• Nenhum resultado encontrado

VI. Conclusão

O esforço conjunto de distintas áreas do saber, como a matemática e farmacologia, promove um avanço efetivo na investigação biomédica, atuando de forma complementar na criação e desenvolvimento de modelos explicativos e aplicáveis a situações práticas. A modelação matemática apresenta um crescente desenvolvimento e importância na sua aplicabilidade em áreas da farmacologia e medicina, na medida em que procura prever determinados problemas práticos antes de estes ocorrerem. É o caso do objeto de estudo da tese, onde se procurou modelar matematicamente a farmacocinética da carboplatina, em doentes com CPNPC avançado para individualização terapêutica.

A modelação partiu da definição de um modelo estrutural básico, que calcula as doses sem a presença de qualquer parâmetro de individualização, terminando na definição de um modelo de covariáveis, que possibilita a individualização de doses pelas características bio-antropométricas incluídas. De todo este processo, pode-se concluir que:

1. Modelo farmacocinético Estrutural básico de carboplatina é definido como bicompartimental, com eliminação de primeira ordem com estimação dos parâmetros farmacocinéticos clearance, volume de distribuição do compartimento central, constante de velocidade de distribuição do compartimento central para o periférico, constante de velocidade retorno do compartimento periférico para o central. Variabilidade interindividual exponencial para a clearance e volume de distribuição e aditiva fixa para as constantes de velocidade de distribuição e de retorno. Variabilidade residual exponencial e distinta por idade e aditiva fixa ao limite de deteção do método analítico.

2. A clearance foi modelada de forma distinta para os grupos etários. Nos adultos, relaciona com as covariáveis idade, de forma linear negativa, e peso, de forma linear positiva. A clearance para idosos apenas depende da creatinina sérica. O volume de distribuição do compartimento central aponta para a dependência com a idade e peso. As constantes de transferência intercompartimental não apresentam dependência com nenhuma covariável.

3. O modelo final foi validado por métodos internos e externos, verificando todas as condições. A validação interna, pelo método de bootstrap, indica que o modelo pode ser aplicado com sucesso a mais de 80% de populações com características semelhantes às dos indivíduos incluídos no estudo.

VI. Conclusão

4. A monitorização de carboplatina deve ser feita com recolha de amostras sanguíneas e determinação das concentrações plasmáticas de carboplatina livre, permitindo a estimação exata e precisa da clearance individual dos doentes a posteriori por métodos bayesianos. Esta metodologia pode ser aplicada em individualização posológica de carboplatina em doentes com CPNPC, sem necessidade de adequação à área debaixo da curva (AUC).

Por fim, o objetivo final da individualização terapêutica das doses de carboplatina em doentes com CPNPC em estado avançado foi conseguido, através das equações de cálculo da carboplatina que tomam em consideração as características individuais de cada doente, e são diferentes para adultos e idosos. Estas equações revelaram-se precisas e exatas com a informação das concentrações de carboplatina em pelo menos duas amostras sanguíneas. A aplicação destas fórmulas a casos práticos clínicos poderia colmatar muitas das falhas observadas ao nível da toxicidade inesperada, nomeadamente em doentes idosos.

Referências

[1] J. Ribbing, "Covariate Model Building in Nonlinear Mixed Effects Models," Faculty of Pharmacy, Uppsala University, 2007.

[2] (25 jun. 2012). Available: http://www.who.int/cancer/en/index.html

[3] "Boletim Mensal de Estatística 2012," Instituto Nacional de Estatística, 2012. [4] R. Siegel, et al., "Global Cancer Statistics, 2012," Cancer Statistics, 2012.

[5] J. R. Molina, et al., "Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship," Mayo Clin Proc, vol. 83, pp. 584-594, 2008.

[6] (24 jun. 2012). Available: http://www.ligacontracancro.pt/ [7] (25 jun. 2012). Available: http://www.lungcancer.org

[8] P. J. Mazzone, "Lung Cancer," The Cleveland Clinic Foundation, 2010. [9] (27 jul 2012). Available: http://globocan.iarc.fr

[10] N. C. C. Network, "NCCN Guidelines for Patients: Non-Small Cell Lung Cancer," ed, 2012.

[11] "Lung Cancer (Non-Small Cell)," American Cancer Society, 2012.

[12] J. Subramanian, et al., "Distinctive Characteristics of Non-small Cell Lung Cancer (NSCLC) in the Young," Journal of Thoracic Oncology, vol. 5, pp. 23-28, January 2010. [13] (27 jun 2012). Available: http://lung-cancer.emedtv.com

[14] S. Abbasi and A. Badheeb, "Prognosis Factors onAdvanced Non-Small-Cell Lung Cancer Patients: Patients Characteristics and Type of Chemotherapy," Lung Cancer

International, p. 4, 2011.

[15] C. Uehara, et al., "Câncer de Pulmão," Medicina, Ribeirão Preto, vol. 31, pp. 266-276, abr./jun. 1998.

[16] N. Helbekkmo, "Advanced Non-small Cell Lung Cancer Effects of Chemotherapy and Impact on Health Related Quality of Life," Institute of Clinical Medicine, University of Tromsø, 2009.

[17] S. M. Hanash, et al., "Lung Cancer Diagnosis," United States Patent Application

Publication, 2012.

[18] "Treating Lung Cancer - A Quick Guide," Cancer Research UK, 2011.

[19] P. Goldstraw, "The 7th Edition of TNM for Lung and Pleural Tumours," J Clin Anal Med vol. 3, pp. 123-7, 2012.

[20] B. J. Schneider and G. P. Kalemkerian, "Lung Cancer: Treatment of Non-Small Cell Lung Cancer in the Elderly," Lung Cancer News, Feb 20 2010.

[21] A. H. Friendlander and R. L. Ettinger, "Karnofsky performance status scale," Spec Care

Dentist, vol. 29, pp. 147-148, 2009.

[22] M. D. Brundage, et al., "Prognostic Factors in Non-Small Cell Lung Cancer: A Decade of Progress," Chest Journal, vol. 122, pp. 1037-57, 2002.

[23] (27 jun. 2012). Available: http://www.asbestos.com

[24] "NCCN Guidelines for Patients: Non-Small Cell Lung Cancer," 2010.

[25] M. H. Levy, et al., "Palliative Care: Clinical Practice Guidelines in Oncology," The Journal

of the National Comprehensive Cancer Network, vol. 7, pp. 436-473, April 2009.

[26] "NCCN Clinical Practice in Oncology: Non- Small Cell Lung Cancer," National

Comprehensive Cancer Network, 2011.

[27] M. A. Socinski and T. E. Stinchcombe, "Duration of First-Line Chemotherapy in Advanced Non–Small-Cell Lung Cancer: Less Is More in the Era of Effective Subsequent Therapies," Journal Of Clinical Oncology, vol. 25, pp. 5155-5157, 2007.

[28] M. B. Lustberg and M. J. Edelman, "Optimal Duration of Chemotherapy in Advanced Non-Small Cell Lung Cancer," Current Treatment Options in Oncology, vol. 8, pp. 38-46, 2007.

Referências

[29] C. K. Obasaju, et al., "Gemcitabine/Carboplatin in Patients with Metastatic Non–Small- Cell Lung Cancer: Phase II Study of 28-Day and 21-Day Schedules," Clinical Lung Cancer, vol. 7, pp. 202-207, 2005.

[30] G. A. Masters, et al., "A Randomized Phase II Trial Using Two Different Treatment Schedules of Gemcitabine and Carboplatin in Patients with Advanced Non–Small-Cell Lung Cancer," Journal of Thoracic Oncology, vol. 1, pp. 19-24, 2006.

[31] G. A. Masters, "Gemcitabine and Carboplatin in Advanced Non–Small-Cell Lung Cancer: A Review," Clinical Lung Cancer, vol. 2, pp. S11-S14, 2000.

[32] F. E. Mott, et al., "Phase II Study of an Alternate Carboplatin and Gemcitabine Dosing Schedule in Advanced Non–Small-Cell Lung Cancer," Clinical Lung Cancer, vol. 5, pp. 174-176, 2003.

[33] P. M. Fidias, et al., "Phase III Study of Immediate Compared With Delayed Docetaxel After Front-Line Therapy With Gemcitabine Plus Carboplatin in Advanced Non–Small- Cell Lung Cancer," J Clin Oncol, vol. 27, pp. 591-598, 2009.

[34] (17 jul. 2012). Available: http://www.ncbi.nlm.nih.gov/pccompound/

[35] A. Felici, "Pharmacokinetics of Gemcitabine at Fixed Dose Rate Infusion in Patients with Normal and Impaired Hepatic Function," Facolta di Medicina e Chirurgia, Università Degli Studi di Roma, 2010.

[36] D. Mavroudis, et al., "A dose-escalation and pharmacokinetic study of gemcitabine and oxaliplatin in patients with advanced solid tumors," Annals of oncology, vol. 14, pp. 304-312, 2003.

[37] A. Jemal, et al., "Global Cancer Statistics," CA Cancer J Clin, vol. 61, pp. 69–90, 2011. [38] J. Carmichael, "The role of gemcitabine in the treatment of other tumors," British

Joumal of Cancer vol. 78, pp. 21-25, 1998.

[39] L. Kelland, "The resurgence of platinum-based cancer chemotherapy," Nature Reviews

Cancer, vol. 7, pp. 573-584, 2007.

[40] H. A. Wakelee and C. P. Belani, "Optimizing First-Line Treatment Options for Patients with Advanced NSCLC," The Oncologist, vol. 10, pp. 1-10, 2005.

[41] A. S. Zandvliet, et al., "Population pharmacokinetic and pharmacodynamic analysis to support treatment optimization of combination chemotherapy with indisulam and carboplatin," British Journal of Clinical Pharmacology, vol. 66, pp. 485-497, 2008. [42] R. C. Todd and S. J. Lippard, "Inhibition of transcription by platinum antitumor

compounds," Metallomics, vol. 1, pp. 280-291, 2009.

[43] U. Gatzemeier, et al., "Phase II study of carboplatin in untreated, inoperable non- small-cell lung cancer," Cancer Chemotherapy and Pharmacology, vol. 26, pp. 369-372, 1990.

[44] A. Felici, "Pharmacokinetics of Gemcitabine at Fixed Dose Rate Infusion in Patients with Normal and Impaired Hepatic Function," Facoltá di Medicina e Chirurgia, Università Degli Studi di Roma "Tor Vergata", 2010.

[45] S. J. Harland, et al., "Pharmacokinetics of cisdiammine-1,1-cyclobutane dicarboxylate platinum (II) in patients with normal and impaired renal function," Cancer Research, vol. 44, pp. 1693-1697, , April 1984.

[46] W. van der Vijgh, "Clinical Pharmacokinetics of carboplatin," Clin Pharmacokinet, vol. 21, pp. 242– 61, 1991.

[47] M. Jonge, et al., "Accuracy, feasibility, and clinical impact of prospective Bayesian pharmacokinetically guided dosing of cyclophosphamide, thiotepa, and carboplatin in high-dose chemotherapy.," Clin Cancer Res., vol. 11, pp. 273-83, Jan 2005.

[48] C. Ekhart, et al., "Flat Dosing of Carboplatin Is Justified in Adult Patients with Normal Renal Function," Clinical Cancer Research, vol. 12, pp. 6502-6508, 2006.

[49] J. B. Heijns, et al., "Continuous ambulatory peritoneal dialysis: pharmacokinetics and clinical outcome of paclitaxel and carboplatin treatment," Cancer Chemother

Referências

[50] F. Elferink, et al., "Pharmacokinetics of carboplatin after intraperitoneal administration," Cancer Chemother Pharmacol vol. 21, pp. 57-60, 1988.

[51] E. Chatelut, et al., "Pharmacologically guided phase I study of carboplatin in combination with methotrexate and vinblastine in advanced urothelial cancer," Cancer

Chemother Pharmacol, vol. 35, pp. 391-396, 1995.

[52] M. Merino-Sanjuán, et al., "Effect of Age on Systemic Exposure and Haematological Toxicity of Carboplatin in Advanced Non-Small Cell Lung Cancer Patients," Basic &

Clinical Pharmacology & Toxicology, 2011.

[53] C. Ekhart, et al., "Carboplatin dosing in overweight and obese patients with normal renal function, does weight matter?," Cancer Chemother Pharmacol, vol. 64, pp. 115– 122, 2009.

[54] M. Shen, et al., "Population pharmacokinetic and limited sampling models for carboplatin administered in high-dose combination regimens with peripheral blood stem cell support," Cancer Chemotherapy and Pharmacology, vol. 50, pp. 243-250, 2002.

[55] N. V. Jiménez-Torres, et al., "Individualización de Carboplatino en el anciano con cáncer de pulmón no microcítico avanzado," An. R. Acad. Nac. Farm., vol. 73 pp. 1265- 1285, 2007.

[56] A. Calvert, et al., "Carboplatin dosage: prospective evaluation of a simple formula based on renal function," J Clin Oncol, vol. 7, pp. 1748-56, 1989.

[57] D. Cockcroft and M. Gault, "Prediction of creatinine clearance from serum creatinine.,"

Nephron, vol. 16, pp. 31-41, 1976.

[58] R. Jelliffe, "Estimation of creatinine clearance when urine cannot be collected," Lancet, vol. 1, pp. 975-6, 1971.

[59] R. Jelliffe, "Creatinine Clearance: Bedside Estimate " Ann Intern Med, vol. 79, pp. 604- 605, 1973.

[60] J. Wright, et al., "Estimation of glomerular filtration rate in cancer patients," British

Journal of Cancer, vol. 84, pp. 452–459, 2001.

[61] A. S. Levey, et al., "A More Accurate Method To Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation," Ann Intern Med, vol. 130, pp. 461-470, 1999.

[62] A. Sparreboom, et al., "Evaluation of Alternate Size Descriptors for Dose Calculation of Anticancer Drugs in the Obese," Journal of Clinical Oncology, vol. 25, pp. 4707-4713, 2007.

[63] E. Chatelut, et al., "Prediction of carboplatin clearance from standard morphological and biological patient characteristics," National Cancer Institute, vol. 87, pp. 573-580, 1995.

[64] D. Kang and D. D'Argenio, "Bayesian Estimation in Pharmacokinetics/ Pharmacodynamics using Regenerative Sampling-Based Methods," Proceedings of The

First Joint EMES/EMBS Conference Serving Humanity, Advancing Technology, 1999.

[65] K. Brendel, et al., "Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004.," Clin

Pharmacokinet, vol. 46, pp. 221-234, 2007.

[66] A. Rousseau, et al., "Adaptative Control Methods fof the Dose Individualisation of Anticancer Agents," Clin Pharmacokinet, vol. 38, pp. 315-353, 2000.

[67] W. K. Hastings, "Monte Carlo Sampling Methods Using Markov Chains and Their Applications," Biometrika, vol. 57, pp. 97-109, 1970.

[68] J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods: Springer, 2005.

[69] P. L. Bonate, Pharmacokinetic-Pharmacodynamic Modeling and Simulation: Springer, 2006.

Referências

[70] L. B. Sheiner and S. L. Beal, "Evaluation of Methods for Estimating Population Pharmacokinetic Parameters I. Michaelis-Menten Model: Routine Clinical Pharmacokinetic Data," Journal of Pharmacokinetics and Biopharmaceutics, vol. 8, pp. 553-71, 1980.

[71] L. B. Sheiner and S. L. Beal, "Evaluation of Methods for Estimating Population Pharmacokinetic Parameters II. Biexponential Model and Experimental Pharmacokinetic Data," Journal of Pharmacokinetics and Biopharmaceutics, vol. 9, pp. 635-51, 1981.

[72] L. B. Sheiner and S. L. Beal, "Evaluation of Methods for Estimating Population Pharmacokinetic Parameters III. Monoexponential Model: Routine Clinical Pharmacokinetic Data," Journal of Pharmacokinetics and Biopharmaceutics, vol. 11, pp. 303-19, 1983.

[73] V. J. Torres, "Bases Posológicas en Oncología," 2007.

[74] A. Viberg, "Using Pharmacokinetic and Pharmacodynamic Principles to Evaluate Individualisation of Antibiotic Dosing – Emphasis on Cefuroxime," Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, Uppsala Universitet, Uppsala, 2006.

[75] E. N. Jonsson and M. O. Karlsson, "Automated Covariate Model Building Within NONMEM," Pharmaceutical Research, vol. 15, 1998.

[76] U. Wahlby, et al., "Assessment of Actual Significance Levels for Covariate Effects in NONMEM," Journal of Pharmacokinetics and Pharmacodynamics, vol. 28, pp. 231-52, 2001.

[77] M. S. Blanchard and P. Gaccione, "Nonlinear Mixed Effects Models, a tool for analyzing repeated-measurements data whose function is nonlinear in the parameters."

[78] C. W. Tornøe, et al., "Pharmacokinetic/Pharmacodynamic Modelling of GnRH Antagonist Degarelix: A Comparison of the Non-linear Mixed-Effects Programs NONMEM and NLME," Journal of Pharmacokinetics and Pharmacodynamics, vol. 31, pp. 441-61, 2004.

[79] Y. Wang, "Derivation of various NONMEM estimation methods," J Pharmacokinet

Pharmacodyn, vol. 34, pp. 575–593, 2007.

[80] E. I. Ette and P. J. Williams, Pharmacometrics: The Science of Quantitative

Pharmacology: Wiley, 2007.

[81] S. Tsuchiwata, et al., "Evaluation of Bayesian Estimation of Pharmacokinetic Parameters," The Drug Monit, vol. 27(1), pp. 18-24, February 2005.

[82] G. Casella and R. L. Berger, Statistical Inference: Duxbury, 2001.

[83] E. A. Coelho-Barros, et al., "Methods of Estimation in Multiple Linear Regression: Application to Clinical Data," Revista Colombiana de Estadística, vol. 1, pp. 111-129, 2008.

[84] H. M. Cooper, et al., The handbook of research synthesis and meta-analysis, 2nd Edition ed., 2009.

[85] D. B. Rowe, Multivariate Bayesian Statistics: Chapman & Hall/CRC, 2003. [86] W. M. Bolstad, Introduction to Bayesian Statistics: Wiley-Interscience, 2004.

[87] R. J. Bauer, NONMEM Users Guide. Ellicott City, Maryland: ICON Development Solutions, 2011.

[88] (26 jun. 2012). Available: http://www.iconplc.com

[89] Guidance for Industry: Population Pharmacokinetics: U.S. Department of Health and

Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), 1999.

[90] "Guideline on Reporting the Results of Population Pharmacokinetic Analyses," Committee for Medicinal Products for Human Use, European Medicines Agency, London2007.

Referências

[91] F. Mentré and M. Ebelin, "Validation of population pharmacokinetic/ pharmacodynamic analyses: review of proposed approaches," in The population

approach: measuring and managing variability in response concentration and dose. Commission of the european communities, european cooperation in the field of scientific and technical research., L. Balant, et al., Eds., ed Brussels, 1997.

[92] Y. Yano, et al., "Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check," J Pharmacokinet Pharmacodyn., vol. 28, pp. 171-92, Apr 2001.

[93] "Guideline on Reporting the Results of Population Pharmacokinetic Analyses,"

European Medicines Agency, June 2006.

[94] E. W. Steyerberg, et al., "Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis," Journal of Clinical Epidemiology, vol. 54, pp. 774-781, 2001.

[95] S. E. Bleeker, et al., "External validation is necessary in prediction research: A clinical example " Journal of Clinical Epidemiology, vol. 56, pp. 826-832, 2003.

[96] K. L. White and I. Chaubey, "Sensitivity Analysis, Calibration, and Validations for a Multisite and Multivariable SWAT Model," Journal of the American Water Resources

Association, 2005.

[97] F. Saint-Marcoux, et al., "Pharmacokinetic modelling and development of Bayesian estimators for therapeutic drug monitoring of mycophenolate mofetil in reduced- intensity haematopoietic stem cell transplantation," Clin Pharmacokinet, vol. 48, pp. 667-675, 2009.

[98] F. A. Dahl, et al., "Data splitting as a countermeasure against hypothesis fishing: with a case study of predictors for low back pain," Eur J Epidemiol, vol. 23, pp. 237-242, 2008. [99] E. B. Roecker, "Prediction Error and its Estimation for Subset-Selected Models,"

Technometrics, vol. 33, pp. 459-468, Nov 1991.

[100] R. A. Armstrong, et al., "Statistical guidelines for clinical studies of human vision,"

Ophtalmic Physiological Optics, vol. 31, pp. 123-136, 2011.

[101] A. R. Henderson, "The bootstrap: A technique for data-driven statistics. Using computer-intensive analyses to explore experimental data," Clinica Chimica, vol. Acta 359, pp. 1-26, 2005.

[102] B. Efron, "Bootstrap Methods: Another Look at the Jackknife," Annals of Statistics, vol. 7, pp. 1-26, 1979.

[103] R. Yokota, et al., "Applying the triads method in the validation of dietary intake using biomarkers.," Cad Saude Publica, vol. 26, pp. 2027-37, 2010.

[104] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Application: Cambridge University Press, 1997.

[105] M. J. Lew and J. A. Angus, "Analysis of competitive agonist-antagonist interactions by nonlinear regression," Trends Pharmacol Sci, vol. 16, pp. 328-37, 1995.

[106] D. Jordan, et al., "A Program for Computing the Prediction Probability and the Related Receiver Operating Characteristic Graph," Anesthesia & Analgesia, vol. 111, pp. 1416 – 21, 2010.

[107] S. Lele and J. Richtsmeier, "Euclidean distance matrix analysis: confidence intervals for form and growth differences," Am J Phys Anthropol., vol. 98, pp. 73-86, 1995.

[108] M. J. Salganik, "Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling," Journal of Urban Health: Bulletin of the New York

Academy of Medicine, vol. 83, 2006.

[109] F. Darvas, et al., "Mapping human brain function with MEG and EEG: methods and validation," Neuroimage, vol. Suppl 1, pp. S289-99, 2004.

[110] B. Efron and R. Tibshirani, An Introduction to the bootstrap. New York: Chapman&Hall, 1993.

Referências

[111] A. Briggs, et al., "Pulling cost-effectiveness analysis up by its bootstraps: a non- parametric approach to confidence interval estimation," Econometrics and Health

Economics, vol. 6, pp. 327-340, 1997.

[112] V. Picheny, et al., "Application of bootstrap method in conservative estimation of reliability with limited samples," Struct Multidisc Optim, vol. 41, pp. 205-217, 2010. [113] C. E. Lunneborg, Data Analysis by Resampling: Concepts and Applications: Duxbury,

2000.

[114] M. Quenouille, "Notes on Bias in Estimation," Biometrika, vol. 43, pp. 353-360, 1956. [115] R. G. Miller, "The Jackknife - A Review," Biometrika, vol. 61, pp. 1-15, Apr 1974.

[116] J. Turkey, "Bias and confidence in not-quite large samples (Abstract)," Annals of

Mathematical Statistics, vol. 29, p. 614, 1958.

[117] S. M. Ross, Simulation, 4th ed. Amsterdam: Elsevier Academic, 2006.

[118] V. J. Torres, et al., "Estado Actual de la Individualización Posológica en Quimioterapia Antineoplásica," Farm Hosp, vol. 23, pp. 145-157, 1999.

[119] M. E. d. Jonge, et al., "Individualised Cancer Chemotherapy: Strategies and Performance of Prospective Studies on Therapeutic Drug Monitoring with Dose Adaptation," Clin Pharmacokinet, vol. 44, pp. 147-173, 2005.

[120] Y. Y. Hon and W. E. Evans, "Making TDM work to optimize cancer chemotherapy: a multidisciplinary team approach," Clinical Chemistry, vol. 44, pp. 388-400, 1998. [121] M. E. d. Jonge, et al., Individual cancer chemotherapy: Strategies and Performance of

prospective studies on therapeutic drug monitoring with dose adaptation: Clin

Pharmacokinet.

[122] C. Suthakaran and C. Adithan, "Therapeutic Drug Monitoring - Concepts, Methodology, Clinical Applications and Limitations," in Health Administrator. vol. XIX Number 1, ed, pp. 22-26.

[123] S. 59th WMA General Assembly, Korea, October 2008. Available: http://www.wma.net/en/30publications/10policies/b3/index.html

[124] C. Kloft, et al., "Toxicity of high dose carboplatin:ultrafiltered and not total plasma pharmacokinetics is of clinical relevance," J Clin Pharmacol, vol. 42, pp. 762-773, 2002. [125] H. Akaike, "A New Look at the Statistical Model Identification " IEEE Transactions on

Automatic Control, vol. 19, pp. 716-723, 1974.

[126] C. M. Hurvich and C.-L. Tsai, "Regression and time series model selection in small samples," Biometrika, vol. 76, pp. 297-307, 1989.

[127] K. P. Burnham and D. R. Anderson, Model Selection and Multi-Model Inference, 2nd ed.: Springer, 2002.

[128] A. C. Cameron and F. A. G. Windmeijer, "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics vol. 77, pp. 329- 342, Apr 1997.

[129] K. Hoang, et al., "Determinants of glomerular hypofiltration in aging humans," Kidney

International, vol. 64, pp. 1417–1424, 2003.

[130] B. Kappel and S. Olsen, "Cortical Interstitial Tissue and Sclerosed Glomeruli in the Normal Human Kidney, Related to Age and Sex," Virchows Arch A Pathol Anat Histol, vol. 387, pp. 271-277, 1980.

[131] B. L. Kasiske, "Relationship between vascular disease and age-associated changes in the human kidney," Kidney International, vol. 31, p. 1153—1159, 1987.

[132] R. D. Lindeman and H. G. Preuss, "Renal physiology and pathophysiology of aging,"

Anexos

Anexo A

Anexos

Anexo B

Anexos

Anexo C

Ficheiro controlo do modelo Final de covariáveis

$PROBLEM CP CARBOPLATINA - MODELO BICOMPARTIMENTAL.

$INPUT ID AMT RATE TIME CP=DV MDV IDADE PESO ALTURA AUC GRUPO CR IMC BS

$DATA CBPT2_2.csv IGNORE="#" $SUBROUTINES ADVAN3 TRANS1 $PK

IF (GRUPO.EQ.0) THEN

CL = (THETA(1) - THETA(6)*(IDADE-70) + (PESO-70)*THETA(8)) * EXP(ETA(1)) ELSE

CL = (THETA(1) - (CR/0.9)*THETA(7)) * EXP(ETA(5)) END IF

VC = (THETA(2) - (IDADE-70)*THETA(5) + (PESO-70) * THETA(9)) * EXP(ETA(2)) K12 = THETA(3) + ETA(3) K21 = THETA(4) + ETA(4) K = CL/VC S1=VC $ERROR IPRED = F Y = F * EXP(GRUPO*EPS(1)+(1-GRUPO)*EPS(3)) + EPS(2) $THETA (0.0000001, 5.19, 50) (0.00001, 8.74, 50) (0.00001, 0.6, 10) (0.00001, 0.6, 10) (0.6) (0.0000001, 0.3) (1) (0.07) (0.2)

Anexos $OMEGA (0.1) (0.1) (0.04 FIX) (0.04 FIX) (0.1) $SIGMA (0.007) (0.0025 FIX) (0.007)

$EST METHOD=1 INTERACTION SIGDIG=3 FILE=RESULTADOSVC5_A.EXT MAXEVAL=9000 NITER=500 PRINT=5 POSTHOC NOABORT

$COV SLOW PRINT=E

$TABLE ID TIME PRED RES WRES IPRED CP CPRED CWRES EPRED ERES NOAPPEND ONEHEADER FILE=vc5.fitPRINT

$TABLE ID CL VC K K12 K21 FIRSTONLY NOAPPEND NOPRINT FILE=ResultadosVc5_C.PAR

Documentos relacionados