• Nenhum resultado encontrado

Nanoemulsões, com e sem curcuminoides, estáveis foram preparadas variando a quantidade de fase orgânica e a porcentagem do tensoativo Pluronic® F127, pela técnica de ultrassom de sonda.

As nanoemulsões E15 e E16 foram as mais estáveis, apresentarem tamanhos de partícula entre 180 a 210 nm, valores de IPD entre 0,1 e 0,3 e valores de potencial zeta entre -26mV e -29 mV o que caracteriza sistemas estáveis. Além disso, o pH ácido das nanoemulsões favorecem a cicatrização de feridas e possibilitam a estabilidade dos curcuminoides. Durante os estudos de estabilidade acelerada as nanoemulsões estudadas se mantiveram estáveis.

A quantificação dos curcuminoides nas nanoemulsões não apresentou grandes alterações e a degradação do princípio ativo não ultrapassou a taxa de 10% durante 90 dias, o que indica uma validade provisória de 12 meses.

Estudos do potenial antioxidante e bactericida revelaram que uma concentração de 10 µg/mL da emulsão eliminou 86,4% do radical livre DPPH e apresentou habilidade quelante de 64,3%, valores estes que ultrapassaram os controles positivos utilizados nas análises; e após uma diluição quatro vezes menor das nanoemulsões puras foi possível evitar totalmente crescimento de bactérias das espécies Staphylococcus aureus, Listeria monocytogenes, Escherichia coli e Salmonella entérica.

As emulsões apresentaram um perfil de liberação in vitro controlada, com cinética de liberação de ordem zero, sendo que a nanoemulsão E15 liberou um total de 9,8% e a nanoemulsão E16 liberou 14,2 % dos curcuminoides em 24 h; além disso, foram capazes de encapsular 100% dos ativos incorporados.

Os géis D1, D2, D3 e D4 se apresentaram como gel fluido, possuindo boas características relacionadas a preparações semi-sólidas para possível aplicação transdérmica.

Enfim, sistemas capazes de encapsular curcuminoides foram desenvolvidos satisfatóriamente com caracteríscas apropriadas para aplicações tópicas. Além da ação antioxidade e bactericida, foi possível liberar de forma controlada o princípio ativo, o que resultará num melhor processo cicatrização de feridas através da administração por meio dos géis.

REFERÊNCIAS

AK, T.; GÜLÇIN, İ. Antioxidant and radical scavenging properties of curcumin. Chemico- Biological Interactions, Erzurum, Turkey, v. 174, n. 1, p. 27-37, 2008.

ALVES, C. Q.; DAVID, J. M.; DAVID, J. P.; BAHIA, M. V.; AGUIAR, R. M. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, São Paulo, v. 33, n. 10, p. 2202-2210, 2010.

AMBARSARI, L.; NURCHOLIS, W.; DARUSMAN, L. K.; MUJIB, M. A., HERYANTO, R. The Curcuminoids Extract of Curcuma xanthorrhiza RoxB. Loaded Solid Lipid

Nanoparticles. International Journal of Science and Research, Indonésia, v. 3, p. 852-856, 2014.

AUSTRALIA - National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Emily Haesler (Ed.). Cambridge Media: Osborne Park, Western Australia; 2014.

AZULAY, R. D.; AZULAY, D. R. Dermatologia. 3.ed. Rio de Janeiro: Guanabara Koogan, 2006.

BALI, V.; ALI, M.; ALI, J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surface B: Biointerfaces, [s.l.], v. 76, n. 2, p. 410-420, 2010.

BARROS, H. R.; CARDOSO, M. B.; de OLIVEIRA, C. C.; FRANCO, C. R. C.; de LIMA BELAN, D.; VIDOTTI, M.; RIEGEL-VIDOTTI, I. C. Stability of gum arabic-gold

nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Advances, [s.l.], v. 6, n.12, p. 9411-9420, 2016.

BARSOTTI, S.A. Relato de experiência: desbridamento de feridas com solução Ringer Lactato. Revista Feridas, São Paulo, v.1, n.6, 2014.

BENASSI, R.; FERRARI, E.; LAZZARI, S.; SPAGNOLO, F.; SALADINI, M. Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV–vis and IR experimental data. Journal of Molecular Structure, [s.l.], v. 892, n. 1, p. 168-176, 2008.

BENGMARK, S. Curcumin, an atoxic antioxidant and natural NFkB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases. Journal of Parenteral and Enteral Nutrition, [s.l.], v. 30, n.1, p. 45-51, 2006.

BENITA, S.; LEVY, M. Y. Submicron Emulsions as Colloidal Drug Carriers for Intravenous Administration: Comprehensive Physicochemical Characterization. Journal of

Pharmaceutical Sciences, [s.l.], v. 82, n. 11, p. 1069–1079, 1993.

BLOIS, M. S. Antioxidant determinations by the use of a stable free radical. Nature, [s.l.], v. 181, n. 4617, p. 1199-1200, 1958.

BOATENG, J. S.; MATTHEWS, K. H.; STEVENS, H. N. E.; ECCLESTON, G. M. Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, [s.l.], v. 97, n. 8, p. 2892–2923, 2008.

BRANDT, A. L.; CASTILLO, A.; HARRIS, K. B.; KEETON, J. T.; HARDIN, M. D.; TAYLOR, T. M. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, Estados Unidos, v. 75, n. 9, 2010.

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. L. W. T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, Amsterdam, v. 28, n. 1, p. 25-30, 1995.

CANDIDO, L. C. Nova Abordagem no Tratamento de Feridas. Ed. SENAC, São Paulo, 288 pp, 2001.

CARVALHO, F. C.; CHORILLI, M.; GREMIÃO, M. P. D. Nanotechnology-based polymeric bio (muco) adhesive platforms for controlling drug delivery-properties, methodologies and applications. Polímeros, São Carlos, v.24, n. 2, p. 203-213, 2014.

CHAIBUNDIT, C.; RICARDO, N. M. P. S.; COSTA, F. M. L. L.; YEATES, S. G.; BOOTH, C. Micellization and Gelation of Mixed Copolymers P123 and F127 in Aqueous Solution. Langmuir, Manchester, v. 23, n. 18, p. 9229-9236, 2007.

CHEREDDY, K. K.; COCO, R.; MEMVANGA, P. B.; UCAKAR, B.; DES RIEUX, A.; VANDERMEULEN, G.; PRÉAT, V. Combined effect of PLGA and curcumin on wound healing activity. Journal of Controlled Release, USA, v. 171, n. 2, p. 208-215, 2013. CHEW, Y. L.; LIM, Y. Y.; OMAR, M.; KHOO, K. S. Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, [s.l.], v. 41, n. 6, p. 1067-1072, 2008.

CHORILLI, M.; LEONARDI, G.R.; OLIVEIRA, A.G.; SCARPA, M.V. Lipossomas em formulações dermocosméticas. Infarma, Brasil, v. 16, n. 7-8, p. 73-77, 2004.

CHORILLI, M.; RIBEIRO, M.C.A.P.; PIRES-DE-CAMPOS, M.S.M.; LEONARDI, G.R.; POLACOW, M.L.O. Efeito de emulsão contendo extrato seco de guaraná sobre os vasos sangüíneos da derme papilar de ratos. Saúde em Revista, Brasil, v.6, n.14, p. 7-12, 2004. CODEVILLA, C. F.; BARIN, J. S.; DA SILVA, C. D. B.; DA SILVA, T. M.; de MENEZES, C. R. Incorporação da curcumina em sistemas nanoestruturados: Revisão. Ciência & Natura, Santa Maria, v. 37, p. 152-163, 2015.

COELHO, E. D. L.; MOURA, C. L. D.; MAIA, D. D. S.; ARAÚJO, T. G. D.; DE FRANÇA, F. C.; RICARDO, N. M.P.S.; RIBEIRO, M. E. N. P.; RICARDO, N. M. P. S. Binary systems of Brij® surfactants with Pluronic® F127 as griseofulvin carrier. Química Nova, Brasil, v. 40, n. 3, p. 305-309, 2017.

CORADINI, F.; LIMA, F. O.; OLIVEIRA, C. M.; CHAVES, P. S.; ATHAYDE, M.L.; CARVALHO, L. M.; BECK, R. C. R. Co-encapsulation of resveratrol and curcumin in lipid-

core nanocapsules improves their in vitro antioxidant effects. European Journal of Pharmaceutics and Biopharmaceutics, [s.l.], v. 88, p.178-185, 2014.

CORNWELL, P.A.; BARRY, B.W.; STODDART, C.P.; BOUWSTRA, J. A. Wide-angle X- ray diffraction of human stratum corneum: effects of hydration and terpene enhancer

treatment. Journal of Pharmacy and Pharmacology, [s.l.], v. 46, n. 12, p. 938-950, 1994. CUTTING, K.F.; WHITE, R.J. Criteria for identifying wound infection-revisited. Ostomy Wound Manage, [s.l.], v. 51, n. 1, p. 28-34, 2005.

DALBY, A.; Dangerous Tastes: The Story of Spices, 2nd edition, British Museum Press: London, 2000.

DATE, A. A.; HANES, J.; ENSIGN, L. M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, [s.l.], v. 240, p. 504-526, 2016.

DE, R.; KUNDU, P.; SWARNAKAR, S.; RAMAMURTHY, T.; CHOWDHURY, A.; NAIR, G. B.; MUKHOPADHYAY, A. K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and

Chemotherapy, [s.l.], v. 53, n. 4, p. 1592-1597, 2009.

DECLAIR, V. Aplicação do triglicerídeos de cadeia média (TCM) na prevenção de úlceras de decúbito. Revista Brasileira de Enfermagem, Brasilía, v. 47, n. 1, p. 27-30, 1994.

DECLAIR, V. Tratamento de úlceras crônicas de difícil cicatrização com ácido linoleico. Jornal Brasileiro de Medicina, [s.l.], v. 82, n. 6, p. 36-41, 2002.

DECLAIR, V.; CARMONA, M. P.; CRUZ, J.A. Ácidos graxos essenciais (AGES). Protetores celulares dos mecanismos agressivos da lesão hipóxica. Dermatologia Atual, [s.l.], v. 4, n. 1, p. 2-7, 1998.

EUTERPIO, M. A.; CAVALIERE, C.; CAPRIOTTI, A. L.; CRESCENZI, C. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome. Analytical and Bioanalytical Chemistry, [s.l.], v. 401, n. 9, p. 2977, 2011.

FANG, J., LU, J., HOLMGREN, A. Thioredoxin reductase is irreversibly modified by curcumin a novel molecular mechanism for its anticancer activity. Journal of Biological Chemistry, [s.l.], v. 280, n. 26, p. 25284-25290, 2005.

FARRUGIA, M.; MORGAN, S.P.; ALEXANDE, C.; MATHER, M.L. Ultrasonic monitoring of drug loaded Pluronic F127 micellular hydrogelphase behaviour. Materials Science and Engineering: C, [s.l.], v. 34, p.280–286, 2014.

FITZPATRICK, D.; CORISH, J. Release characteristics of anionic drug compounds from liquid crystalline gels. International Journal of Pharmaceutics, [s.l.], v. 1, n. 325, p. 90-98, 2006.

FRANGE, R. C. C.; GARCIA, M. T. J. Desenvolvimento de emulsões óleo de oliva/água: avaliação da estabilidade física. Revista de Ciências Farmacêuticas Básica e Aplicada, [s.l.], v. 30, n. 3, p. 263-271, 2010.

FRIEDRICH, R. B.; KANN, B.; CORADINI, K.; OFFERHAUS, H. L.; BECK, R. C. R.; WINDBERGS, M. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. European Journal of Pharmaceutical Sciences, [s.l.], v. 78, p. 204-213, 2015.

GARDNER S. E.; FRANTZ R.A.; DOEBBELING, B.N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair and

Regeneration, [s.l.], v. 9, n. 3, p. 178-186, 2001.

GHARSALLAOUI, A.; ROUDAUT, G.; CHAMBIN, O.; VOILLEY, A.; SAUREL, R. Applications of spray-drying in microencapsultion of food ingredients: An overview. Food Research International, Amsterdam, v. 40, n. 9, p. 1107-1121, 2007.

GOEL, A.; KUNNUMAKKARA, A. B.; AGGARWAL, B. B. Curcumin as “Curecumin”: from kitchen to clinic. Biochemical Pharmacology, [s.l.], v. 75, n. 4, p. 787-809, 2008. GUTOWSKI, M.; KOWALCZYK, S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochimica Polonica, [s.l.], v. 60, n. 1, 2013.

HADZIIOANNOU, G.; PATEL, S.; GRANICK, S.; TIRRELL, M. Forces between surfaces of block copolymers adsorbed on mica. Journal of the American Chemical Society, [s.l.], v. 108, n. 11, p. 2869-2876, 1986.

HAMÚ, Z. C.; PINTO, M. M.; CHAGAS, L. A. F. Ácidos graxos essenciais, vitaminas A e E e lecitina de soja: uma nova opção no tratamento de lesões graves com perda de substância com ou sem presença de infecção. Revista Brasileira de Enfermagem, [s.l.], v. 56, n. 1, p. 5- 12, 1999.

HEGGE, A. B.; ANDERSEN, T.; MELVIK, J. E.; KRISTENSEN, S.; TØNNESEN, H. H. Evaluation of novel alginate foams as drug delivery systems in antimicrobial photodynamic therapy (aPDT) of infected wounds—an in vitro study: studies on curcumin and

curcuminoides XL. Journal of Pharmaceutical Sciences, [s.l.], v. 99, n. 8, p. 3499-3513, 2010.

HERAI, H.; GRATIERI, T.; THOMAZINE, J .A.; BENTLEY, M.V.L.B.; LOPES, R.F.V. Doxorubicin skin penetration from monoolein-containing propylene glycol formulations. International Journal of Pharmaceutics, [s.l.], v. 329, n. 1, p. 88-93, 2007.

HEURTAULT, B.; SAULNIER, P.; PECH, B.; PROUST, J. E.; BENOIT, J. P. Physico- chemical stability of colloidal lipid particles. Biomaterials, [s.l.], v. 24, n. 23, p. 4283-4300, 2003.

JAFARI, S. M.; ASSADPOOR, E.; BHANDARI, B.; HE, Y. Nano-particle encapsulation of fish oil by spray drying. Food Research International, Amsterdam, v. 41, n. 2, p. 172-183, 2008.

JONES, J.E; NELSON, E.A. Skin grafting for venous leg ulcers. Cochrane Database Systematic Reviews, [s.l.], v. 2, 2007.

JORGE, S. A.; DANTAS, S. R. P. E. Abordagem Multiprofissional do Tratamento de Feridas. São Paulo: Atheneu; 2005.

JOVANOVIC, S. V.; STEENKEN, S.; BOONE, C. W., SIMIC, M. G. H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of the American Chemical Society, [s.l.], v. 121, n. 41, p. 9677-9681, 1999.

JUNQUEIRA, L.C.; CARNEIRO, J. Biologia Celular e Molecular. Rio de Janeiro, Guanabara Koogan, 2005.

JUNQUEIRA, L.C.; CARNEIRO, J. Histologia Básica. 10a ed. Rio de Janeiro: Guanabara Koogan; 2004.

KANJ, L. F.; WILKING, S. V. B.; PHILLIPS, T. J. Continuing medical education: Pressure ulcers. Journal of the American Academy of Dermatology, [s.l.], v. 38, n. 4, p. 517-538, 1998.

KAUR, S.; DAS, M. Functional foods: an overview. Food Science and Biotechnology, [s.l.], v. 20, n. 4, p. 861, 2011.

KIM, T.; LEE, C. H.; JOO, S. W.; LEE, K. Kinetics of gold nanoparticle aggregation: experiments and modelling. Journal of Colloid and Interface Science, [s.l.], v. 318, n. 2, p. 238-243, 2008.

KIM, T.; LEE, K.; GONG, M. S.; JOO, S. W. Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir, [s.l.], v. 21, n. 21, p. 9524-9528, 2005. KLAYPRADIT, W.; HUANG, Y. W. Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT - Food Science and Technology, London, v. 41, n. 6, p. 1133-1139, 2008. KOTTA, S.; KHAN, A. W.; PRAMOD, K.; ANSARI, S. H.; SHARMA, R. K.; ALI, J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opinion on Drug Delivery, [s.l.], v. 9, n. 5, p. 585-598, 2012.

KUJATH, P.; MICHELSEN, A. Wounds - from physiology to wound dressing. Deutsches Ärzteblatt International, [s.l.], v. 105, n. 13, p. 239–48, 2008.

LANDFESTER, K. Miniemulsions for nanoparticle synthesis. In: Colloid chemistry II. Springer Berlin Heidelberg, 2003. p. 75-123.

LEONARDI, G. R.; GASPAR, L. R.; CAMPOS, P. M. B. G. M. Estudo da variação do pH da pele humana exposta à formulação cosmética acrescida ou não das vitaminas A, E ou de ceramida, por metodologia não invasiva. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 77, n. 5, p. 563-569, 2002.

LI, H. X.; ZHANG, H. L.; ZHANG, N.; WANG, N.; YANG, Y.; ZHANG, Z. Z. Isolation of three curcuminoids for stability and simultaneous determination of only using one single

standard substance in turmeric colour principles by HPLC with ternary gradient system. LWT-Food Science and Technology, [s.l.], v. 57, n. 1, p. 446-451, 2014.

LI, H.; YU, G. E.; PRICE, C.; BOOTH, C.; HECHT, E.; HOFFMANN, H. Concentrated aqueous micellar solutions of diblock copoly (oxyethylene/oxybutylene) E41B8: a study of phase behavior. Macromolecules, [s.l.], v. 30, n. 5, p. 1347-1354, 1997.

LI, J.; LEE, I. W.; SHIN, G. H.; CHEN, X.; PARK, H. J. Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, [s.l.], v. 94, p. 322-332, 2015. LI, W.; WANG, S.; FENG, J.; XIAO, Y.; XUE, X.; ZHANG, H.; WANG, Y.; LIANG, X..Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magnetic Resonance in Chemistry, [s.l.], v. 47, n. 10, p. 902-908, 2009. LI, Y. Y.; LI, L.; DONG, H. Q.; CAI, X. J.; REN, T. B. Pluronic F127 nanomicelles

engineered with nuclear localized functionality for targeted drug delivery. Materials Science and Engineering: C, [s.l.], v. 33, n. 5, p. 2698-2707, 2013.

LI, Z.; JIANG, H.; XU, C.; GU, L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, [s.l.], v. 43, p. 153-164, 2015.

MA, P.; ZENG, Q.; TAI, K.; HE, X.; YAO, Y.; HONG, X.; YUAN, F. Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on physicochemical stability. LWT-Food Science and Technology, [s.l.], v. 84, p. 34-46, 2017.

MAGALHÃES, M. S. F.; FECHINE, F. V.; MACEDO, R.N.; MONTEIRO, D.L.S.; OLIVEIRA, C.C.; BRITO, G.A.C.; MORAES, M. R. A.; MORAES, M. O. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta Cirurgica Brasileira, São Paulo, v. 23, n. 3, p. 262-269, 2008.

MAIA, N. B.; BOVI, O. A.; DUARTE, F. R.; SORIA, L. G.; ALMEIDA, J. A. R. Influência de tipos de rizomas de multiplicação no crescimento de cúrcuma. Bragantia, [s.l.], v. 54, n. 1, p. 33-37, 1995.

MANDELBAUM, S.H.; DI SANTIS, E.P.; MANDELBAUM, M.H.S.A. Cicatrização: conceitos atuais e recursos auxiliares-Parte II Cicatrization: current concepts and auxiliary resources-Part II. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 78, n. 5, p. 525-542, 2003.

MCCLEMENTS, D. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, [s.l.], v. 47, n. 7, p. 611-649, 2007.

MCCLEMENTS, D. J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Therapeutic Delivery, [s.l.], v. 4, n. 7, p. 841-857, 2013.

MCCLEMENTS, D. J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, [s.l.], v. 8, n. 6, p. 1719-1729, 2012.

MENDONÇA, C. C.; SILVA, I. C. L.; RODRIGUES, K. A.; CAMPOS, M. A. L.;

MEDEIROS, M. C. M.; CASTELI, V. C.; FERRARI M.; MUSIS, C. R.; MACHADO, S. R. P. Emulsões O/A contendo Cetoconazol 2, 0%: avaliação da estabilidade acelerada e estudos de liberação in vitro. Revista de Ciências Farmacêuticas Básica e Aplicada, São Paulo, v. 30, n. 1, p. 35-46, 2009.

MENOITA, E.; SANTOS, V.; SANTOS, A.; GOMES C. pH no Controle do Microambiente das Feridas Crônicas. Coimbra: Sinais Vitais, 2011.

MODASIYA, M. K.; PATEL, V. M. Studies on solubility of curcumin. International Journal of Pharmacy & Life Sciences, [s.l.], v. 3, n. 3, p.1490-1497, 2012.

MORAIS, J. M.; DOS SANTOS, O. D. H.; DELICATO, T.; DA ROCHA‐FILHO, P. A. Characterization and Evaluation of Electrolyte Influence on Canola Oil/Water

Nano‐Emulsion. Journal of Dispersion Science and Technology, [s.l.], v. 27, n. 7, p. 1009- 1014, 2006.

MULIK, R.; MAHADIK, K.; PARADKAR, A. Development of curcuminoids loaded poly (butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. European Journal of Pharmaceutical Sciences, [s.l.], v. 37, n. 3, p. 395-404, 2009. MÜLLER, R. H.; MÄDER, K.; GOHLA, S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, [s.l.], v. 50, n. 1, p. 161-177, 2000.

MYERS, D. Surfactant Science and Technology, 2. ed. New York: VCH Publishers, 1992. OCA-ÁVALOS, J. M. M.; CANDAL, R. J.; HERRERA, M. L. Nanoemulsions: stability and physical properties. Current Opinion in Food Science, [s.l.], v. 16, p. 1-6, 2017.

OLIVEIRA, C. P.; VASCONCELLOS, L. C.; RIBEIRO, M. E. N. P.; RICARDO, N. M. P. S.; SOUZA, T. V. P.; COSTA, F. M. L. L.; CHAIBUNDIT, C.; YEATES, S. G.;

ATTWOOD, D. The effect of polymeric additives on the solubilisation of a poorly-soluble drug in micellar solutions of Pluronic F127. International Journal of Pharmaceutics, [s.l.], v. 409, n. 1-2, p. 206-208, 2011.

PARTHASATHY, V. A.; CHEMPAKAM, B.; ZACHARIAH, T. J.; Chemistry of Spices, 1st ed., CAB International: Oxfordshire, 2008, p. 103.

PEREIRA, A. G. B.; FAJARDO, A. R.; NOCCH, S.; NAKAMURA, C. V.; RUBIRA, A. F.; MUNIZ, E. C. Starch-basedmicrospheres for sustained-release ofcurcumin:

Preparationandcytotoxiceffecton tumor cells. Carbohydrate Polymers, Brasil, v. 98, p.711- 720, 2013.

PÉRET-ALMEIDA, L., CHERUBINO, A. P. F., ALVES, R. J., DUFOSSÉ, L., GLORIA, M. B. A. Separation and determination of the physico-chemical characteristics of curcumin,

demethoxycurcumin and bisdemethoxycurcumin. Food Research International, [s.l.], v. 38, n. 8, p. 1039-1044, 2005.

PORTER, C. J.; TREVASKIS, N. L.; CHARMAN, W. N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, [s.l.], v. 6, n. 3, p. 231-248, 2007.

PRATHNA, T. C.; CHANDRASEKARAN, N.; RAICHUR, A. M.; MUKHERJEE, A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, [s.l.], v. 377, n. 1, p. 212-216, 2011.

REVATHY, S.; ELUMALAI, S.; ANTONY, M. B. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. Journal of Experimental Sciences, [s.l.], v. 2, n. 7, p. 21–25, 2011.

RUDRAPPA, T; BAIS, H. P. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agricultural and Food Chemistry, [s.l.], v. 56, n. 6, p. 1955-1962, 2008.

SALAGER, J. Tamaño de gotas de una emulsion. Modulo de Enseñanza en Fenómenos Interfaciales. FIRP Cuaderno, [s.l.], v. 232, 1993.

SANT, T.; MOREIRA, A;DE SOUSA, V. P.; PIERRE, M. B. R. Influence of oleic acid on the rheology and in vitro release of lumiracoxib from poloxamer gels. Journal of Pharmacy & Pharmaceutical Sciences, [s.l.], v. 13, n. 2, p. 286-302, 2010.

SCHMOLKA, I. R., Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns. Journal of Biomedical Materials Research Part A, [s.l.], v. 6, n. 6, p. 571-582, 1972.

SCHULTZ, G. S.; SIBBALD, R. G.; FALANGA, V.; et al. Wound bed preparation: a systematic approach to wound management. Wound Repair Regeneration, [s.l.], v. 11, n. s1, p. S1–S28, 2003.

SCHULZ III, J. T.; TOMPKINS, R. G.; BURKE, J. F. Artificial skin. Annual Review of Medicine, Massachusetts, v. 51, n. 1, p. 231-244, 2000.

SMANIOTTO, P. H. S.; FERREIRA, M. C.; ISAAC, C.; GALLI, R. Sistematização de curativos para o tratamento clínico das feridas. Revista Brasileira de Cirurgia. Plástica, São Paulo, v. 27, n. 4, p. 623–6, 2012.

SOUSA, W. M., SILVA, R. O., BEZERRA, F. F., BINGANA, R. D., BARROS, F. C. N., COSTA, L. E.C.; SOMBRA, V.G., SOARES, P. M.G.; FEITOSA, J.P.A.; PAULA, R. C. M.; SOUZA, M. H. Sulfated polysaccharide fraction from marine algae Solieria filiformis: Structural characterization, gastroprotective and antioxidant effects. Carbohydrate Polymers, [s.l.], v. 152, p. 140-148, 2016.

SOUZA, D. M. S. T. DE; BORGES, F. R.; JULIANO, Y.; VEIGA, D. F.; FERREIRA, L. M. Qualidade de vida e autoestima de pacientes com úlcera crônica. Acta Paulista de

Enfermagem, São Paulo, v. 26, n. 3, p. 283–288, 2013.

STOHS, S. J.; BAGGHI, D. Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radical Biology and Medicine, [s.l.], v. 39, n. 10, p. 1267-1268, 2005.

SUETH-SANTIAGO, V., MENDES-SILVA, G. P., DECOTÉ-RICARDO, D., LIMA, M. Curcumina, o pó dourado do açafrão-da-terra: introspecções sobre química e atividades biológicas. Química Nova, Brasil, v. 38, n. 4, p. 538-552, 2015.

SUGASINI, D.; LOKESH, B. R. Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), India, v. 119, p. 45-52, 2017.

SUWANTONG, O.; OPANASOPIT, P.; RUKTANONCHAI, U.; SUPAPHOL, P.

Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, [s.l.], v. 48, n. 26, p. 7546-7557, 2007.

SWEENEY, I. R.; MIRAFTAB, M.; COLLYER, G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Interational Wound Journal, [s.l.], v. 6, n. 9, p. 601–12, 2012.

TADDEUCCI, P.; PIANIGIANI, E.; COLLETTA, V.; et al. An evaluation of Hyalofill-F plus compression bandaging in the treatment of chronic venous ulcers. Journal Wound Care, [s.l.], v. 13, n. 5, p. 202–4, 2004.

TAYLOR, P. Ostwald ripening in emulsions. Advances in Colloid and Interface Science, [s.l.], v. 75, n. 2, p. 107-163, 1998.

THOMAS, L.; ZAKIR, F.; MIRZA, M. A.; ANWER, M. K.; AHMAD, F. J.; IQBAL, Z. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. International Journal of Biological

Macromolecules, [s.l.], v. 101, p. 569-579, 2017.

URSICA, L.; TITA, D.; PALICI, I.; TITA, B.; VLAIA, V. Particle size analysis of some water/oil/water multiple emulsions. Journal of Pharmaceutical and Biomedical Analysis, [s.l.], v. 37, n. 5, p. 931-936, 2005.

VARAPRASAD, K.; VIMALA, K.; RAVINDRA, S.; REDDY, N. N.; REDDY, G. V. S.; RAJU, K. M. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. Journal of Materials Science: Materials in Medicine, [s.l.], v. 22, n. 8, p. 1863-1872, 2011.

VARSHOSAZ, J.; HASSANZADEH, F.; SADEGHI-ALIABADI, H.; LARIAN, Z.; ROSTAMI, M. Synthesis of Pluronic_ F127-poly (methyl vinyl ether-alt-maleic acid)

copolymer and production of its micelles for doxorubicin delivery in breast câncer. Chemical Engineering Journal, [s.l.], v. 240, p. 133–146, 2014.

WAKTE, P. S.; SACHIN, B. S.; PATIL, A. A.; MOHATO, D. M.; BAND, T. H.; SHINDE, D. B. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from z, W. The aggregation behavior of poly- (oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid & Polymer Science, [s.l.], v. 268, n. 2, p. 101-117, 1990.

WONG, B. X.; DUCE, J. A. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Frontiers in Pharmacology, [s.l.], v. 5, p. 81, 2014. YAN, F.; ZHANG, C.; ZHENG, Y.; MEI, L.; TANG, L.;SONG, C.; SUN, H.; HUANG, L. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: Nanotechnology, Biology and Medicine, [s.l.], v. 6, n. 1, p. 170-178, 2010.

YAO, M.; MCCLEMENTS, D. J.; XIAO, H. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Current Opinion in Food Science, [s.l.], v. 2, p. 14-19, 2015.

YEN, F. L.; WU, T. H; TZENG, C. W.; LIN,L.T.; LIN, C. C. Curcumin nanoparticles improve the physicochemical Properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. Journal Agricultural and Food Chemistry, Taiwan, v. 58, p. 7376-7382, 2010.

YI, J.; FAN, Y.; ZHANG, Y.; WEN, Z.; ZHAO, L.; LU, Y. Glycosylated α-lactalbumin- based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, [s.l.], v. 61, p. 369-377, 2016.

Documentos relacionados