• Nenhum resultado encontrado

No presente estudo, verificou-se que utilização de duas proteases com mecanismos catalíticos diferentes, proporcionou respostas específicas quanto às propriedades funcionais e antioxidantes. Dependendo também do grau de hidrólise utilizado, a micropartícula é significativamente influenciada, em suas propriedades de eficiência de encapsulação e proteção contra oxidação.

Conforme exposto nos capítulos anteriores, as micropartículas estabilizadas pela Flavourzyme exibiram maiores eficiências de encapsulação, uma vez que essas emulsões foram mais estáveis durante o processo de microencapsulação, em comparação com a proteína intacta e com os hidrolisados da Alcalase. Já durante o armazenamento, as micropartículas produzidas pelos hidrolisados da Alcalase, mostraram uma considerável estabilidade contra a oxidação lipídica quando comparado com os demais, porém uma diminuição na Tg. De modo geral, essas diferenças podem ser devidas a vários fatores, incluindo o tamanho dos peptídeos, cargas relativas de cada um deles, distribuição dos aminoácidos na cadeia polipeptídica assim como exposição de aminoácidos com capacidade antioxidante.

Embasado no levantamento do referencial teórico, pode ser interessante executar algumas análises para entender melhor o comportamento desses hidrolisados nas propriedades físicas e físico-químicas dos pós microencapsulados:

• Avaliar o comportamento da estrutura maltodextrina/peptídeos na retenção de compostos voláteis;

• Verificar a quantidade de proteína/peptídeo na interface da micropartícula; • Estudar possíveis combinações de hidrolisados de diferentes enzimas a fim de

garantir uma melhor propriedade funcional e antioxidante;

• Fazer análise de colorimetria das partículas durante o armazenamento para acompanhamento de eventuais mudanças de cor;

ABERKANE, L.; ROUDAUT, G.; SAUREL, R. Encapsulation and Oxidative Stability of PUFA-Rich Oil Microencapsulated by Spray Drying Using Pea Protein and Pectin. Food and Bioprocess Technology, v. 7, n. 5, p. 1505–1517, 2014.

ADHEEB USAID, A.; PREMKUMAR, J.; RANGANATHAN, T. Emulsion and it’s applications in food processing – a review. International Journal of Engineering Research and Applications, v. 4, n. 4, p. 241–248, 2014.

ADLER-NISSEN, J. Enzymic Hydrolysis of Food Proteins. London: Elsevier Applied Science Publishers, p. 427, 1986.

AI, M.; TANG, T.; ZHOU, L.; LING, Z.; GUO, S.; JIANG, A. Effects of different proteases on the emulsifying capacity , rheological and structure characteristics of preserved egg white hydrolysates. Food Hydrocolloids, v. 87, p. 933–942, 2019. AMAGLIANI, L.; O’REGAN, J.; KELLY, A. L.; O’MAHONY, J. A. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science and Technology, v. 64, p. 1–12, 2017.

AMERI, M.; MAA, Y. F. Spray drying of biopharmaceuticals: Stability and process considerations. Drying Technology, v. 24, n. 6, p. 763–768, 2006.

ANTONOV, V. K. Chemistry of Proteolysis. Berlim: Springer-Verlag, 1993.

AOAC. Official Methods of Analysis, 16a ed. Association of Official Analytical Chemistry, Washington, DC, EUA, 1997.

AOCS - AMERICAN OIL CHEMIST SOCIETY. Official methods and recommended pratices of the AOCS. 5th. ed. Champaing, IL, US: American Oil Chemist’s Society, 2004.

AZEREDO, H. M. C. de. ENCAPSULAÇÃO: APLICAÇÃO À TECNOLOGIA DE ALIMENTOS. Alimimentos e Nutrição, v. 16, n. 1, p. 138–155, 2005.

BAE, E. K.; LEE, S. J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of microencapsulation, v. 25, n. 8, p. 549–560, 2008.

BAKRY, A. M.; ABBAS, S.; ALI, B.; MAJEED, H.; ABOUELWAFA, M. Y.; MOUSA, A.; LIANG, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 15, n. 1, p. 143–182, 2016.

BANSODE, S. S. BANARJEE, S. K. GAIKWAD, D. D. JADHAV, S. L. THORAT, R. M. Microencapsulation: A review. International Journal of Pharmaceutical Sciences Review and Research, v. 1, n. 2, p. P38–P43, 2010.

BARROSO, A. K. M.; PIERUCCI, A. P. T. R.; FREITAS, S. P.; TORRES, A. G.; ROCHA-LEÃO, M. H. M. Da. Oxidative stability and sensory evaluation of microencapsulated flaxseed oil. Journal of Microencapsulation, v. 31, n. 2, p. 193– 201, 2014.

BENZIE, I. F. F.; STRAIN, J. J. Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay. Methods Enzymol, v. 299, p. 15–36, 1999. BERTON-CARABIN, C. C.; ROPERS, M. H.; GENOT, C. Lipid Oxidation in Oil-in- Water Emulsions: Involvement of the Interfacial Layer. Comprehensive Reviews in Food Science and Food Safety, v. 13, n. 5, p. 945–977, 2014.

BEYNON, R.; BOND, J. S. Proteolytic Enzymes. 2. ed. Oxford: Oxford University Press, 2001.

BOTREL, D. A.; DE BARROS FERNANDES, R. V.; BORGES, S. V.; YOSHIDA, M. I. Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, v. 62, p. 344–352, 2014.

BRAND-WILLIAMS, W.; CUVELIER, M. .; BERSET, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. v. 30, p. 25–30, 1995a.

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. Lebensmittel - Wissenschaft - Technologie, v. 28, n. 1, p. 25–30, 1995b.

BRUNAUER, S.; DEMING, L. S.; TELLER, E. On a theory of Van der Waals adsorption of gases. Journal of the American Chemists Society, v. 62, p. 1723–1732, 1940.

CARNEIRO, H. C. F.; TONON, R. V.; GROSSO, C. R. F.; HUBINGER, M. D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, v. 115, n. 4, p. 443–451, 2013.

CAROCHO, M.; FERREIRA, I. C. F. R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, v. 51, n. 1, p. 15–25, 2013.

CASTRO-ROSAS, J.; FERREIRA-GROSSO, C. R.; GÓMEZ-ALDAPA, C. A.; RANGEL-VARGAS, E.; RODRÍGUEZ-MARÍN, M. L.; GUZMÁN-ORTIZ, F. A.; FALFAN-CORTES, R. N. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review. Food Research International, 2017.

CENTENARO, G. S.; MELLADO, M. S.; PRENTICE-HERNÁNDEZ, C. Antioxidant activity of protein hydrolysates of fish and chicken bones. Advance Journal of Food Science and Technology, v. 3, n. 4, p. 280–288, 2011.

CHANANA, A.; KATARIA, M. K.; SHARMA, M.; BILANDI, A.; BIHANI, S. G. L.; COLLEGE, S. D.; EDUCATION, T.; GANGANAGAR, S. Microencapsulation : Advancements in Applications. International journal of pharmacy, v. 4, n. 2, p. 2–6, 2013.

CHANDI, G. K.; SOGUI, D. S. Functional properties of rice bran protein concentrates. Journal of Food Engineering, v. 79, n. 2, p. 592–597, 2007.

CHANG, C.; VARANKOVICH, N.; NICKERSON, M. T. Microencapsulation of canola oil by lentil protein isolate-based wall materials. Food Chemistry, v. 212, p. 264–273, 2016.

CHEETANGDEE, N.; BENJAKUL, S. Antioxidant activities of rice bran protein hydrolysates in bulk oil and oil-in-water emulsion. Journal of the Science of Food and Agriculture, v. 95, n. 7, p. 1461–1468, 2015.

CHEN, G. .; ZHAO, L.; ZHAO, L. .; CONG, T.; BAO, S. . In vitro study on antioxidant activities of peanut protein hydrolysate. Journal of the Science of Food and Agriculture, v. 87, p. 357–362, 2007.

CHEN, L.; CHEN, J.; REN, J.; ZHAO, M. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloids, v. 25, n. 5, p. 887–897, 2011.

CHENG, Y.; XIONG, Y. L.; CHEN, J. Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chemistry, v. 120, n. 1, p. 101–108, 2010.

CHUANG, L.; PANYOYAI, N.; SHANKS, R.; KASAPIS, S. Effect of sodium chloride on the glass transition of condensed starch systems. Food Chemistry, v. 184, p. 65–71, 2015.

CONAB. Companhia Nacional de Abastecimento. Disponível em: <http://www.conab.gov.br>. Acesso em: 7 nov. 2018.

CONSOLI, L.; DE FIGUEIREDO FURTADO, G.; DA CUNHA, R. L.; HUBINGER, M. D. High solids emulsions produced by ultrasound as a function of energy density. Ultrasonics Sonochemistry, v. 38, p. 772–782, set. 2017.

CORRIGAN, O. I. Thermal analysis of spray dried products. Thermochimica Acta, v. 248, p. 245–258, jan. 1995.

CORSTENS, M. N.; BERTON-CARABIN, C. C.; DE VRIES, R.; TROOST, F. J.; MASCLEE, A. A. M.; SCHROËN, K. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review. Critical Reviews in Food Science and Nutrition, v. 57, n. 10, p. 2218–2244, 2017.

CREUSOT, N.; GRUPPEN, H.; KONINGSVELD, G. A. Van; KRUIF, C. G. De; VORAGEN, A. G. J. Peptide – peptide and protein – peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. International Dairy Journal, v. 16, p. 840–849, 2006.

CUMBY, N.; ZHONG, Y.; NACZK, M.; SHAHIDI, F. Antioxidant activity and water- holding capacity of canola protein hydrolysates. Food Chemistry, v. 109, n. 1, p. 144– 148, 2008.

DAAKE, H. Von; BALLWEG, T.; STEPHAN, D. Controlled Release of Construction Chemicals by Encapsulation. Journal of Encapsulation and Adsorption Sciences, v. 6, n. March, p. 9–21, 2016.

DANVIRIYAKUL, S.; MCCLEMENTS, D. J.; DECKER, E.; NAWAR, W. W.; CHINACHOTI, P. Physical Stability of Spray-Dried Milk Fat Emulsion as Affected by Emulsifiers and Processing Conditions. Food Engineering and Physical Properties, v. 67, n. 6, p. 2183–2189, 2002.

DIAS, M. I.; FERREIRA, I. C. F. R.; BARREIRO, M. F. Microencapsulation of bioactives for food applications. Food Funct., v. 6, n. 4, p. 1035–1052, 2015.

DOUCET, D.; OTTER, D. E.; GAUTHIER, S. F.; FOEGEDING, E. A. Enzyme- induced gelation of extensively hydrolyzed whey proteins by alcalase: Peptide identification and determination of enzyme specificity. Journal of Agricultural and Food Chemistry, v. 51, n. 21, p. 6300–6308, 2003.

DRAPALA, K. P.; AUTY, M. A. E.; MULVIHILL, D. M.; O’MAHONY, J. A. Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids, v. 69, p. 56–66, 2017.

DUBEY, R. R.; PARIKH, R. H. Studies of PLGA microspheres. Pharmaceutical Technology Europe, v. 16, p. 23–34, 2004.

EDRIS, A. E.; KALEMBA, D.; ADAMIEC, J.; PIAOTKOWSKI, M. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, v. 204, p. 326–333, 2016.

ELMALIMADI, M. B.; JOVANOVI, J. R.; STEFANOVI, A. B.; JAKOVETI, S.; DJUROVI, S. B.; BUGARSKI, B. M. Controlled enzymatic hydrolysis for improved exploitation of the antioxidant potential of wheat gluten. Industrial Crops & Products, v. 109, p. 548–557, 2017.

ENCYCLOPEDIA BRITANNICA. Cereal processing. Disponível em: <https://www.britannica.com/technology/cereal-processing/media/103350/158>.

Acesso em: 12 nov. 2018.

FABIAN, C. B.; HUYNH, L. H.; JU, Y. H. Precipitation of rice bran protein using carrageenan and alginate. LWT - Food Science and Technology, v. 43, p. 375–379, 2010.

FABIAN, C.; JU, Y. H. A review on rice bran protein: Its properties and extraction methods. Critical Reviews in Food Science and Nutrition, v. 51, p. 816–827, 2011. FAVARO-TRINDADE, C. S.; PINHO, S. C. De. Revisão : Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, v. 11, n. 2, p. 103– 112, 2008.

FAZAELI, M.; EMAM-DJOMEH, Z.; KALBASI ASHTARI, A.; OMID, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, v. 90, n. 4, p. 667–675, 2012.

FENNEMA, O. R.; DAMODARAN, S.; PARKIN, K. L. Química de Alimentos de Fennema. 4. ed. [s.l.] Artmed, 2010.

FERNANDES, R. V. de B.; BORGES, S. V.; BOTREL, D. A.; OLIVEIRA, C. R. de. Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein-inulin blends as carriers. International Journal of Food Science and Technology, v. 49, n. 6, p. 1522–1529, 2014.

FERNANDES, R. V. de B.; BORGES, S. V.; BOTREL, D. A.; SILVA, E. K.; COSTA, J. M. G. da; QUEIROZ, F. Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Drying Technology, v. 31, n. 11, p. 1245–1254, 2013. FERNANDES, R. V. de B.; BOTREL, D. A.; SILVA, E. K.; BORGES, S. V.; OLIVEIRA, C. R. de; YOSHIDA, M. I.; FEITOSA, J. P. de A.; DE PAULA, R. C. M. Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, v. 153, p. 133–142, 2016.

FOOD INGREDIENTES BRASIL. A Microencapsulação a Serviço da Indústria Alimentícia. Food Ingredients Brasil, v. 25, p. 30–36, 2013.

FRASCARELI, E. C.; SILVA, V. M.; TONON, R. V.; HUBINGER, M. D. Determination of critical storage conditions of coffee oil microcapsules by coupling water sorption isotherms and glass transition temperature. International Journal of Food Science and Technology, v. 47, n. 5, p. 1044–1054, 2012a.

FRASCARELI, E. C.; SILVA, V. M.; TONON, R. V.; HUBINGER, M. D. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, v. 90, n. 3, p. 413–424, 2012b.

GALLARDO, G.; GUIDA, L.; MARTINEZ, V.; LÓPEZ, M. C.; BERNHARDT, D.; BLASCO, R.; PEDROZA-ISLAS, R.; HERMIDA, L. G. Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, v. 52, n. 2, p. 473–482, 2013.

GHARSALLAOUI, A.; ROUDAUT, G.; CHAMBIN, O.; VOILLEY, A.; SAUREL, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, v. 40, n. 9, p. 1107–1121, 2007.

GHRIBI, A. M.; MAKLOUF GAFSI, I.; SILA, A.; BLECKER, C.; DANTHINE, S.; ATTIA, H.; BOUGATEF, A.; BESBES, S. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry, v. 187, p. 322–330, 2015.

GIUNCHEDI, P.; CONTE, U. Spray-drying as a preparation method of micropartículate drug delivery systems: overview. STP Pharma Sciences, v. 5, n. 4, p. 276–290, 1995.

GOULA, A. M.; KARAPANTSIOS, T. D.; ACHILIAS, D. S.; ADAMOPOULOS, K. G. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, v. 85, n. 1, p. 73–83, 2008.

GOYAL, A.; SHARMA, V.; UPADHYAY, N.; GILL, S.; SIHAG, M. Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, v. 51, n. 9, p. 1633–1653, 10 set. 2014.

GREENSPAN, L. Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards – Physics and Chemistry, v. 81, n. 1, p. 89–96, 1977.

HE, R.; GIRGIH, A. T.; MALOMO, S. A.; JU, X.; ALUKO, R. E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, v. 5, n. 1, p. 219–227, 2013.

HOGAN, S. A.; MCNAMEE, B. F.; DOLORES O’RIORDAN, E.; O’SULLIVAN, M. Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, v. 49, n. 4, p. 1934–1938, 2001.

HRČKOVÁ, M.; RUSŇÁKOVÁ, M.; ZEMANOVIČ, J. Enzymatic Hydrolysis of Defatted Soy Flour by Three Different Proteases and their Effect on the Functional Properties of Resulting Protein Hydrolysates. v. 20, n. 1, p. 7–14, 1999.

JAFARI, S. M.; ASSADPOOR, E.; BHANDARI, B.; HE, Y. Nano-particle encapsulation of fish oil by spray drying. v. 41, p. 172–183, 2008a.

JAFARI, S. M.; ASSADPOOR, E.; HE, Y.; BHANDARI, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, v. 26, n. 7, p. 816– 835, 2008b.

JENKINS, J. A.; BREITENEDER, H.; MILLS, E. N. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. Journal of Allergy and Clinical Immunology, v. 120, p. 1399–1405, 2007.

JULIANO, B. O. Rice in human nutrition. Rome: FAO, 1993.

JUN-XIA, X.; HAI-YAN, Y.; JIAN, Y. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, v. 125, n. 4, p. 1267–1272, 2011.

KAJLA, P.; SHARMA, A.; SOOD, D. R. Flaxseed — a potential functional food source. Food Scientists & Technologists, 2014.

KALE, S. N.; DEORE, S. L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy, v. 8, n. 1, p. 39–47, 2016.

KALYANKAR, P.; ZHU, Y.; O’KEEFFE, M.; O’CUINN, G.; FITZGERALD, R. J. Substrate specificity of glutamyl endopeptidase (GE): Hydrolysis studies with a bovine α-casein preparation. Food Chemistry, v. 136, n. 2, p. 501–512, 2013.

KARACA, A. C.; LOW, N. H.; NICKERSON, M. T. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends in Food Science and Technology, v. 42, n. 1, p. 5–12, 2015.

KARACA, A. C.; LOW, N.; NICKERSON, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, v. 44, n. 9, p. 2742–2750, 2011.

chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, v. 139, n. 1–4, p. 448–457, 2013.

KATSUDA, M. S.; MCCLEMENTS, D. J.; MIGLIORANZA, L. H. S.; DECKER, E. A. Physical and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized with beta-Lactoglobulin and Pectin. Journal of Agricultural and Food Chemistry, v. 56, p. 5926–5931, 2008.

KIRK, J. R. Biological availability of nutrients in processed foods. Journal of Chemical Education, v. 61, n. 4, p. 364–367, 1984.

KLINKESORN, U.; SOPHANODORA, P.; CHINACHOTI, P.; MCCLEMENTS, D. J.; DECKER, E. A. Stability of Spray-Dried Tuna Oil Emulsions Encapsulated with Two- Layered Interfacial Membranes. Journal of Agricultural and Food Chemistry, v. 53, p. 8365–8371, 2005.

KUMAR, L. R. G.; CHATTERJEE, N. S.; TEJPAL, C. S.; VISHNU, K. V.; ANAS, K. K.; ASHA, K. K.; ANANDAN, R.; MATHEW, S. Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules, v. 104, p. 1986–1995, 2017.

KUROZAWA, L. E.; JIN, K.; DUPAS, M. Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. Journal of Food Engineering, v. 91, n. 2, p. 287–296, 2009.

KWAK, H. S. Overview of Nano- and Microencapsulation for Foods. Nano- and Microencapsulation for Foods, p. 1–14, 2014.

LACOU, L.; LÉONIL, J.; GAGNAIRE, V. Functional properties of peptides: From single peptide solutions to a mixture of peptides in food products. Food Hydrocolloids, v. 57, p. 187–199, 2016.

LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v. 227, n. 5259, p. 680–685, ago. 1970. Disponível em: <http://www.nature.com/articles/227680a0>.

LAM, R. S. H.; NICKERSON, M. T. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry, v. 141, n. 2, p. 975– 984, 2013.

LAURENTI, E.; GARCIA, S. Eficiência de materiais encapsulantes naturais e comerciais na liberação controlada de probiótico encapsulado. Brazilian Journal of Food Technology, v. 16, n. 2, p. 107–115, 2013.

LEWICKI, P. The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science and Technology, v. 32, n. 66, p. 553–557, 1997.

LI, Y.; JIANG, B.; ZHANG, T.; MU, W.; LIU, J. Antioxidant and free radical- scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, v. 106,

n. 2, p. 444–450, 2008.

LIMOUSIN, G.; GAUDET, J.-P.; CHARLET, L.; SZENKNECT, S.; BARTHÈS, V.; KRIMISSA, M. Sorption isotherms : A review on physical bases , modeling and measurement. Applied Geochemistry, v. 22, p. 249–275, 2007.

LOBO, V.; PATIL, A.; PHATAK, A.; CHANDRA, N. Free radicals , antioxidants and functional foods : Impact on human health. 2010.

LOMAURO, G. J.; BAKSHI, A. S.; LABUZA, T. P. Evaluation of food moisture sorption isotherms equations. Part I: Fruit, vegetables and meat products. Lebensmittel - Wissenschaft - Technologie, v. 18, p. 111–117, 1985.

LUNA-GUEVARA, J. J.; OCHOA-VELASCO, C. E.; HERNÁNDEZ-CARRANZA, P.; GUERRERO-BELTRÁN, J. A. Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Structure, v. 12, n. April, p. 26–32, 2017.

MCCLEMENTS, D. J. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, v. 47, n. 7, p. 611–649, 2007a.

MCCLEMENTS, D. J. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, v. 47, n. 7, p. 611–649, 2007b.

MCCLEMENTS, D. J. Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annual Review of Food Science and Technology, v. 1, n. 1, p. 241–269, 2010.

MCCLEMENTS, D. J.; DECKER, E. A. Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science, v. 65, n. 8, p. 1270–1282, nov. 2000.

MENEZES, C. R. de; BARIN, J. S.; CHICOSKI, A. J.; ZEPKA, L. Q.; JACOB- LOPES, E.; FRIES, L. L. M.; TERRA, N. N. Microencapsulação de probióticos : avanços e perspectivas. Ciência Rural, p. 1–8, 2013.

MERZ, M.; EISELE, T.; BERENDS, P.; APPEL, D.; RABE, S.; BLANK, I.; STRESSLER, T.; FISCHER, L. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes. Journal of Agricultural and Food Chemistry, v. 63, n. 23, p. 5682–5693, 17 jun. 2015.

MOON, J.; SHIBAMOTO, T. Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, v. 57, p. 1655–1666, 2009.

MORALES-MEDINA, R.; TAMM, F.; GUADIX, A. M.; GUADIX, E. M.; DRUSCH, S. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray- drying. Food Chemistry, v. 194, p. 1208–1216, 2016.

protein concentrates. Journal of Food Science, v. 38, n. 2, p. 324–330, fev. 1973. MUNOZ-IBANEZ, M.; AZAGOH, C.; DUBEY, B. N.; DUMOULIN, E.; TURCHIULI, C. Changes in oil-in-water emulsion size distribution during the atomization step in spray-drying encapsulation. Journal of Food Engineering, v. 167, n. Part B, p. 122–132, dez. 2015.

MUZAFFAR, K.; KUMAR, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, v. 291, p. 322–327, 2016.

NESTERENKO, A.; ALRIC, I.; SILVESTRE, F.; DURRIEU, V. Influence of soy protein’s structural modifications on their microencapsulation properties: α-Tocopherol microparticle preparation. Food Research International, v. 48, n. 2, p. 387–396, 2012. NESTERENKO, A.; ALRIC, I.; SILVESTRE, F.; DURRIEU, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, v. 42, n. 1, p. 469–479, 2013.

NESTERENKO, A.; ALRIC, I.; VIOLLEAU, F.; SILVESTRE, F.; DURRIEU, V. The effect of vegetable protein modifications on the microencapsulation process. Food hydrocolloids, v. 41, p. 95–102, 2014.

NILSANG, S.; LERTSIRI, S.; SUPHANTHARIKA, M.; ASSAVANING, A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, v. 70, p. 571–578, 2005.

O’HAGAN, P.; HASAPIDIS, K.; CODER, A.; HELSING, H.; POKRAJAC, G. Particle size analysis of food powders. In: ONWULATA, C. (Ed.). Encapsulated and powdered foods. Boca Raton, US: Taylor & Francis, 2005. p. 215–246.

O’REGAN, J.; MULVIHILL, D. M. Sodium caseinateemaltodextrin conjugate hydrolysates: preparation, characterisation and some functional properties. Food Chemistry, v. 123, n. 1, p. 21–31, 2010.

OSBORNE, T. B. The vegetable proteins. London, UK.: Longmans, Green and Co., 1924.

PAPALAMPROU, E. M.; DOXASTAKIS, G. I.; KIOSSEOGLOU, V. Chickpea protein isolates obtained by wet extraction as emulsifying agents. Journal of the Science of Food and Agriculture, v. 90, n. 2, p. 304–313, 2010.

PAREDES‐LÓPEZ, O.; ORDORICA‐FALOMIR, C.; OLIVARES‐VÁZQUEZ, M. R. Chickpea Protein Isolates: Physicochemical, Functional and Nutritional Characterization. Journal of Food Science, v. 56, n. 3, p. 726–729, 1991.

PARTANEN, R.; RAULA, J.; SEPPÄNEN, R.; BUCHERT, J.; KAUPPINEN, E.; FORSSELL, P. Effect of relative humidity on oxidation of flaxseed oil in spray-dried whey protein emulsions. Journal of Agricultural and Food Chemistry, v. 56, p. 5717–5722, 2008.

PAULO, F.; SANTOS, L. Design of experiments for microencapsulation applications: A review. Materials Science and Engineering C, v. 77, p. 1327–1340, 2017.

PÉREZ-ALONSO, C.; BERISTAIN, C. I.; LOBATO-CALLEROS, C.; RODRÍGUEZ- HUEZO, M. E.; VERNON-CARTER, E. J. Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, v. 77, p. 753–760, 2006.

PHONGTHAI, S.; AMICO, S. D.; SCHOENLECHNER, R.; HOMTHAWORNCHOO, W.; RAWDKUEN, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chemistry, v. 240, p. 156–164, 2018.

POWNALL, T. L.; UDENIGWE, C. C.; ALUKO, R. E. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) Enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry, v. 58, n. 8, p. 4712–4718, 2010.

RAHALI, V.; CHOBERT, J.; HAERTLE, T. Emulsification of chemical and enzymatic hydrolysates of b -lactoglobulin : characterization of the peptides adsorbed at the interface. Nahrung, v. 44, n. 2, p. 89–95, 2000.

RAMALHO, V. C.; JORGE, N. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Química Nova, v. 29, n. 4, p. 755–760, 2006.

RÉ, M. I. Microencapsulation by spray drying. Drying Technology, v. 16, n. 6, p. 1195–1236, 1998.

REINECCIUS, G. A. Flavor encapsulation. Food Reviews International, v. 5, n. 2, p. 147–176, 1989.

REINECCIUS, G. A. The Spray Drying of Food Flavors. Drying Technology, v. 22, n. 6, p. 1289–1324, jun. 2004.

ROMERO, A.; BEAUMAL, V.; DAVID-BRIAND, E.; CORDOBES, F.; GUERRERO, A.; ANTON, M. Interfacial and emulsifying behaviour of rice protein concentrate. Food hydrocolloids, v. 29, n. 1, p. 1–8, 2012.

ROOS, Y.; KAREL, M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. Journal of Food Science, v. 56, n. 1, p. 38– 43, 1991.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS+. Comunicado técnico: Embrapa, v. 128, p. 1–4, 2007.

SARAO, L. K.; ARORA, M. Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, v. 57, n. 2, p. 344–371, 2017.

SARMADI, B. H.; ISMAIL, A. Antioxidative peptides from food proteins: A review. Peptides, v. 31, n. 10, p. 1949–1956, 2010.

SBROGGIO, M. F.; MONTILHA, M. S.; FIGUEIREDO, V. R. G. de; GEORGETTI, S. R.; KUROZAWA, L. E. Influence of The Degree of Hydrolysis and Type of Enzyme on

Antioxidant Activity of Okara Protein Hydrolysates. Food Science and Technology (Campinas), v. 36, n. 2, p. 375–381, 2016.

SCHÄGGER, H.; VON JAGOW, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry, v. 166, n. 2, p. 368–379, 1987.

SCHMIDT, C. G.; SALAS-MELLADO, M. Influência da ação das enzimas alcalase e flavourzyme no grau de hidrólise das proteínas de carne de frango. Quimica Nova, v. 32, n. 5, p. 1144–1150, 2009.

SEVANIAN, A.; HOCHSTEIN, P. Mechanisms and consequences of lipid peroxidation in biological systems. Annual Reviews of Nutrition, v. 5, p. 365–390, 1985.

SHAHIDI, F.; HAN, X. Q. Encapsulation of Food Ingredients. Critical Reviews in Food Science and Nutrition, v. 33, n. 6, p. 501–547, 1993.

SHANTHA, N. C.; DECKER, E. A. Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxides Values of Food Lipids. Journal of AOAC International, v. 77, n. 2, p. 421–424, 1994.

SHARIF, H. R.; WILLIAMS, P. A.; SHARIF, M. K.; ABBAS, S.; MAJEED, H.; MASAMBA, K. G.; SAFDAR, W.; ZHONG, F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocolloids, v. 76, p. 2–16, mar. 2018.

SHIMADA, Y.; ROOS, Y.; KAREL, M. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. Journal of Agricultural and Food Chemistry, v. 39, n. 4, p. 637–641, 1991.

SHISHIR, M. R. I.; CHEN, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, v. 65, p. 49–67, 2017.

SILVA, E. K.; BORGES, S. V.; DA COSTA, J. M. G.; QUEIROZ, F. Thermodynamic properties, kinetics and adsorption mechanisms of Swiss cheese bioaroma powder. Powder Technology, v. 272, p. 181–188, 2015.

SILVA, E. K.; COSTA, A. L. R.; GOMES, A.; BARGAS, M. A.; CUNHA, R. L.; MEIRELES, M. A. A. Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. Ultrasonics Sonochemistry, v. 47, n. January, p. 114–121, 2018.

SIMEONI, C. P.; ETCHEPARE, M. de A.; MENEZES, C. R. de; FRIES, L. M.; MENEZES, M. F. C.; STEFANELLO, F. S. MICROENCAPSULAÇÃO DE

Documentos relacionados