• Nenhum resultado encontrado

Os resultados sugerem que a introdução do radical nitrofenilamino na posição 3 do anel furano (composto 2) aumenta a citotoxicidade da nor-β-lapachona (composto 1) contra células HL-60 em aproximadamente seis vezes, no entanto, essa aumento da citotoxicidade vem acompanhado pela perda parcial da seletividade para células tumorais. O composto 2 induz morte celular por apoptose, além de aumentar os níveis de espécies reativas de oxigênio. Esses achados apontam para o potencial de quinonas sintéticas como protótipo para a produção de novos compostos com propriedades anticâncer.

REFERÊNCIAS

ACEHAN, D.; JIANG, X.; MORGAN, D. G.; HEUSER, J. E.; WANG, X.; AKEY, C. W. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell, v. 9, p. 423-432, 2002.

AHMED, S. A.; GOGAL Jr, R. M.; WALSH, J. E. A new rapid and simple non- radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay. J. Immunol. Methods, v. 170, n. 2, p. 211-224, 1994.

de ALMEIDA, V. L.; LEITÃO, A.; REINA, L. D. C. B.; MONTANARI, C. A.; DONNICI, C. L. Câncer e Agentes Antineoplásicos Ciclo-Celular Específicos e Ciclo-Celular Não Específicos que Interagem com o DNA: Uma Introdução. Quim. Nova, v. 28, p. 118-129, 2005.

AMERICAN CANCER SOCIETY (ACS). The history of cancer. Disponível em: <http://www.cancer.org/docroot/CRI/content/CRI_2_6x_the_history_of_cancer_72.as p?sitearea=&level> Acesso em: 12 dez. 2009..

ANAZETTI, M. C.; MELO, P. S.; DURAN, N.; HAUN, M. Comparative cytotoxicity of dimethylamide-crotonin in the promyelocytic leukemia cell line (HL-60) and human peripheral blood mononuclear cells. Toxicology, v. 188, p. 261-274, 2003.

de ANDRADE-NETO, V. F.; GOULART, M. O. F.; DA SILVA FILHO, J. F.; DA SILVA, M. J.; PINTO, M. C. F. R.; PINTO, A. V.; ZALIS, M. G.; CARVALHO, L. H.; KRETTLI, A. U. Antimalarial activity of phenazines from lapachol, â-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., v. 14, p. 1145-1149, 2004.

ANDREYEV, A.Y.; KUSHNAREVA, Y. E.; STARKOV, A. A. Mitochondrial Metabolism of Reactive Oxygen Species. Biochemistry (Moscow), v. 70, p. 200-214, 2005. ASCHE, C. Antitumour quinones. Mini Rev. Med. Chem., v. 5, p. 449-467, 2005. ASHWELL, M.; CHIANG, J. L.; TANDON, M.; LIU, Y.; LAPIERRE, J.; JIANG, Z. Pharmaceutical compositions of beta-lapachone and beta-lapachone analogs with improved tumor targeting potential. U.S. Pat. Appl. Publ. Patent 2006034796, 2006. BAEK, S. M.; KWON, C. H.; KIM, J. H.; WOO, J. S.; JUNG, J. S.; KIM, Y. K. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J. Lab. Clin. Med., v. 142, p. 178-186, 2003.

BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: As Bases Moleculares da Ação dos Fármacos. São Paulo: Artmed, 2002.

BENHAR, M.; DALYOT, I.; ENGELBERG, D.; LEVITZKI, A. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol. Cell Biol., v. 21, p. 6913-6926, 2001.

BRADY, H. J. M. Apoptosis Methods and Protocols. New Jersey: Humana Press, 2004.

BRANNON-PEPPAS, L.; BLANCHETTE, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., v. 56, p. 1649-1659, 2004.

BRASIL. Ministério da Saúde. Instituto Nacional do Câncer. Estimativas 2008: incidência de câncer no Brasil. Disponível em:< http://www.inca.gov.br>. Acesso em: 12 dez. 2009.

BRUIN, E. C.; MEDEMA, J. P. Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat. Rev., v. 34, p. 737- 749, 2008. BUDIHARDJO, I.; OLIVER, H.; LUTTER, M.; LUO, X.; WANG, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol., v. 15, p. 269-290, 1999.

BURSCH, W.; ELLINGER, A.; GERNER, C.; FROHWEIN, U.; SCHULTE- HERMANN, R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann. NY Acad. Sci., v. 926, p. 1-12, 2000.

BUTLER, M.; DAWSON, M. (Ed.). Cell culture. Oxford: Blackwell, 1992.

BUTLER, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod., v. 67, p. 2141-2153, 2004

CAI, J.; JONES, D. P. Mitochondrial redox signaling during apoptosis. J. Bioenerg. Biomembr., v. 31, p. 327-334, 1999.

CEJAS, P.; CASADO, E.; BELDA-INIESTA, C.; de CASTRO, J.; ESPINOSA, E.; REDONDO, A.; SERENO, M.; GARCIA-CABEZAS, M. A.; VARA, J. A.; DOMINGUEZ-CACERES, A.; PERONA, R.; GONZALEZ-BARON, M. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain). Cancer Causes Control, v. 15, n. 7, p. 707-719, 2004.

CHAU, Y. P.; SHIAH, S. G.; DON, M. J.; KUO, M. L. Involvement of hydrogen peroxide in topoisomerase inhibitor β-lapachone-induced apoptosis and differentiation in human leukemia cells. Free Radic. Biol. Med., v. 24, p. 660–670, 1998.

CHEN, G. L.; YANG, L.; ROWE, T. C.; HALLIGAN, B. D.; TEWEY, K. M.; LIU, L. F. Nonintercalative antitumor drugs interfere with the breakage–reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem., v. 259, p. 13560–13566, 1984.

CHINNAIYAN, A. M.; O‘ROURKE, K.; TEWARI, M.; DIXIT, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, v. 81, n. 4, p. 505-512, 1995.

CHINNAIYAN, A. M.; O’ROURKE, K.; YU, G. L.; LYONS, R. H.; GARG, M.; DUAN, D. R.; XING, L.; GENTZ, R.; NI, J.; DIXIT, V. M. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science, v. 274, p. 990- 992, 1996.

CHUNG, S. H.; CHUNG, S. M.; LEE, J. Y.; KIM, S. R.; PARK, K. S.; CHUNG, J. H. The biological significance of non-enzymatic reaction of menadione with plasma thiols: enhancement of menadione-induced cytotoxicity to platelets by the presence of blood plasma. FEBS Lett., v. 23, p. 235-240, 1999.

CORY, S.; ADAMS, J. M. The Bcl-2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, v. 2, p. 647-656, 2002.

CRAGG, G. M.; KINGSTON, D. G. I.; NEWMAN, D. J. (Ed.). Anticancer agents from natural products. Boca Raton, FL: Brunner-Routledge Psychology Press, Taylor & Francis Group, 2005.

CURY-BOAVENTURA, M. F.; POMPEIA, C.; CURI, R. Comparative toxicity of oleic acid and linoleic acid on Jurkat cells. Clin. Nutr., v. 23, p. 721-732, 2004.

DAEMMRICH, A. A.; BOWDEN, M. E. A Rising Drug Industry: Pharmaceuticals since 1870. Chem. Eng. News, p. 28-42, 2005.

DANIAL, N. N.; KORSMEYER, S. J. Cell death: critical control points. Cell, v. 116, p. 205-219, 2004.

DARZYNKIEWICZ, Z.; BRUNO, S.; DEL BINO, G.; GORCZYCA, M.; HOTZ, M. A.; LASSOTA, P.; TRAGANOS, F. Features of apoptotic cells measured by flow cytometry. Cytometry, v. 13, p. 795-808, 1992.

DAVIS Jr., W.; RONAI, Z.; TEW, K. D. Cellular Thiols and Reactive Oxygen Species in Drug-Induced Apoptosis. J. Pharmacol. Exp. Ther., v. 296, p. 1-6, 2001.

DENECKER, G.; VERCAMMEN, D.; STEEMANS, M.; VAN DEN BERGHE, T.; BROUCKAERT, G.; VAN LOO, G.; ZHIVOTOVSKY, B.; FIERS, W.; GROOTEN, J.; DECLERCQ, W.; VANDENABEELE, P. Death receptor-induced apoptotic and necrotic cell death: Differential role of caspases and mitochondria. Cell Death Differ., v. 8, p. 829–840, 2001.

DONEPUDI, M.; MAC SWEENEY, A.; BRIAND, C.; GRÜTTER, M. G. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell, v. 11, p. 543–549, 2003.

DONOVAN M.; COTTER, T. G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta, v. 1644, p. 133-147, 2004.

DRISCOLL, J. S.; HAZARD, G. F.; WOOD, H. B.; GOLDIN, A. Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother. Rep. 2, v. 4, n. 2, p. 1-362, 1974.

DRUKER, B. J.; TALPAZ, M.; RESTA, D. J.; PENG, B.; BUCHDUNGER, E.; FORD, J. M.; LYDON, N. B.; KANTARJIAN, H.; CAPDEVILLE, R.; OHNO-JONES, S.; SAWYERS, C. L. Efficacy and Safety of a Specific Inhibitor of the Bcr-Abl Tyrosine Kinase in Chronic Myeloid Leukemia. N. Engl. J. Med., v. 344, p. 1031-1037, 2001. DU, C.; FANG, M.; LI, Y.; LI, L.; WANG, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, v. 102, p. 33- 42, 2000.

DUVALL, E.; WYLLIE, A. H. Death and the cell. Immunol. Today, v. 7, p. 115-119, 1986.

EKERT, P. G.; SILKE, J.; HAWKINS, C. J.; VERHAGEN, A. M.; VAUX, D. L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell Biol., v. 152, n. 3, p. 483– 490, 2001.

ESTEVES-SOUZA, A.; FIGUEIREDO, D. V.; ESTEVES, A.; CAMARA, C. A.; VARGAS, M. D.; PINTO, A. C.; ECHEVARRIA, A. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA. Braz. J. Med. Biol. Res., v. 40, p. 1399-1402, 2007.

EVANS, M. D.; DIZDAROGLU, M.; COOKE, M. S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res., v. 567, p. 1-61, 2004.

FADOK, V. A.; VOELKER, D. R.; CAMPBELL, P. A.; COHEN, J. J.; BRATTON, D. L.; HENSON, P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., v. 148, p. 2207-2216, 1992.

FADOK, V. A.; BRATTON, D. L.; ROSE, D. M.; PEARSON, A.; EZEKEWITZ, R. A.; HENSON, P. M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, v. 405, p. 85-90, 2000.

FERREIRA, V.; JORQUEIRA, A.; SOUZA, A.; DA SILVA, M.; DE SOUZA, M.; GOUVEA, R.; RODRIGUES, C.; PINTO, A.; CASTRO, H.; SANTOS, D.; ARAUJO, H.; BOURGUIGNON, S. Trypanocidal agents with low cytotoxicity to mammalian cell line: A comparison of the theoretical and biological features of lapachone derivatives. Bioorg. Med. Chem., v. 14, p. 5459-5466, 2006.

FISCHER, P. M.; GLOVER, D. M.; LANE, D. P. Targeting the cell cycle. Drug Discovery Today: Therapeutic Strategies, v. 1, p. 417-423, 2004.

FLEURY, C.; MIGNOTTE, B.; VAYSSIÈRE, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, v. 84, p. 131-141, 2002.

FOSTER, I. Cancer: A cell cycle defect. Radiography, v. 14, p. 144-149, 2008. FOYE, M. O. Cancer Chemotherapeutic Agents. Washington, D.C.: American Chemical Society, 1995.

FRY, F. H.; JACOB, C. Sensor/effector drug design with potential relevance to cancer. Curr. Pharm. Design., v. 12, p. 4479-4499, 2006.

FRYDMAN, B.; MARTON, L. J.; SUN, J. S.; NEDER, K.; WITIAK, D. T.; LIU, A. A.; WANG, H. M.; MAO, Y.; WU, H. Y.; SANDERS, M. M.; LIU, L. F. Induction of DNA topoisomerase II-mediated DNA cleavage by b-lapachone and related naphthoquinones. Cancer Res., v. 57, p. 620–627, 1997.

FULDA, S.; DEBATIN, K. M. Exploiting death receptor signaling pathways for tumor therapy. Biochim. Biophys. Acta, v. 1705, n. 1, p. 27-41, 2004.

GALLUZZI, L.; MAIURI, M. C.; VITALE, I.; ZISCHKA, H.; CASTEDO, M.; ZITVOGEL, L.; KROEMER, G. Cell death modalities: classification and pathophysiological implications. Cell Death. Differ., v. 14, n. 7, p. 1237-1266, 2007.

GARRETT, M. D.; WORKMAN, P. Discovering Novel Chemotherapeutic Drugs for the Third Millennium. Eur. J. Cancer, v. 35, p. 2010-2030, 1999.

GENG, C. X.; ZENG, Z. C.; WANG, J. Y. Docetaxel inhibits SMMC-7721 human hepatocellular carcinoma cells growth and induces apoptosis. World J. Gastroenterol., v. 9, p. 696-700, 2003.

GIVAN, A. L. Flow Cytometry. In: HAWLEY, T. S.; HAWLEY, R. G. (Ed.). Methods in Molecular Biology: flow cytometry protocols. 2nd ed. Totowa, NJ: Humana Press Inc., 2000.

GOGVADZE, V.; ORRENIUS, S. Mitochondrial regulation of apoptotic cell death, Chem. Biol. Interact., v. 163, p. 4-14, 2006.

GOIJMAN, S. G.; STOPPANI, A. O. M. Effects of β-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi. Arch. Biochem. Biophys., v. 240, p. 273-280, 1985.

GREEN, D. R. Apoptotic pathways: the roads to run. Cell, v. 94, p. 695–698, 1998. GRIVICICH, I.; REGNER, A.; ROCHA, A. B. Apoptosis: Programmed Cell Death. Rev. Bras. Cancerol., v. 53, p. 335-343, 2007.

GUERITTE-VOEGELEIN, F.; GUÉNARD, D.; LAVELLE, F.; LE GOFF, M. T.; MANGATAL, L.; POTIER, P. Relationships between the structure of Taxol analogues and their antimitotic activity. J. Med. Chem., v. 34, p. 992-998, 1991.

GUIRAUD, P.; STEIMAN, R.; CAMPOS-TAKAKI, G. M.; SEIGLE-MURANDI, F.; SIMEON DE BUOCHBERG, M. S. Comparison of antibacterial and antifungal activities of lapachol and β-lapachone. Planta Med., v. 60, n. 4, p. 373-374, 1994.

GUPTA, D.; PODAR, K.; TAI, Y. T.; LIN, B.; HIDESHIMA, T.; AKIYAMA, M.; LEBLANC, R.; CATLEY, L.; MITSIADES, N.; MITSIADES, C.; CHAUHAN, D.; MUNSHI, N. C.; ANDERSON, K. C. β-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp. Hematol., v. 30, p. 711-720, 2002.

GUPTE, A.; MUMPER, R. J. Copper Chelation by D-penicillamine Generates Reactive Oxygen Species that are Cytotoxic to Human Leukemia and Breast Cancer Cells. Free Radic. Biol. Med., v. 43, p. 1271-1278, 2007.

HAN, J.; GOLDSTEIN, L. A.; GASTMAN, B. R.; RABINOWICH, H. Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J. Biol. Chem., v. 281, p. 10153-10163, 2006.

HANAHAN, D.; WEINBERG, R. A. The halmarks of cancer. Cell, v. 100, p. 57-70, 2000.

HARTWELL, L. H.; KASTAN, M. B. Cell cycle and cancer. Science, v. 266, p. 1821- 1828, 1994.

HARTWELL, J. L. Plants Used Against Cancer. Lawrence, MA; Quarterman, 1982. HENGARTNER, M. O. Apoptosis: corralling the corpses. Cell, v. 104, p. 325-328, 2001.

HENGARTNER, M.O. The Biochemistry of apoptosis. Nature, v. 407, p. 770-776, 2000.

HIGUCHI, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharm., v. 66, p. 1527-1535, 2003.

HILLARD, E. A.; ABREU, F. C.; FERREIRA, D. C. M.; JAOUEN, G.; GOULART, M. O. F.; AMATORE, C. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem. Commun. (London), v. 23, p. 2612-2628, 2008.

HIRSCH, T.; MARCHETTI, P.; SUSIN, A. S.; DALLAPORTA, B.; ZAMZAMI, N.; MARZO, I.; GLUSKENS, M.; KROEMER, G. The apoptosis-necrosis. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene, v. 15, p. 1573-1581, 1997.

HSU, Y. L.; CHO, C.Y.; KUO, P. L.; HUANG, Y. T.; LIN, C. C. Plumbagin (5-hydroxy- 2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J. Pharm. Exper. Ther., v. 318, p. 484–494, 2006.

HU, W.; KAVANAGH, J. J. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol., v. 4, p. 721-729, 2003.

HUANG, L.; PARDEE, A. B. β-Lapachone induces cell cycle arrest and apoptosis in human colon cancer cells. Mol. Med., v. 5, p. 711-720, 1999.

IANZINI, F.; MACKEY, M. A. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int. J. Radiat. Biol., v. 72, p. 409-421, 1997.

INBARAJ, J. J.; CHIGNELL, C. F. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol., v. 17, p. 55-62, 2004.

JABS, T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol., v. 57, p. 231-245, 1999.

JACKSON, J. R.; PATRICK, D. R.; DAR, M. M.; HUANG, P. S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer, v. 7, p. 107-117, 2007.

JOENSUU, H.; KELLOKUMPU-LEHTINEN, P. L.; BONO, P.; ALANKO, T.; KATAJA, R.; ASOLA, R.; UTRIAINEN, T.; KOKKO, R.; HEMMINKI, A.; TARKKANEN, M.; HUJANEN, T. T.; JYRKKIÖ, S.; FLANDER, M.; HELLE, L.; INGALSUO, S.; JOHANSSON, K.; JÄÄSKELÄINEN, A. S.; PAJUNEN, M.; RAUHALA, M.; KEROLA, J. K.; SALMINEN, T.; LEINONEN, M.; ELOMAA, I.; ISOLA, J. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med., v. 354, p. 809-820, 2006.

JOHNSON, S. A.; HARPER, P.; HORTOBAGYI, G. N.; POUILLARD, P. Vinorelbine: an overview. Cancer Treat. Rev., v. 22, p. 127-142, 1996.

KAMATA, H.; HIRATA, H. Redox regulation of cellular signaling. Cell Signal, v. 11, p. 1-14, 1999.

KERR, J. F.; WYLLIE, A. H.; CURRIE, A. R. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer, v. 26, p. 239-257, 1972.

KIM, B. C.; KIM, H. G.; LEE, S. A.; LIM, S.; PARK, E. H.; KIM, S. J.; LIM, C. J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol., v. 70, p. 1398-1407, 2005.

KIM, R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, v. 103, p. 1551-1560, 2005.

KIM, R.; EMI, M.; TANABE, K. Role of mitochondria as the gardens of cell death. Cancer Chemother. Pharmacol., v. 57, p. 545-553, 2006.

KING, R.W.; DESHAIES, R. J.; PETERS, J. M.; KIRSCHNER, M. W. How proteolysis drives the cell cycle. Science, v. 274, p. 1652-1658, 1996.

KINGSTON, D. G. I. Natural products as pharmaceuticals and sources for lead structures. In: WERMUTH, C. G. (Ed.). The Practice of Medicinal Chemistry. London: Academic Press Limited, 1996. p. 102-114.

KINGSTON, D. G. I. Taxol and its analogs. In: CRAGG, G. M.; KINGSTON, D. G. I.; NEWMAN, D. J. (Eds.). Anticancer Agents from Natural Products. Boca Raton, FL: Brunner-Routledge Psychology Press, Taylor & Francis Group, 2005. Cap. 6, p. 89–122.

KONG, Q.; LILLEHEI, K. O. Antioxidant inhibitors for cancer therapy. Med. Hypoth., v. 51, p. 405–409, 1998.

KONGKATHIP, N.; KONGKATHIP, B.; SIRIPONG, P.; SANGMA, C.; LUANGKAMIN, S.; NIYOMDECHA, M.; PATTANAPA, S.; PIYAVIRIYAGUL, S.; KONGSAEREE, P. Potent Antitumor Activity of Synthetic 1,2-Naphthoquinones and 1,4- Naphthoquinones. Bioorg. Med. Chem., v. 11, p. 3179-3191, 2003.

KOVACIC, P.; COOKSY, A. L. Iminium metabolite mechanism for nicotine toxicity and addiction: Oxidative stress and electron transfer. Med. Hypoth., v. 64, p. 104- 111, 2005.

KOVACIC, P.; SOMANATHAN, R. Mechanism of teratogenesis: Electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res., v. 78, p. 308-325, 2006.

KOVACIC, P.; BECVAR, L. E. Mode of action of anti-infective agents: focus on oxidative stress and electron transfer. Curr. Pharm. Des., v. 6, p. 143-167, 2000. KROEMER, G.; REED, J. C. Mitochondrial control of cell death. Nat. Med., v. 6, p. 513–519, 2000.

KUMAR, S.; HARVEY, N. L. Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett., v. 375, p. 169-173, 1995.

KUMAR, V.; ABBAS, A. K.; FAUSTO, N.; ROBBINS, S. L.; COTRAN, R. S Patologia: bases patológicas da doença. 7. ed. Amsterdam: Elsevier, 2004.

LAI, C. C.; LIU, T. J.; HO, L. K.; DON, M. J.; CHAU, Y. P. β-Lapachone induced cell death in human hepatoma (HepA2) cells. Histol. Histopathol., v. 13, p. 89-97, 1998. LEBEL, C. P.; ISCHIROPOULOS, H.; BONDY, S. C. Evaluation of the probe 2’,7’dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., v. 5, p. 227-231, 1992.

LEE, J. I.; CHOI, D. Y.; CHUNG, H. S.; SEO, H. G.; WOO, H. J.; CHOI, B. T.; CHOI, Y. H. β-Lapachone Induces Growth Inhibition and Apoptosis in Bladder Cancer Cells

by Modulation of Bcl-2 Family and Activation of Caspases. Exp. Oncol., v. 28, p. 30– 35, 2006.

LI, C. J.; AVERBOUKH, L.; PARDEE, A. B. β-Lapachone: a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J. Biol. Chem., v. 268, p. 22463-22468, 1993.

LI, C. J.; LI, Y. Z.; PINTO, A. V.; PARDEE, A. B. Potent inhibition of tumor survival in vivo by β-lapachone plus taxol: combining drugs imposing different artificial checkpoints. Proc. Natl. Acad. Sci. USA, v. 96, p. 13369-13374, 1999a.

LI, C. J.; WANG, C.; PARDEE, A. B. Induction of apoptosis by beta-lapachone in human prostate cancer cells. Cancer Res., v. 55, p. 3712-3715, 1995.

LI, L.Y.; LUO, X.; WANG, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, v. 402, p. 95-99, 2001.

LI, P.; NIJHAWAN, D.; BUDIHARDJO, I.; SRINIVASULA, S. M.; AHMAD, M.; ALNEMRI, E. S.; WANG, X. Cytochrome c and dATP-dependent formation of Apaf- 1/caspases 9 complex initiates an apoptotic protease cascade. Cell, v. 91, p. 479- 489, 1997.

LI, Y.; SUN, X.; LAMONT, J. T.; PARDEE, A. B.; LI, C. J. Selective killing of cancer cells by β-lapachone: direct checkpoint activation as a strategy against cancer. Proc. Natl. Acad. Sci. USA, v. 100, p. 2674–2678, 2003.

LI, Y.; LI, C. J.; YU, D.; PARDEE, A. B. Potent Induction of Apoptosis by β- Lapachone in Human Multiple Myeloma Cell Lines and Patient Cells. Mol. Med., v. 6, p. 1008-1015, 2000.

LI, Y. Z.; LI, C. J.; PINTO, A. V.; PARDEE, A. B. Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by β-lapachone in human carcinoma cells. Mol. Med., v. 5, p. 232-239, 1999b.

LIEN, Y. C.; KUNG, H. N.; LU, K. S.; JENG, C. J.; CHAU, Y. P. Involvement of endoplasmic reticulum stress and activation of MAP kinases in beta-lapachone- induced human prostate cancer cell apoptosis. Histol. Histopathol., v. 23, p. 1299- 308, 2008.

LIU, X.; KIM, C. N.; YANG, J.; JEMMERSON, R.; WANG, X. Induction of apoptotic program in cell-free extract: requirement for dATP and cytochrome c. Cell, v. 86, p. 147-157, 1996.

LIU, K. K. C.; LI, J.; SAKYA, S. Synthetic Approaches to the 2003 New Drugs. Mini- Rev. Med. Chem., v. 4, p. 1105-1125, 2004.

LOCKSLEY, R. M.; KILLEEN, N.; LENARDO, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, v. 104, p. 487-501, 2001.

LOPES, J. N.; CRUZ, F. S.; DOCAMPO, R.; VASCONCELLOS, M. E.; SAMPAIO, M. C.; PINTO, A. V.; GILBERT, B. In vitro and in vivo evaluation of the toxicity of 1,4- naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Ann. Trop. Med. Parasitol., v. 72, p. 523–531, 1978.

LOS, M.; BUREK, C. J.; STROH, C.; BENEDYK, K.; HUG, H.; MACKIEWICZ, A. Anticancer drugs of tomorrow: apoptotic pathways as target for drug design. Drug Discov. Today, v. 8, p. 67-77, 2003.

LOURO, I. D.; LLERENA JR, J. C.; VIEIRA DE MELO, M. S.; ASHTON-PROLLA, P.; CONFORTI-FRÓES, N. Genética molecular do câncer. 1. ed. São Paulo: MSG Produção Editorial, 2002.

MACEY, M. G. (Ed.). Principles of Flow Cytometry. In: MACEY, M. G. (Ed.). Flow cytometry: principles and applications. Totowa, NJ: Humana Press, 2007.

MALKINSON, A. M.; SIEGEL, D.; FORREST, G. L.; GAZDAR, A. F.; OIE, H. K.; CHAN, D. C.; BUNN, P. A.; MABRY, M.; DYKES, D. J.; HARRISON, S. D.; ROSS, D. Elevated DT-diaphorase activity and messenger RNA content in human non-small cell lung carcinoma: relationship to the response of lung tumor xenografts to mitomycin C1. Cancer Res., v. 52, p. 4752-4757, 1992.

MANN, J. Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer, v. 2, p. 143-148, 2002.

MANNA, S. K.; GAD, Y. P.; MUKHOPADHYAY, A.; AGGARWAL, B. B. Suppression of Tumor Necrosis Factor-Activated Nuclear Transcription Factor-kappa B, Activator Protein-1, c-Jun N-terminal Kinase, and Apoptosis by Beta-Lapachone. Biochem. Pharmacol., v. 57, p. 763-774, 1999.

MANSAT-DE MAS, V.; BEZOMBES, C.; QUILLET-MARY, A.; BETTAIEB, A.; D’ORGEIX, A. D.; LAURENT, G.; JAFFREZOU, J. P. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol. Pharmacol., v. 56, p. 867-874, 1999.

MARIN, A.; LOPEZ DE CERAIN, A.; HAMILTON, E.; LEWIS, A. D.; MARTÍNEZ- PENUELA, J. M.; IDOATE, M. A.; BELLO, J. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours. Br. J. Cancer, v. 76, p. 923-929, 1997.

MATES, J. M.; SÁNCHEZ-JIMÉNEZ, F. M. Role of reactive oxygen species in apoptosis implications for cancer therapy. Int. J. Biochem. Cell Biol., v. 32, n. 2, p. 157-170, 2000.

MCGAHON, A. J.; MARTIN, S. M.; BISSONNETTE, R. P.; MAHBOUBI, A.; SHI, Y.; MOGIL, R. J.; NISHIOKA, W. K.; GREEN, D. R. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol., v. 46, p. 153-185, 1995.

MENNA-BARRETO, R. F. S.; SALOMÃO, K.; DANTAS, A. P.; SANTA-RITA, R. M.; SOARES, M. J.; BARBOSA, H. S.; CASTRO, S. L. Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron, v. 40, p. 157-168, 2009.

MINOTTI, G.; RONCHI, R.; SALVATORELLI, E.; MENNA, P.; CAIRO, G. Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for ironmediated cardiotoxicity of antitumor therapy. Cancer Res., v. 61, p. 8422- 8428, 2001.

MIZUTANI, H.; TADA-OIKAWA, S.; HIRAKU, Y.; KOJIMAS, M.; KAWANISHI, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci., v. 76, p. 1439-1453, 2005.

MIZUTANI, H.; TADA-OIKAWA, S.; HIRAKU, Y.; OIKAWA, S.; KOJIMAS, M.; KAWANISHI, S. Mechanism of apoptosis induced by a topoisomerase inhibitor through the generation of hydrogen peroxide. J. Biol. Chem., v. 277, p. 30684- 30689, 2002.

MONKS, T. J.; HANZLIK, R. P.; COHEN, G. M.; ROSS, D.; GRAHAM, D. G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol., v. 112, p. 2-16, 1992.

MONKS, T. J.; JONES, D. C. The metabolism and toxicity of quinones, quinonimines, quinine methides, and quinone-thioethers. Curr. Drug Metabol., v. 3, p. 425-438, 2002.

MOSMANN, T. Rapid colorimetric assay for cellular growth and survivor: aplication to proliferation and cytotoxicity assays. J. Immunol. Methods, v. 65, p. 55-63, 1983. NAGATA, S. Apoptosis by death factor. Cell, v. 88, p. 355-365, 1997.

NEWMAN,,D. J.; CRAGG, G. M.; SNADER, K. M. Natural Products as sources of new drugs over the period 1981-2002. J. Nat. Prod., v. 66, p. 1022-1037, 2003. NGO, E. O.; SUN, T. P.; CHANG, J. Y.; WANG, C. C.; CHI, K. H.; CHENG, A. L.; NUTTER, L. M. Menadione-induced DNA damage in a human tumor cell line. Biochem. Pharmacol., v. 42, p. 1961-1968, 1991.

NICOLETTI, I.; MIGLIORATI, G.; PAGLIACCI, M. C.; GRIGNANI, F.; RICCARDI, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods, v. 139, p. 271-279, 1991.

NOTO, V.; TAPER, H. S.; JIANG, Y. H.; JANSSENS, J.; BONTE, J.; DE LOECKER, W. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 action. Cancer, v. 63, p. 901-906, 1989.

NOVAK, R. F.; KHARASCH, E. D. Mitoxantrone: propensity for free radical formation and lipid peroxidation–implications for cardiotoxicity. Investigat. New Drugs, v. 3, p. 95-99, 1985.

O'BRIEN, J.; WILSON, I.; ORTON, T.;POGNAN, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. FEBS J., v. 267, p. 5421-5426, 2000.

OKADA, H.; MAK, T. W. Pathways of apoptotic and non-apoptotic death in tumor cells. Nat. Rev. Cancer, v. 4, p. 592-603, 2004.

ORRENIUS, S. Mitochondrial regulation of apoptotic cell death. Toxicol. Lett., v. 149, p. 19, 2004.

ORTHOLAND, J. Y.; GANESAN, A. Natural products and combinatorial chemistry: back to the future. Curr. Opin. Chem. Biol. B, v. 8, n. 3, p. 271-280, 2004.

OUGH, M.; LEWIS, A.; BEY, E. A.; GAO, J.; RITCHIE, J. M.; BORNMANN, W.; BOOTHMAN, D. A.; OBERLEY, L. W.; CULLEN, J. J. Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biol. Ther., v. 4, p. 95-102, 2005.

PARDEE, A. B.; LI, Y. Z.; LI, C.J. Cancer Therapy with ß-Lapachone. Curr. Cancer Drug Targets, v. 2, p. 227-242, 2002.

PARONE, P. A.; JAMES, D.; MARTINOU, J. C. Mitochondria: regulating the inevitable. Biochimie, v. 84, n. 2/3, p. 105–111, 2002.

PELICANO, H.; CARNEY, D.; HUANG, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updates, v. 7, p. 97-110, 2004.

PERA, F.; MATTIAS, P.; DETZER. Methods for determining the proliferation kinetics of cells by means of 5-bromodeoxyuridine. Cell Tissue Kinet., v. 10, p. 255-264, 1977.

PERES, C. M.; CURI, R. Como Cultivar Células. Rio de Janeiro: Guanabara Koogan, 2005.

PICCART-GEBHART, M. J.; PROCTER, M.; LEYLAND-JONES, B.; GOLDHIRSCH, A.; UNTCH, M.; SMITH, I.; GIANNI, L.; BASELGA, J.; BELL, R.; JACKISCH, C.; CAMERON, D.; DOWSETT, M.; BARRIOS, C. H.; STEGER, G.; HUANG, C. S.; ANDERSSON, M.; INBAR, M.; LICHINITSER, M.; LÁNG, I.; NITZ, U.; IWATA, H.; THOMSSEN, C.; LOHRISCH, C.; SUTER, T. M.; RÜSCHOFF, J.; SÜT , T.; GREATOREX, V.; WARD, C.; STRAEHLE, C.; MCFADDEN, E.; DOLCI, M. S.; GELBER, R. D. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., v. 353, p. 1659-1672, 2005.

PINK, J. J.; PLANCHON, S. M.; TAGLIARINO, C.; VARNES, M. E.; SIEGEL, D.; BOOTHMAN, D. A. NAD(P)H: quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J. Biol. Chem., v. 275, p. 5416-5424, 2000b.

PINK, J. J.; WUERZBERGER-DAVIS, S.; TAGLIARINO, C.; PLANCHON, S. M.; YANG, X.; FROELICH, C. J.; BOOTHMAN, D. A. Activation of a cysteine protease in

MCF-7 and T47D breast cancer cells during beta-lapachone-mediated apoptosis. Exp. Cell Res., v. 255, p. 144-155, 2000a.

PLANCHON, S. M.; WUERZBERGER, S.; FRYDMAN, B.; WITIAK, D. T.; HUTSON, P.; CHURCH, D. R.; WILDING, G.; BOOTHMAN, D. A. ß-Lapachone-mediated Apoptosis in Human Promyelocytic Leukemia (HL-60) and Human Prostate Cancer Cells: a p53-Independent Response. Cancer Res., v. 55, p. 3706-3711, 1995.

PLANCHON, S. M.; PINK, J. J.; TAGLIARINO, C.; BORNMANN, W. G.;VARNES, M. E.; BOOTHMAN, D. A. Beta-lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Exp. Cell Res., v. 267, p. 95-106, 2001.

PROSKURYAKOV, S. Y.; KONOPLYANNIKOV, A. G.; GABAI, V. L. Necrosis: a specific form of programmed cell death? Exp. Cell Res., v. 283, p. 1-16, 2003.

RAFFRAY, M.; COHEN, G. M. Apoptosis and necrosis in citoxicology: a continuum or distinct modes of cell death? Pharmacol. Ther., v. 75, p. 153-177, 1997.

RAVELO, A.; ESTÉVEZ-BRAUN, A.; CHÁVEZ, H.; PÉREZ-SACAU, E.; MESA- SIVERIO, D. Recent studies on natural products as anticancer agents. Curr. Top. Med. Chem., v. 4, p. 241-265, 2004.

REED, J. C. Bcl2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignance. Semin. Hematol., v. 34, p. 9-19, 1997.

Documentos relacionados