• Nenhum resultado encontrado

Material e Métodos

CONCLUSÃO GERAL

Mostramos que proteínas das famílias PR-1 e Taumatina-like, inicialmente descritas e encontradas apenas em plantas, também são encontradas no genoma do M. perniciosa, indicando uma evolução e diversificação da função dessas proteínas.

Experimentos de análise de exportação de lipídeos indicam que as proteínas MpPR-1d, MpPR-1k, MpPR-1g, MpPR-1h e MpPR-1j apresentaram a capacidade de complementar o fenótipo da S. cerevisiae de se ligar e exportar colesterol. Por outro lado, as proteínas MpPR-1a, MpPR-1b, MpPR-1c, MpPR-1e, MpPR-1f e MpPR-1i não apresentaram a capacidade de complementar o fenótipo indicado diversificação funcional. Corroborando com isso, tivemos o experimento de ligação in vitro, no qual observamos que a MpPR-1d se ligou ao colesterol enquanto que a MpPR-1i não. Entretanto, a MpPR-1i se ligou ao palmitato assim como observado com outras duas proteínas SCP/TAPS, a SmVAL4 e a Tablilisina-15, nos mostrando mais uma vez a diversificação na função das MpPR-1.

MpPR-1s, inibem a toxicidade de fitoanticipinas como a alfa-tomatina. Isso indica a grande importância dessas proteínas para o sucesso do estabelecimento do fungo.

Acreditamos que, com a doença praticamente estabelecida na planta, o fungo produz três MpTLPs (MpTLP2, MpTLP4 e MpTLP13) no estágio de vassoura seca com o intuito de inibir o desenvolvimento de fungos oportunistas que podem competir com o M. perniciosa por alimento. Acreditamos ainda que a sTLP MpTLP12, expressa na fase de necrose da doença, possa estar antecipando essa competição com os fungos oportunistas antes mesmo da morte do tecido infectado do cacau.

Este trabalho demonstra um interessante caso em que proteínas primeiramente identificadas como relacionadas com a defesa vegetal contra patógenos são utilizadas por um fungo justamente para este sobrepujar o sistema imune inato vegetal.

A partir do exposto, demonstramos que o presente trabalho pode contribuir para o melhor entendimento sobre os mecanismos das funções das MpPR1s e MpTLPs na Vassoura de Bruxa. Além de agregar novas informações aos esforços que vêm sendo empreendidos no Projeto Vassoura de Bruxa. Estas podem se converter em conhecimentos capazes de gerar possíveis alvos para o controle da Vassoura de Bruxa, além de agregar novas informações aos esforços que vêm sendo empreendidos no Projeto Vassoura de Bruxa. Estas informações, especialmente a resolução estrutural das MpPR-1, podem se converter em conhecimentos capazes de gerar possíveis alvos para o tão sonhado controle da Vassoura de Bruxa.

cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, v. 97, n. 5, p. 1012–22, 2005.

ARGOUT, X. et al. The genome of Theobroma cacao. Nature Genetics, v. 43, n. 2, p. 101– 108, 2011.

ASOJO, O. A; KOSKI, R. A; BONAFÉ, N. Structural studies of human glioma pathogenesis- related protein 1. Acta crystallographica. Section D, Biological crystallography, v. 67, n. Pt 10, p. 847–55, out. 2011.

ASOJO, O. A. et al. X-ray structure of Na-ASP-2, a pathogenesis-related-1 protein from the nematode parasite, Necator americanus, and a vaccine antigen for human hookworm infection. Journal of Molecular Biology, v. 346, p. 801–814, fev. 2005a.

ASOJO, O. A. et al. Crystallization and preliminary X-ray analysis of Na-ASP-1, a multi-domain pathogenesis-related-1 protein from the human hookworm parasite Necator americanus. Acta crystallographica. Section F, Structural biology and crystallization communications, v. 61, n. Pt 4, p. 391–4, 1 abr. 2005b.

BAILEY, B. A. Purification of a Protein from Culture Filtrates of Fusarium oxysporum that Induces Ethylene and Necrosis in Leaves of Erythroxylum cocaPhytopathology, 1995. Disponível em:

<http://www.apsnet.org/phyto/SEARCH/1995/Phyto_85_1250.asp\nhttp://www.apsnet.org/publ ications/phytopathology/backissues/Documents/1995Abstracts/Phyto_85_1250.htm>

BARAU, J. et al. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao. Journal of Experimental Botany, v. 66, n. 5, p. 1325– 1337, 2015.

BARSOTTINI, M. R. DE O. et al. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function

specialization. Molecular plant-microbe interactions : MPMI, v. 26, n. 11, p. 1281–93, 2013. BERGFORS, T. Seeds to crystals. Journal of Structural Biology, v. 142, n. 1, p. 66–76, abr. 2003.

BLOCK, A. et al. Phytopathogen type III effector weaponry and their plant targets. Current opinion in plant biology, v. 11, n. 4, p. 396–403, ago. 2008.

BONAFÉ, N. et al. Expression, purification, crystallization and preliminary X-ray analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1. Acta

crystallographica. Section F, Structural biology and crystallization communications, v. 66, n. Pt 11, p. 1487–9, 1 nov. 2010.

BOTHRA, A. et al. A fluorescence spectroscopic and molecular dynamics study of bis-

ANS/protein interaction. Journal of biomolecular structure & dynamics, v. 15, n. 5, p. 959– 66, abr. 1998.

BRAUN, B. R. et al. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics Society of America, v. 156, p. 31–44, set. 2000.

CABRERA, O. G. (UNICAMP). Caracterização funcional e estrutural de proteínas

indutoras de necrose e etileno (NEPs) do fungo Moniliophthora perniciosa, causador da Vassoura-de-bruxa do cacau. [s.l: s.n.].

biochemistry and molecular biology, v. 36, n. 7, p. 570–5, jul. 2006.

CANTACESSI, C. et al. A portrait of the “SCP/TAPS” proteins of eukaryotes--developing a framework for fundamental research and biotechnological outcomes. Biotechnology advances, v. 27, n. 4, p. 376–88, 2009.

CANTACESSI, C. et al. Insights into SCP/TAPS Proteins of Liver Flukes Based on Large- Scale Bioinformatic Analyses of Sequence Datasets. PloS one, v. 7, n. 2, p. e31164, jan. 2012.

CARIBÉ DOS SANTOS, A C. et al. dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao. Fungal genetics and biology : FG & B, v. 46, n. 11, p. 825–36, nov. 2009.

CHALMERS, I. W. et al. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC genomics, v. 9, p. 89, jan. 2008.

CHISHOLM, S. T. et al. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, v. 124, n. 4, p. 803–14, fev. 2006.

CHOUDHARY, V. et al. The caveolin-binding motif of the pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is required for in vivo export of cholesteryl acetate. Journal of lipid research, v. 55, n. 5, p. 883–94, maio 2014.

CHOUDHARY, V.; SCHNEITER, R. Pathogen-Related Yeast ( PRY ) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proceedings of the National

Academy of Sciences of the United States of America, v. 109, n. 42, p. 16882–16887, 2012.

CORNELISSEN, J. B. et al. Molecular characterization of messenger RNAs for “pathogenesis- related” proteins 1a, 1b and 1c, induced by TMV infection of to- bacco. The EMBO Journal, v. 5, n. 37–40, 1986.

DANGL, J. L.; JONES, J. D. G. Plant pathogens and integrated defence responses to infection. Nature, v. 411, n. June, p. 826–833, 2001.

DARVISHI, E. et al. The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast. PloS one, v. 8, n. 10, 2013. DE JONGE, R. et al. Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, v. 329, n. 5994, p. 953–955, ago. 2010.

DEL VALLE, A. et al. Isolation and molecular cloning of a secreted hookworm platelet inhibitor from adult Ancylostoma caninum. Molecular and Biochemical Parasitology, v. 129, n. 2, p. 167–177, 2003.

DURRANT, W. E.; DONG, X. Systemic acquired resistance. Annual review of phytopathology, v. 42, p. 185–209, jan. 2004.

EVANS, H. C. Pleomorphism in Crinipellis perniciosa, causal agent of witches’ broom disease of cocoa. Transactions of the British Mycological Society, v. 74, n. 3, p. 515–523, 1980. FLOR, H. H. Current status of the gene-for-gene concept. Annual Review of

Phytopathology, v. 19, p. 125–188, 1971.

FORMIGHIERI, E. F. et al. The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid.

Mycological research, v. 112, n. Pt 10, p. 1136–52, out. 2008.

basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao. Mycological research, v. 111, n. Pt 4, p. 443–55, abr. 2007.

GESTEIRA, A. S. et al. Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Annals of botany, v. 100, n. 1, p. 129–40, jul. 2007. GIBBS, G. M.; ROELANTS, K.; O’BRYAN, M. K. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocrine Reviews, v. 29, n. 7, p. 865–97, dez. 2008.

GOMES, L. H. et al. Alpha-Tomatin against Witches ’ Broom Disease. American Journal of Plant Sciences, v. 5, p. 596–604, 2014.

GONZÁLEZ-LAMOTHE, R. et al. Plant antimicrobial agents and their effects on plant and human pathogens. International Journal of Molecular Sciences, v. 10, n. 8, p. 3400–3419, 2009.

GRANT, S. R. et al. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual review of microbiology, v. 60, p. 425–49, jan. 2006.

GUELDENER, U. et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic acids research, v. 30, n. 6, p. e23, 15 mar. 2002.

HAMMOND-KOSACK, K. E.; JONES, J. D. Resistance gene-dependent plant defense responses. The Plant cell, v. 8, n. 10, p. 1773–1791, out. 1996.

HAWDON, J. M. et al. Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. The Journal of biological chemistry, v. 271, n. 12, p. 6672–8, mar. 1996.

HEIN, I. et al. The zig-zag-zig in oomycete – plant interactions. Molecular Plant Pathology, v. 10, n. 4, p. 547–562, 2009.

HENRIKSEN, A. et al. Major Venom Allergen of Yellow Jackets , Ves v 5 : Structural Characterization of a Pathogenesis-Related Protein Superfamily. PROTEINS: Structure, Function, and Genetics, v. 45, p. 438 – 448, 2001.

HOFFMAN, D. R. Hymenoptera venom allergens. Clinical Reviews in Allergy and Immunology, v. 30, n. 2, p. 109–128, 2006.

IM, Y. J. et al. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, v. 437, n. 7055, p. 154–158, 2005.

JONES, J. D. G.; DANGL, J. L. The plant immune system. Nature, v. 444, n. 7117, p. 323–9, nov. 2006.

KASAHARA, M. et al. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics, v. 5, p. 527–534, 1989.

KELLEHER, A. et al. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs. Acta

crystallographica. Section D, Biological crystallography, v. 70, n. Pt 8, p. 2186–96, 1 ago. 2014.

KELLEHER, A. et al. addenda and errata Schistosoma mansoni venom allergen-like protein 4 ( SmVAL4 ) is a novel lipid-binding SCP / TAPS protein that lacks the prototypical CAP motifs . Corrigendum. v. 4, n. 2014, p. 2196, 2015.

japonica leaves and confers resistance to Botrytis cinerea in transgenic tobacco. Plant Biotechnology, v. 24, p. 247–253, 2007.

KILARU, A.; HASENSTEIN, K. H. Development and Pathogenicity of the Fungus Crinipellis perniciosa on Interaction with Cacao Leaves. Phytopathology, v. 95, n. 1, p. 101–7, jan. 2005.

LEAL JR, G. A.; ALBUQUERQUE, P. S. B.; FIGUEIRA, A. Genes differentially expressed in Theobroma cacao associated with resistance to witches ’ broom disease caused by Crinipellis perniciosa. Molecular Plant Pathology, v. 8, n. 3, p. 279–292, 2007.

LOBÃO, D. et al. Cacau cabruca: sistema agrossilvicultural tropical. In: Ciência, Tecnologia e Manejo do Cacaueiro. R. Valle. ed. [s.l.] Ilhéus, 2007. p. 290–323.

LONGTINE, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast (Chichester, England), v. 14, n. 10, p. 953–61, jul. 1998.

LOZANO-TORRES, J. L. et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences, p. 1–6, 6 jun. 2012.

LU, G. et al. Sequence analysis and antigenic cross-reactivity of a venom allergen, antigen 5, from hornets, wasps, and yellow jackets. Journal of immunology (Baltimore, Md. : 1950), v. 150, n. 7, p. 2823–30, 1 abr. 1993.

MARATHE, R.; DINESH-KUMAR, S. P. Plant defense: one post, multiple guards?! Molecular cell, v. 11, n. 2, p. 284–6, fev. 2003.

MEINHARDT, L. W. et al. In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Current microbiology, v. 52, n. 3, p. 191–6, mar. 2006.

MEINHARDT, L. W. et al. Moniliophthora perniciosa , the causal agent of witches ’ broom disease of cacao : what ’ s new from this old foe? Molecular Plant Pathology, v. 9, n. 5, p. 577–588, 2008.

MILNE, T. J. et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. The Journal of biological chemistry, v. 278, n. 33, p. 31105–10, ago. 2003.

MONDEGO, J. M. C. et al. A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC genomics, v. 9, p. 548, jan. 2008.

MOTAMAYOR, J. C. et al. Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity, v. 89, n. 5, p. 380–6, nov. 2002.

MOTAMAYOR, J. C. et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, v. 14, n. 6, p. r53, 2013.

MOYLE, M. et al. A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. The Journal of biological chemistry, v. 269, n. 13, p. 10008–15, 1 abr. 1994.

MURPHY, E. V. et al. The human glioma pathogenesis-related protein is structurally related to plant pathogenesis-related proteins and its gene is expressed specifically in brain tumors. Gene, v. 159, p. 131–135, 1995.

NIDERMAN, T. et al. Pathogenesis-related PR-1 proteins are antifungal. Isolation and

characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant physiology, v. 108, n. 1, p. 17–27, maio 1995.

OLIVEIRA, B. V. DE et al. A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches’ broom disease in cacao. Fungal genetics and

biology : FG & B, v. Article in, 26 set. 2012.

PADAVATTAN, S. et al. Crystal structure of the major allergen from fire ant venom, Sol i 3. Journal of Molecular Biology, v. 383, n. 1, p. 178–185, 2008.

PASTUKHOV, A. V; ROPSON, I. J. Fluorescent dyes as probes to study lipid-binding proteins. Proteins, v. 53, n. 3, p. 607–15, 15 nov. 2003.

PEREIRA, J. L. et al. Primeira ocorrência de vassoura-de-bruxa na principal região produtora de cacau do Brasil. Agrotrópica, v. 1, n. 1, p. 79–81, 1989.

PIRES, A. B. L. et al. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiology, v. 9, p. 158–175, 2009.

PRADOS-ROSALES, R. C. et al. A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. The Journal of biological chemistry, n. 2, 2 maio 2012. PURDY, L. H.; SCHMIDT, R. A. STATUS OF CACAO WITCHES’ BROOM: biology,

epidemiology, and management. Annual review of phytopathology, v. 34, p. 573–94, jan. 1996.

QUTOB, D.; KAMOUN, S.; GIJZEN, M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal, v. 32, n. 3, p. 361–373, 2002.

RAUSCHER, M. et al. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. The Plant journal : for cell and molecular biology, v. 19, n. 6, p. 625–33, set. 1999.

RICH, T. et al. RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin. Gene, v. 180, n. 1-2, p. 125–30, nov. 1996.

RINCONES, J. et al. Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Mycological Research, v. 107, n. 4, p. 452–458, abr. 2003.

RINCONES, J. et al. Genetic variability and chromosome-length polymorphisms of the witches ’ broom pathogen Crinipellis perniciosa from various plant hosts in South America.

Mycological Research, v. 110, p. 821–832, 2006.

RINCONES, J. et al. Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Molecular plant-microbe interactions : MPMI, v. 21, n. 7, p. 891–908, jul. 2008.

RIO, M. C. S. DO et al. Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom disease of Cacao. Current microbiology, v. 56, n. 4, p. 363–70, abr. 2008.

Molecular microbiology, v. 87, n. 1, p. 132–51, jan. 2013.

RYALS, J. A. et al. Systemic Acquired Resistance. The Plant cell, v. 8, n. 10, p. 1809–1819, out. 1996.

SAMBROOK, J.; FRITSCH, E.; MANIATIS, T. Molecular cloning: a laboratory manual. Cold Spring Harbour Lab Press, EUA, 1989.

SANDROCK, R. W.; VANETTEN, H. D. Fungal Sensitivity to and Enzymatic Degradation of the Phytoanticipin alpha-Tomatine. Phytopathology, v. 88, n. 2, p. 137–43, 1998.

SCARPARI, L. M. et al. Biochemical changes during the development of witches ’ broom : the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. Journal of

Experimental Botany, v. 56, n. 413, p. 865–877, 2005.

SCHNEITER, R.; DI PIETRO, A. The CAP protein superfamily: function in sterol export and fungal virulence. BioMolecular Concepts, v. 4, n. 5, p. 1–7, 1 jan. 2013.

SCHREIBER, M. C.; KARLO, J. C.; KOVALICK, G. E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins. Gene, v. 191, n. 2, p. 135–41, jun. 1997. SCHUREN, F. H. et al. The Sc7/Sc14 gene family of Schizophyllum commune codes for extracellular proteins specifically expressed during fruit-body formation. Journal of general microbiology, v. 139, n. 9, p. 2083–90, set. 1993.

SILVA, S. D. V. M.; MATSUOKA, K. Histologia da Interação Crinipellis perniciosa em

Cacaueiros Suscetível e Resistente à Vassoura de Bruxa. Fitopatologia Brasileira, v. 24, p. 54–59, 1999.

SIMONS, V. et al. Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrobial agents and chemotherapy, v. 50, n. 8, p. 2732–40, ago. 2006.

STANKE, M.; WAACK, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, v. 19, p. ii215–ii225, set. 2003.

STERGIOPOULOS, I.; WIT, P. J. G. M. DE. Fungal Effector Proteins. Annual Review of Phytopathology, v. 47, p. 233–263, 2009.

STURA, E. A.; WILSON, I. A. Applications of the streak seeding technique in protein crystallization. Journal of Crystal Growth, v. 110, n. 1–2, p. 270–282, 1991.

STURA, E. A.; WILSON, I. A. Crystallization of Nucleic Acids and Proteins. New York: Oxford University Press., 1992.

TEIXEIRA, P. J. P. L. et al. The Fungal Pathogen Moniliophthora perniciosa Has Genes Similar to Plant PR-1 That Are Highly Expressed during Its Interaction with Cacao. PloS one, v. 7, n. 9, p. e45929, jan. 2012.

TEIXEIRA, P. J. P. L. Construção de um atlas transcriptômico para o estudo da doença vassoura de bruxa do cacaueiro. [s.l: s.n.].

TEIXEIRA, P. J. P. L. et al. High-Resolution Transcript Profiling of the Atypical Biotrophic Interaction between Theobroma cacao and the Fungal Pathogen Moniliophthora perniciosa. The Plant Cell Online, v. 26, n. 11, p. 4245–4269, 2014.

TEIXEIRA, P. J. P. L.; THOMAZELLA, D. P. DE T.; PEREIRA, G. A. G. Time for Chocolate: Current Understanding and New Perspectives on Cacao Witches’ Broom Disease Research. PLOS Pathogens, v. 11, n. 10, p. e1005130, 2015.

THATCHER, L. F.; ANDERSON, J. P.; SINGH, K. B. Plant defence responses: What have we learnt from Arabidopsis? Functional Plant Biology, v. 32, p. 1–19, 2005.

TIBURCIO, R. A. et al. Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. Journal of molecular evolution, v. 70, n. 1, p. 85–97, jan. 2010.

TIWARI, R.; KÖFFEL, R.; SCHNEITER, R. An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae. The EMBO journal, v. 26, n. 24, p. 5109–19, 12 dez. 2007.

VALENZUELA, J. G. et al. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. The Journal of experimental biology, v. 207, p. 3717–3729, out. 2004.

VAN LOON, L. C.; REP, M.; PIETERSE, C. M. J. Significance of inducible defense-related proteins in infected plants. Annual review of phytopathology, v. 44, p. 135–62, jan. 2006. WANG, K. et al. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant physiology, v. 158, n. 4, p. 1789–802, abr. 2012.

WHITMORE, L.; WALLACE, B. A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic acids research, v. 32, n. Web Server issue, p. W668–73, 1 jul. 2004.

WHITMORE, L.; WALLACE, B. A. Protein secondary structure analyses from circular

dichroism spectroscopy: methods and reference databases. Biopolymers, v. 89, n. 5, p. 392– 400, maio 2008.

XU, E. et al. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. Journal of Biological Chemistry, v. 287, n. 14, p. 10967–10976, 2012.

YAMAZAKI, Y.; MORITA, T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon: official journal of the International Society on Toxinology, v. 44, n. 3, p. 227–31, set. 2004.

ZABKA, M.; PAVELA, R. Chemosphere Antifungal efficacy of some natural phenolic

compounds against significant pathogenic and toxinogenic filamentous fungi. chemosphere, v. 93, p. 1051–1056, 2013.

ZAPAROLI, G. et al. Identification of a second family of genes in Moniliophthora perniciosa , the causal agent of witches ’ broom disease in cacao , encoding necrosis-inducing proteins similar to cerato-platanins. Mycological research, v. 113, p. 61–72, 2009.

ZAPAROLI, G. et al. The Crystal Structure of Necrosis- and Ethylene-Inducing Protein 2 from the Causal Agent of Cacao’s Witches’ Broom Disease Reveals Key Elements for Its Activity. Biochemistry, v. 50, n. 45, p. 9901–9910, 2011.

ZIPFEL, C. Pattern-recognition receptors in plant innate immunity. Current opinion in immunology, v. 20, n. 1, p. 10–6, fev. 2008.

ANEXO I

The Fungal Pathogen Moniliophthora perniciosa Has Genes Similar to Plant PR-1 That Are Highly Expressed during Its Interaction with Cacao.

Paulo J.P.L. Teixeira, Daniela P.T. Thomazella, Ramon O. Vidal, Paula F.V. do Prado, Osvaldo Reis, Renata M. Baroni, Sulamita F. Franco, Piotr Mieczkowski, Gonçalo A.G. Pereira, Jorge M.C. Mondego.

Documentos relacionados