistry, 2009. 182(5): p. 1061-1069.

79. ZIEMBOWICZ, S., KIDA, M., eKOSZELNIK, P., The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Separation and Purification Technology, 2018. 204: p. 149-153. 80. GEDANKEN, A., Using sonochemistry for the fabrication of

81. CHATEL, G., Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction. Current Opinion in Green and Sustainable Chemistry, 2018.

82. IBRAHIM, A., MEKPRASART,W., ePECHARAPA,W., Anatase/Rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity. Materials Today: Proceedings, 2017. 4(5): p. 6159-6165.

83. CAMILO, R.L., Síntese e caracterização de nanopartículas magnéticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material híbrido em nanotecnologia. 2006, Universidade de São Paulo.

84. ELSELLAMI, L., et al., Highly photocatalytic activity of nanocrystalline TiO2 (anatase, rutile) powders prepared from TiCl4 by sol–gel method in aqueous solutions. Process Safety and Environmental Protection, 2018. 113: p. 109-121.

85. MEHRAZ, S., et al., Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis. Solar Energy Materials and Solar Cells, 2019. 189: p. 254-262.

86. KIM, T. H., et al., Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by sonochemical method. Catalysis today, 2013. 212: p. 75- 80.

87. CIOCARLAN, R. G., et al., Novel magnetic nanocomposites containing quaternary ferrites systems Co0.5Zn0.25M0.25 Fe2O4 (M= Ni, Cu, Mn, Mg) and TiO2-anatase phase as photocatalysts for wastewater remediation under solar light irradiation. Materials Science and Engineering: B, 2018. 230: p. 1-7.

88. KLUG, H.P. e ALEXANDER, L.E., X-ray diffraction procedures: for polycrystalline and amorphous materials. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2ª Edição. ISBN 0-471- 49369-4. Wiley-VCH, May 1974., 1974: p. 992.

89. MAYOUFI, A., et al., Synthesis, characterization and photocatalytic performance of W, N, S-tri-doped TiO2 under visible light irradiation. Comptes Rendus Chimie, 2015. 18(8): p. 875-882.

90. MUNIZ, F.T.L., Análise da equação de Scherrer pela teoria dinâmica da difração de Raios X aplicada a distribuições de tamanho de cristalitos. 2017. Tese (Doutorado), Universidade Federal do Ceará.

91. THAMAPHAT, K., LIMSUWAN , P., e NGOTAWORNCHAI, B., Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 2008. 42(5): p. 357-361.

92. LEI, X., et al., Synthesis and characterization of Fe, N and C tri-doped polymorphic TiO2 and the visible light photocatalytic reduction of Cr (VI). Separation and Purification Technology, 2017. 174: p. 66-74.

93. SUMARI, S., ROESYADI, A., e SUMARNO, S., Effects of ultrasound on the morphology, particle size, crystallinity, and crystallite size of cellulose. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 2013. 14(4): p. 229.

94. WOOD, D. e TAUC, J., Weak absorption tails in amorphous semiconductors. Physical Review B, 1972. 5(8): p. 3144.

95. CRACIUN, E., et al., Fe3+- doped TiO

2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018. 356: p. 18-28.

96. MORADI, H., et al., Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrasonics sonochemistry, 2016. 32: p. 314-319. 97. SARANGI, S., PRADHAN, G. K., e SAMAL, D., Band gap engineering in

SnO2 by Pb doping. Journal of Alloys and Compounds, 2018. 762: p. 16-20. 98. SATHYA, M. e PUSHPANATHAN, K., Synthesis and Optical Properties of

Pb Doped ZnO Nanoparticles. Applied Surface Science, 2018. 449: p. 346- 357.

99. ANJU, K., et al., Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO2 for enhanced visible light photosensitive applications. Optik, 2018. 165: p. 408-415.

100. BENJWAL, P., DE, B., e KAR, K. K., 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity. Applied Surface Science, 2018. 427: p. 262-272.

101. YU, J., et al., Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films. Journal of sol-gel science and technology, 2002. 24(1): p. 39-48.

102. SUN, J., et al., Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of hazardous materials, 2008. 155(1-2): p. 312-319.

103. KIMFUNG, L., MARTIN, D., e JUNWANG, T.,Conversion of solar energy to fuels by inorganic heterogeneous systems. Chinese Journal of Catalysis, 2011. 32(6-8): p. 879-890.

104. TANG, J., DURRANT, J.R., e KLUG, D. R., Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. Journal of the American Chemical Society, 2008. 130(42): p. 13885-13891.

105. CHEN, Y., et al., Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environmental science & technology, 2011. 45(13): p. 5689-5695.

106. SAKTHIVEL, S., et al., Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water research, 2004. 38(13): p. 3001-3008. 107. GÓRSKA, P., et al., TiO2 photoactivity in Vis and UV light: the influence of

calcination temperature and surface properties. Applied Catalysis B: Environmental, 2008. 84(3-4): p. 440-447.

108. ZHAO, Q., et al., Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders. Ceramics International, 2018. 44(5): p. 5145-5154.

109. WANG, Y., et al., Co-doping TiO2 with boron and/or yttrium elements: Effects on antimicrobial activity. Materials Science and Engineering: B, 2016. 211: p. 149-155.

110. WANG, Y.,YANG, H., e XUE, X., Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum, 2014. 107: p. 28-32.

Documentos relacionados