• Nenhum resultado encontrado

SOR 25 (TCM O/A) contendo 2-metilpirrolidona

6. CONCLUSÃO

Com os resultados obtidos nesse trabalho foram possíveis as seguintes conclusões:  Nanoemulsões tipo O/A foram formadas pelo método de emulsificação por inversão de

fases utilizando NMP como co-solvente.

 NMP adicionada ao sistema SOR 25 permitiu a formação de sistemas newtonianos, viscosos, com tamanho nanométrico, isotrópicos, com gotículas esféricas. Estes sistemas aumentaram a solubilidade e a liberação do BNZ.

 A técnica de obtenção e a razão dos constituintes utilizada permitiu a estabilidade por 60 dias das nanoemulsões tipo O/A.

 Nanoemulsões biocompatíveis e com atividade tripanocida sobre epimastigotas e trimpomastigota foram superiores ao BNZ na sua forma pura.

 A validação e o desenvolvimento de um método analítico para o BNZ a partir do sistema nanoemulsionado, contendo fosfatidilcolina de soja, oleato de sódio, Miglyol e NMP, por cromatografia de alta eficiência demonstrou especificidade, linearidade, precisão, exatidão, robustez e baixo limite de detecção e quantificação. Além de utilizar baixas concentrações de solvente orgânico associadas a um tempo curto de ensaio.

PERSPECTIVAS

A partir dos resultados e conclusões obtidos neste trabalho, tem-se como perspectivas:

 O estudo da adição de outras moléculas com função de direcionamento do fármaco nas características físico-químicas do sistema formado, além de seu efeito sobre a liberação do BNZ e sua atividade tripanocida sobre diferentes formas de vida do parasito;

 A avaliação da atividade anti-tripomastigota in vitro dos sistemas contendo ácido siálico;

 A avaliação da atividade tripanocida in vitro sobre a forma amastigota do parasito dos sistemas nanoemulsionados contendo ou não moléculas de direcionamento, incluindo o ácido siálico ;

 Análise do mecanismo de morte celular envolvida com os sistemas de interesse por diferentes técnicas;

 O estudo da eficácia in vivo dos sistemas nanoemulsionados por via oral e parenteral em camundongos conforme protocolo já aprovado pelo CEUA da UFRN (n° 16/2015).

REFERÊNCIAS BIBLIOGRÁFICAS

ABBAS, S.; KARANGWA, E.; BASHARI, M.; HAYAT, K.; HONG, X.; SHARIF, H. R.; ZHANG, X. Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly. Ultrasonics Sonochemistry, v. 23, n., p. 81-92, 2015.

ABE, F.; NAGAFUJI, S.; YAMAUCHI, T.; OKABE, H.; MAKI, J.; HIGO, H.; AKAHANE, H.; AGUILAR, A.; JIM; EACUTE; NEZ-ESTRADA, M.; REYES-CHILPA, R. Trypanocidal Constituents in Plants 1. Evaluation of Some Mexican Plants for Their Trypanocidal Activity and Active Constituents in Guaco, Roots of <i>Aristolochia taliscana</i>. Biological and Pharmaceutical Bulletin, v. 25, n. 9, p. 1188-1191, 2002.

ABOOFAZELI, R.; BARLOW, D.; LAWRENCE, M. Particle size analysis of concentrated phospholipid microemulsions: II. Photon correlation spectroscopy. The American Association Pharmaceutical Scientists Journal, v. 2, n. 3, p. 1-10, 2000.

ALBAYRAK, C.; BARıM, G.; DAG, Ö. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt– surfactant systems. Journal of Colloid and Interface Science, v. 433, n. 0, p. 26-33, 2014. ALI, A.; MEKHLOUFI, G.; HUANG, N.; AGNELY, F. β-lactoglobulin stabilized nanemulsions—Formulation and process factors affecting droplet size and nanoemulsion stability. International Journal of Pharmaceutics, v. 500, n. 1–2, p. 291-304, 2016.

ALOISIO, C.; LONGHI, M. R.; DE OLIVEIRA, A. G. Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, v., n., p. n/a-n/a, 2015.

AMADEI, D.; CHATZIDAKI, M. D.; DEVIENNE, J.; MONTEIL, J.; CANSELL, M.; XENAKIS, A.; LEAL-CALDERON, F. Low shear-rate process to obtain transparent W/O fine emulsions as functional foods. Food Research International, v. 62, n. 0, p. 533-540, 2014.

ANEZ, N.; CARRASCO, H.; PARADA, H.; CRISANTE, G.; ROJAS, A.; FUENMAYOR, C.; GONZALEZ, N.; PERCOCO, G.; BORGES, R.; GUEVARA, P.; RAMIREZ, J. L. Myocardial parasite persistence in chronic chagasic patients. The American Jounal of Tropical Medicine Hygiene, v. 60, n. 5, p. 726-732, 1999.

APARICIO, S.; ALCALDE, R.; DÁVILA, M. J.; GARCÍA, B.; LEAL, J. M. Measurements and Predictive Models for the N-Methyl-2-pyrrolidone/Water/Methanol System. The Journal of Physical Chemistry B, v. 112, n. 36, p. 11361-11373, 2008.

ARIOKA, S.; SAKAGAMI, M.; UEMATSU, R.; YAMAGUCHI, H.; TOGAME, H.; TAKEMOTO, H.; HINOU, H.; NISHIMURA, S.-I. Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Bioorganic & Medicinal Chemistry, v. 18, n. 4, p. 1633- 1640, 2010.

BACHHAV, Y. G.; DATE, A. A.; PATRAVALE, V. B. Exploring the potential of N-methyl pyrrolidone as a cosurfactant in the microemulsion systems. International Journal of Pharmaceutics, v. 326, n. 1–2, p. 186-189, 2006.

BADR, H. A.; ALSADEK, D. M. M.; MATHEW, M. P.; LI, C.-Z.; DJANSUGUROVA, L. B.; YAREMA, K. J.; AHMED, H. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials, v. 70, n., p. 23-36, 2015.

BADRAN, M. M.; TAHA, E. I.; TAYEL, M. M.; AL-SUWAYEH, S. A. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: Dependency on the type of surfactants. Journal of Molecular Liquids, v. 190, n. 0, p. 16-22, 2014.

BANDYOPADHYAY, S.; KATARE, O. P.; SINGH, B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids and Surfaces B: Biointerfaces, v. 100, n. 0, p. 50-61, 2012. BAZYLIŃSKA, U.; KULBACKA, J.; WILK, K. A. Dicephalic ionic surfactants in fabrication of biocompatible nanoemulsions: Factors influencing droplet size and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 460, n. 0, p. 312- 320, 2014.

BECERRA, M. C.; GUIÑAZÚ, N.; HERGERT, L. Y.; PELLEGRINI, A.; MAZZIERI, M. R.; GEA, S.; ALBESA, I. In vitro activity of N-benzenesulfonylbenzotriazole on Trypanosoma cruzi epimastigote and trypomastigote forms. Experimental Parasitology, v. 131, n. 1, p. 57- 62, 2012.

BERN, C.; KJOS, S.; YABSLEY, M. J.; MONTGOMERY, S. P. Trypanosoma cruzi and Chagas' Disease in the United States. Clinical Microbiology Reviews, v. 24, n. 4, p. 655-681, 2011.

BHARGAVA, H. N.; NARURKAR, A.; LIEB, L. M. Using microemulsions for drug delivery. Pharmacy Technology, v. 3, n., p. 46-54, 1987.

BHAT, M. A.; HAQ, N.; SHAKEEL, F. Solubility of N-(4-chlorophenyl)-2-(pyridin-4- ylcarbonyl)hydrazinecarbothioamide in PEG 400 + water co-solvent mixtures at 298.15&#xa0;K to 338.15&#xa0;K. Thermochimica Acta, v. 589, n. 0, p. 235-240, 2014. BORRIN, T. R.; GEORGES, E. L.; MORAES, I. C. F.; PINHO, S. C. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. Journal of Food Engineering, v. 169, n., p. 1-9, 2016.

BOUCHAMA, F.; VAN AKEN, G. A.; AUTIN, A. J. E.; KOPER, G. J. M. On the mechanism of catastrophic phase inversion in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 231, n. 1–3, p. 11-17, 2003.

BRASIL. Guia para validação de métodos analíticos e bioanalíticos. Brasilia, Ministério da Saúde, Agência Nacional de Vigilância Sanitária (ANVISA

______. Resolução -RE n. 1, de 29/07/2005 Ministério da Saúde, Agência Nacional de Vigilância Sanitária (ANVISA)

SAÚDE, S. D. C., TECNOLOGIA E INSUMOS ESTRATÉGICOS; DEPARTAMENTO DE ASSISTÊNCIA FARMACÊUTICA E INSUMOS ESTRATÉGICOS. Brasilia: Série Brasileira Textos Básicos de Saúde. p. 2010.

BRENER, Z. Comparative studies of different strains of Trypanosoma cruzi. Annals of Tropical Medicine & Parasitology, v. 59, n. 1, p. 19-26, 1965.

BRITTA, E. A.; SCARIOT, D. B.; FALZIROLLI, H.; DA SILVA, C. C.; UEDA- NAKAMURA, T.; DIAS FILHO, B. P.; BORSALI, R.; NAKAMURA, C. V. 4- Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi. Parasitology, v. 142, n. 07, p. 978-988, 2015.

BULFER, R. F.; CASTRO, J. A.; FANELLI, S. L. Benznidazole levels in blood vary with age in rats. Memorias Instituto Oswaldo Cruz, v. 106, n. 3, p. 3, 2011.

CAL, M.; IOSET, J.-R.; FÜGI, M. A.; MÄSER, P.; KAISER, M. Assessing anti-T. cruzi candidates in vitro for sterile cidality. International Journal for Parasitology: Drugs and Drug Resistance, v. 6, n. 3, p. 165-170, 2016.

CALLIGARIS, S.; PLAZZOTTA, S.; BOT, F.; GRASSELLI, S.; MALCHIODI, A.; ANESE, M. Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Research International, v. 83, n., p. 25-30, 2016. CAMPOS, M. C. O.; LEON, L. L.; TAYLOR, M. C.; KELLY, J. M. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Molecular and Biochemical Parasitology, v. 193, n. 1, p. 17-19, 2014.

CANÇADO, J. R. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Revista Instituto Medicina Tropical de São Paulo, v. 4, n., p. 29-37, 2002. CARREÑO, F.; PAESE, K.; SILVA, C. D. M.; GUTERRES, S. S.; COSTA, T. D. Characterizing the mechanism of quetiapine distribution in lipid-core nanocapsules pseudo- phases using a validated LC/UV method. Quimica Nova, v. 38, n. 9, p. 5, 2015.

CARRILERO, B.; MURCIA, L.; MARTINEZ-LAGE, L.; SEGOVIA, M. Side effects of benznidazole treatment in a cohort of patients with Chagas disease in non-endemic country. Revista Española de Quimioterapia, v. 24, n. 3, p. 123-126, 2011.

CASTRO, J. A.; DEMECCA, M. M.; BARTEL, L. C. Toxic Side Effects of Drugs Used to Treat Chagas’ Disease (American Trypanosomiasis). Human & Experimental Toxicology, v. 25, n. 8, p. 471-479, 2006.

CEVEY, Á. C.; MIRKIN, G. A.; PENAS, F. N.; GOREN, N. B. Low-dose benznidazole treatment results in parasite clearance and attenuates heart inflammatory reaction in an experimental model of infection with a highly virulent Trypanosoma cruzi strain. International Journal for Parasitology: Drugs and Drug Resistance, v. 6, n. 1, p. 12-22, 2016.

sorbitol on thermally induced droplet aggregation in oil-in-water emulsions stabilized by β- lactoglobulin. Food Hydrocolloids, v. 23, n. 2, p. 253-261, 2009.

CHEN, M.-L. Lipid excipients and delivery systems for pharmaceutical development: A regulatory perspective. Advanced Drug Delivery Reviews, v. 60, n. 6, p. 768-777, 2008. CHEONG, A. M.; NYAM, K. L. Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of β-cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. Journal of Food Engineering, v. 183, n., p. 24-31, 2016.

CHORILLI, M.; PRESTES, P. S.; RIGON, R. B.; LEONARDI, G. R.; CHIAVACCI, L. A.; SARMENTO, V. H. V.; OLIVEIRA, A. G.; SCARPA, M. V. Structural characterization and in vivo evaluation of retinyl palmitate in non-ionic lamellar liquid crystalline system. Colloids and Surfaces B: Biointerfaces, v. 85, n. 2, p. 182-188, 2011.

CLAYTON, J. Chagas disease 101. Nature, v. 465, n. n7301_supp, p. S4-S5, 2010.

CONSTANTINIDES, P. P.; CHAUBAL, M. V.; SHORR, R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced Drug Delivery Reviews, v. 60, n. 6, p. 757-767, 2008.

CONSTANTINIDES, P. P.; LANCASTER, C. M.; MARCELLO, J.; CHIOSSONE, D. C.; ORNER, D.; HIDALGO, I.; SMITH, P. L.; SARKAHIAN, A. B.; YIV, S. H.; OWEN, A. J. Enhanced intestinal absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle size. Journal of Controlled Release, v. 34, n. 2, p. 109- 116, 1995.

CONSTANTINIDES, P. P.; SCALART, J.-P. Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides. International Journal of Pharmaceutics, v. 158, n. 1, p. 57-68, 1997.

COURA, J. R. Present situation and new strategies for Chagas disease chemotherapy: a proposal. Memórias do Instituto Oswaldo Cruz, v. 104, n., p. 549-554, 2009.

COURA, J. R.; CASTRO, S. L. A critical review on Chagas disease chemotherapy. Memorias Instituto Oswaldo Cruz, v. 97, n., p. 3-24, 2002.

CRAIEVICH, A. F. Synchrotron SAXS Studies of Nanostructured Materials and Colloidal Solutions: A Review. Materials Research, v. 5, n., p. 1-11, 2002.

CROFT, S. L.; BARRETT, M. P.; URBINA, J. A. Chemotherapy of trypanosomiases and leishmaniasis. Trends in Parasitology, v. 21, n. 11, p. 508-512, 2005.

D'ERRICO, G.; CICCARELLI, D.; ORTONA, O. Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 °C. Journal of Colloid and Interface Science, v. 286, n. 2, p. 747-754, 2005.

D’CRUZ, O. J.; UCKUN, F. M. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception, v. 64, n. 2, p. 113-123, 2001.

DA SILVA, G. B. R. F.; SCARPA, M. V.; CARLOS, I. Z.; QUILLES, M. B.; LIA, R. C. C.; DO EGITO, E. S. T.; DE OLIVEIRA, A. G. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate. International Journal of Nanomedicine, v. 10, n., p. 585-594, 2015.

DAHAN, A.; HOFFMAN, A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Journal of Controlled Release, v. 129, n. 1, p. 1-10, 2008.

DALMORA, M. E.; DALMORA, S. L.; OLIVEIRA, A. G. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. International Journal of Pharmaceutics, v. 222, n. 1, p. 45-55, 2001.

DALMORA, M. E. A.; OLIVEIRA, A. G. Inclusion complex of piroxicam with β- cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. International Journal of Pharmaceutics, v. 184, n. 2, p. 157-164, 1999. DE ANDRADE, P.; GALO, O. A.; CARVALHO, M. R.; LOPES, C. D.; CARNEIRO, Z. A.; SESTI-COSTA, R.; DE MELO, E. B.; SILVA, J. S.; CARVALHO, I. 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic & Medicinal Chemistry, v. 23, n. 21, p. 6815-6826, 2015.

DE ARAÚJO, S. C.; DE MATTOS, A. C. A.; TEIXEIRA, H. F.; COELHO, P. M. Z.; NELSON, D. L.; DE OLIVEIRA, M. C. Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, v. 337, n. 1–2, p. 307-315, 2007.

DE MELO, P. N.; BARBOSA, E. G.; DE CALAND, L. B.; CARPEGIANNI, H.; GARNERO, C.; LONGHI, M.; DE FREITAS FERNADES-PEDROSA, M.; DA SILVA- JÚNIOR, A. A. Host–guest interactions between benznidazole and beta-cyclodextrin in multicomponent complex systems involving hydrophilic polymers and triethanolamine in aqueous solution. Journal of Molecular Liquids, v. 186, n. 0, p. 147-156, 2013.

DE MELO, P. N.; BARBOSA, E. G.; GARNERO, C.; DE CALAND, L. B.; FERNANDES- PEDROSA, M. F.; LONGHI, M. R.; DA SILVA-JÚNIOR, A. A. Interaction pathways of specific co-solvents with hydroxypropyl-β-cyclodextrin inclusion complexes with benznidazole in liquid and solid phase. Journal of Molecular Liquids, v. 223, n., p. 350-359, 2016.

DIAS, J. C. P.; COURA, J. R.; YASUDA, M. A. S. The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Revista da Sociedade Brasileira de Medicina Tropical, v. 47, n. 1, p. 3, 2014. DIAS, L. C.; DESSOY, M. A.; SILVA, J. J. N.; THEIMANN, O. H.; OLIVA, G.; A.D, A. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Quimica Nova, v. 32, n. 9, p. 2444–2457, 2009.

DÍAZ-CHIGUER, D. L.; MÁRQUEZ-NAVARRO, A.; NOGUEDA-TORRES, B.; DE LA LUZ LEÓN-ÁVILA, G.; PÉREZ-VILLANUEVA, J.; HERNÁNDEZ-CAMPOS, A.;

CASTILLO, R.; AMBROSIO, J. R.; NIETO-MENESES, R.; YÉPEZ-MULIA, L.; HERNÁNDEZ-LUIS, F. In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. Acta Tropica, v. 122, n. 1, p. 108-112, 2012.

DICKINSON, E. Interpretation of emulsion phase inversion as a cusp catastrophe. Journal of Colloid and Interface Science, v. 84, n. 1, p. 284-287, 1981.

______. Thermodynamic aspects of emulsion phase inversion. Journal of Colloid and Interface Science, v. 87, n. 2, p. 416-423, 1982.

DINIZ, L. D. F.; URBINA, J. A.; DE ANDRADE, I. M.; MAZZETI, A. L.; MARTINS, T. A. F.; CALDAS, I. S.; TALVANI, A.; RIBEIRO, I.; BAHIA, M. T. Benznidazole and Posaconazole in Experimental Chagas Disease: Positive Interaction in Concomitant and Sequential Treatments. PLoS Negl Trop Dis, v. 7, n. 8, p. e2367, 2013.

DNDI, D. F. N. D. I.-. Doença de Chagas. p. 2014.

DOH, H.-J.; JUNG, Y.; BALAKRISHNAN, P.; CHO, H.-J.; KIM, D.-D. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces B: Biointerfaces, v. 101, n. 0, p. 475-480, 2013.

Farmacopeia Brasileira. 5. Brasilia: Agência Nacional de Vigilância Sanitária, 2010. 524 p. FERNANDEZ, P.; ANDRÉ, V.; RIEGER, J.; KÜHNLE, A. Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 251, n. 1–3, p. 53-58, 2004.

FERREIRA, S. G.; CONCEIÇÃO, V. S.; GOUVEIA, N. S.; SANTOS, G. S.; SANTOS, R. L. C.; LIRA, A. A. M.; CAVALCANTI, S. C. H.; SARMENTO, V. H. V.; NUNES, R. S. An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil. Journal of Colloid and Interface Science, v. 456, n., p. 190-196, 2015.

FONSECA-BERZAL, C.; DA SILVA, C. F.; MENNA-BARRETO, R. F. S.; BATISTA, M. M.; ESCARIO, J. A.; ARÁN, V. J.; GÓMEZ-BARRIO, A.; SOEIRO, M. D. N. C. Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Parasitology, v. FirstView, n., p. 1-10, 2016.

FONSECA-BERZAL, C.; PALMEIRO-ROLDÁN, R.; ESCARIO, J. A.; TORRADO, S.; ARÁN, V. J.; TORRADO-SANTIAGO, S.; GÓMEZ-BARRIO, A. Novel solid dispersions of benznidazole: Preparation, dissolution profile and biological evaluation as alternative antichagasic drug delivery system. Experimental Parasitology, v. 149, n., p. 84-91, 2015. FORMARIZ, T. P.; CHIAVACCI, L. A.; SARMENTO, V. H. V.; FRANZINI, C. M.; SILVA- JR, A. A.; SCARPA, M. V.; SANTILLI, C. V.; EGITO, E. S. T.; OLIVEIRA, A. G. Structural changes of biocompatible neutral microemulsions stabilized by mixed surfactant containing soya phosphatidylcholine and their relationship with doxorubicin release. Colloids and Surfaces B: Biointerfaces, v. 63, n. 2, p. 287-295, 2008.

FORMARIZ, T. P.; CHIAVACCI, L. A.; SARMENTO, V. H. V.; SANTILLI, C. V.; TABOSA DO EGITO, E. S.; OLIVEIRA, A. G. Relationship between structural features and in vitro release of doxorubicin from biocompatible anionic microemulsion. Colloids and Surfaces B: Biointerfaces, v. 60, n. 1, p. 28-35, 2007.

FORMARIZ, T. P.; CHIAVACCI, L. A.; SCARPA, M. V.; SILVA-JÚNIOR, A. A.; EGITO, E. S. T.; TERRUGI, C. H. B.; FRANZINI, C. M.; SARMENTO, V. H. V.; OLIVEIRA, A. G. Structure and viscoelastic behavior of pharmaceutical biocompatible anionic microemulsions containing the antitumoral drug compound doxorubicin. Colloids and Surfaces B: Biointerfaces, v. 77, n. 1, p. 47-53, 2010.

FORMARIZ, T. P.; URBAN, M. C. C.; JUNIOR, A. A. S.; GREMIÃO, M. P. D.; OLIVEIRA, A. G. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Brazilian Journal of Pharmaceutical Sciences, v. 41, n. 3, p. 301-313, 2005.

FRANCISCO, A. F.; LEWIS, M. D.; JAYAWARDHANA, S.; TAYLOR, M. C.; CHATELAIN, E.; KELLY, J. M. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging. Antimicrobial Agents and Chemotherapy, v. 59, n. 8, p. 4653-4661, 2015.

FRIBERG, S. E.; CORKERY, R. W.; BLUTE, I. A. Phase Inversion Temperature (PIT) Emulsification Process. Journal of Chemical & Engineering Data, v. 56, n. 12, p. 4282- 4290, 2011.

GAJBHIYE, V.; GANESH, N.; BARVE, J.; JAIN, N. K. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. European Journal of Pharmaceutical Sciences, v. 48, n. 4–5, p. 668-679, 2013.

GALINDO-ALVAREZ, J.; LE, K.-A.; SADTLER, V.; MARCHAL, P.; PERRIN, P.; TRIBET, C.; MARIE, E.; DURAND, A. Enhanced stability of nanoemulsions using mixtures of non- ionic surfactant and amphiphilic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 389, n. 1–3, p. 237-245, 2011.

GARCIA, S.; RAMOS, C. O.; J.F.V., S.; VIILASBOAS, F.; RODRIGUES, M. M.; CAMPOS DE CARVALHO, A. C.; SANTOS, R. R.; SOARES, M. B. P. Treatment with benznidazole during the chronic phase of experimental Chagas'Disease decreases cardiac alterations. Antimicrobial Agents and Chemotherapy, v. 49, n., p. 1521-1528, 2005.

GHOSH, V.; MUKHERJEE, A.; CHANDRASEKARAN, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, v. 20, n. 1, p. 338-344, 2013.

GILLIES, G.; PRESTIDGE, C. A. Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Advances in Colloid and Interface Science, v. 108–109, n. 0, p. 197-205, 2004.

GUTTOFF, M.; SABERI, A. H.; MCCLEMENTS, D. J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting

particle size and stability. Food Chemistry, v. 171, n. 0, p. 117-122, 2015.

HASSLOCHER-MORENO, A. M.; DO BRASIL, P. E. A. A.; DE SOUSA, A. S.; XAVIER, S. S.; CHAMBELA, M. C.; DA SILVA, G. M. S. Safety of benznidazole use in the treatment of chronic Chagas’ disease. Journal of Antimicrobial Chemotherapy, v. 67, n., p. 1261–1266, 2012.

HATEGEKIMANA, J.; CHAMBA, M. V. M.; SHOEMAKER, C. F.; MAJEED, H.; ZHONG, F. Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 483, n., p. 70-80, 2015.

HO, H.-O.; HSIAO, C.-C.; SHEU, M.-T. Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs. Journal of Pharmaceutical Sciences, v. 85, n. 2, p. 138-143, 1996.

HOAR, T. P., SCHULMAN, J.H. . Transparent water-in-oil dispersions: the oleopathic hydromicelle. Nature, v. 152, n., p. 102-105, 1943.

HOLMBERG, K. J., B.; KRONBERG, B.; LINDMAN, B. . Surfactants and polymers in aqueous solution. 2. New York: John Wiley & Sons, Ltd, 2002. p.

HUYNH, N. T.; PASSIRANI, C.; SAULNIER, P.; BENOIT, J. P. Lipid nanocapsules: A new platform for nanomedicine. International Journal of Pharmaceutics, v. 379, n. 2, p. 201- 209, 2009.

ICH. The GCC Guidelines for Stability Testing of Drug Substances and Pharmaceutical Products. HARMONISATION, I. C. O. p. 2003.

ICH, I. C. O. H.-. International Conference on Harmonization of technical requirements for registration of pharmaceutical for human use, Validation of Analytical Procedures: Methodology, 1996. p. 1996.

IZQUIERDO, P.; FENG, J.; ESQUENA, J.; TADROS, T. F.; DEDEREN, J. C.; GARCIA, M. J.; AZEMAR, N.; SOLANS, C. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science, v. 285, n. 1, p. 388- 394, 2005.

JAHANZAD, F.; CROMBIE, G.; INNES, R.; SAJJADI, S. Catastrophic phase inversion via formation of multiple emulsions: A prerequisite for formation of fine emulsions. Chemical Engineering Research and Design, v. 87, n. 4, p. 492-498, 2009.

JIMENEZ, V.; KEMMERLING, U.; PAREDES, R.; MAYA, J. D.; SOSA, M. A.; GALANTI, N. Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: A new therapeutic target? Phytomedicine, v. 21, n. 11, p. 1411-1418, 2014.

JOHNSON, D. J.; AL MALEK, S. A.; AL-RASHDI, B. A. M.; HILAL, N. Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. Journal of Membrane Science, v. 389, n., p. 486-498, 2012.

KALHAPURE, R. S.; AKAMANCHI, K. G. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system. International Journal of Pharmaceutics, v. 425, n. 1–2, p. 9-18, 2012.

______. A novel biocompatible bicephalous dianionic surfactant from oleic acid for solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, v. 105, n. 0, p. 215-222, 2013.

KECK, C. M.; BAISAENG, N.; DURAND, P.; PROST, M.; MEINKE, M. C.; MÜLLER, R. H. Oil-enriched, ultra-small nanostructured lipid carriers (usNLC): A novel delivery system based on flip–flop structure. International Journal of Pharmaceutics, v. 477, n. 1–2, p. 227- 235, 2014.

KLASSEN, P. L.; GEORGE, Z.; WARWICK, J.; GEORGIADOU, S. PIT tuning effects of hydrophobic co-surfactants and drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 455, n. 0, p. 1-10, 2014.

KLEIN, E. J.; RIVERA, S. L. A REVIEW OF CRITERIA FUNCTIONS AND RESPONSE SURFACE METHODOLOGY FOR THE OPTIMIZATION OF ANALYTICAL SCALE HPLC SEPARATIONS. Journal of Liquid Chromatography & Related Technologies, v. 23, n. 14, p. 2097-2121, 2000.

KOMAIKO, J.; MCCLEMENTS, D. J. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water systems. Journal of Colloid and Interface Science, v. 425, n. 0, p. 59-66, 2014.

KUNDU, P.; AGRAWAL, A.; MATEEN, H.; MISHRA, I. M. Stability of oil-in-water macro- emulsion with anionic surfactant: Effect of electrolytes and temperature. Chemical Engineering Science, v. 102, n. 0, p. 176-185, 2013.

LAMAS, M. C.; VILLAGGI, L.; NOCITO, I.; BASSANI, G.; LEONARDI, D.; PASCUTTI, F.; SERRA, E.; SALOMÓN, C. J. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole. International Journal of Pharmaceutics, v. 307, n. 2, p. 239-243, 2006.

LAWRENCE, M. J. Microemulsions as drug delivery vehicles. Current Opinion in Colloid &amp; Interface Science, v. 1, n. 6, p. 826-832, 1996.

LAWRENCE, M. J.; REES, G. D. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, v. 45, n. 1, p. 89-121, 2000.

LEE, M.-J.; LEE, M.-H.; SHIM, C.-K. Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer 338. International Journal of Pharmaceutics, v. 113, n. 2, p. 175-187, 1995.

LEE, P. J.; LANGER, R.; SHASTRI, V. P. Role of n-methyl pyrrolidone in the enhancement of aqueous phase transdermal transport. Journal of Pharmaceutical Sciences, v. 94, n. 4, p. 912-917, 2005.

LEONARDI, D.; SALOMÓN, C. J.; LAMAS, M. C.; OLIVIERI, A. C. Development of novel formulations for Chagas’ disease: Optimization of benznidazole chitosan microparticles

based on artificial neural networks. International Journal of Pharmaceutics, v. 367, n. 1–2, p. 140-147, 2009.

LI, J.; HWANG, I.-C.; CHEN, X.; PARK, H. J. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids, v. 60, n., p. 138-147, 2016.

LI, Z.-Q.; ZHANG, L.; XU, Z.-C.; LIU, D.-D.; SONG, X.-W.; CAO, X.-L.; ZHANG, L.; ZHAO, S. Effect of zwitterionic surfactants on wetting of quartz surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 430, n. 0, p. 110-116, 2013. LIMA, A. A. N.; SOARES-SOBRINHO, J. L.; SILVA, J. L.; CORRÊA-JUNIOR, R. A. C.; LYRA, M. A. M.; SANTOS, F. L. A.; OLIVEIRA, B. G.; HERNANDES, M. Z.; ROLIM, L. A.; ROLIM-NETO, P. J. The Use of Solid Dispersion Systems in Hydrophilic Carriers to Increase Benznidazole Solubility. Journal of Pharmaceutical Sciences, v. 100, n., p. 2443– 2451 2011.

LIU, Y.; CARTER, E. L.; GORDON, G. V.; FENG, Q. J.; FRIBERG, S. E. An investigation into the relationship between catastrophic inversion and emulsion phase behaviors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 399, n., p. 25-34, 2012. LUO, X.; ZHOU, Y.; BAI, L.; LIU, F.; DENG, Y.; MCCLEMENTS, D. J. Fabrication of β- carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, v. 490, n., p. 328-335, 2017.

MA, Q.; DAVIDSON, P. M.; ZHONG, Q. Nanoemulsions of thymol and eugenol co- emulsified by lauric arginate and lecithin. Food Chemistry, v. 206, n., p. 167-173, 2016. MAHOUR, R.; SAHNI, J. K.; SHARMA, S.; KUMAR, S.; ALI, J.; BABOOTA, S. Nanoemulsion as a tool for improvement of Cilostazol oral bioavailability. Journal of Molecular Liquids, v. 212, n., p. 792-798, 2015.

MANOJ, P.; FILLERY-TRAVIS, A. J.; WATSON, A. D.; HIBBERD, D. J.; ROBINS, M. M. Characterization of a Polydisperse Depletion-Flocculated Emulsion: III. Oscillatory Rheological Measurements. Journal of Colloid and Interface Science, v. 228, n. 2, p. 200- 206, 2000.

MASMOUDI, H.; DRÉAU, Y. L.; PICCERELLE, P.; KISTER, J. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. International Journal of Pharmaceutics, v. 289, n. 1–2, p. 117-131, 2005.

MAXIMIANO, F. P.; COSTA, G. H. Y.; DE SÁ BARRETO, L. C. L.; BAHIA, M. T.; CUNHA-FILHO, M. S. S. Development of effervescent tablets containing

benznidazole complexed with cyclodextrin. Journal of Pharmacy and Phamacology, v. 63, n., p. 786-793, 2011.

MAXIMIANO, F. P.; COSTA, G. H. Y.; DE SOUZA, J.; CUNHA-FILHO, M. S. S. Caracterização físico-química do fármaco antichagásico benznidazol. Quimica Nova, v. 33, n. 8, p. 1714-1719, 2010.

MEI, Z.; LIU, S.; WANG, L.; JIANG, J.; XU, J.; SUN, D. Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. Journal of Colloid and Interface Science, v. 361, n. 2, p. 565-572, 2011.

MEIRA, C. S.; BARBOSA-FILHO, J. M.; LANFREDI-RANGEL, A.; GUIMARÃES, E. T.; MOREIRA, D. R. M.; SOARES, M. B. P. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Experimental Parasitology, v. 166, n., p. 108-115, 2016.

MEIRA, C. S.; GUIMARÃES, E. T.; DOS SANTOS, J. A. F.; MOREIRA, D. R. M.; NOGUEIRA, R. C.; TOMASSINI, T. C. B.; RIBEIRO, I. M.; DE SOUZA, C. V. C.; RIBEIRO DOS SANTOS, R.; SOARES, M. B. P. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine, v. 22, n. 11, p. 969-974, 2015.

MENEZES, J.; VAZ, L.; DE ABREU VIEIRA, P.; DA SILVA FONSECA, K.; CARNEIRO,

Documentos relacionados