• Nenhum resultado encontrado

A estratégia aplicada de inserção de cadeias hidrofóbicas (C12) no amido levando a um elevado grau de substituição (2,4) não proporcionou misturas homogêneas com água para produção de filmes com propriedades lucrativas para embalagens de alimentos, mesmo na presença de surfactantes. No entanto, o derivado de amido com GS de 0,28 provou ser um bom aditivo em filmes de amido, em formulações de 5, 10 e 15% em massa de LA2 (em relação ao amido).

A microfluidização provou ser uma etapa crucial para garantir a homogeneidade da mistura durante a secagem, melhorando as interações do LA2 com as cadeias de amido não modificadas. O aumento da pressão durante o estágio de microfluidização resultou em filmes com menores rugosidades e menor permeabilidade ao vapor de água.

Os filmes contendo LA2 apresentaram maior espessura, rugosidade e opacidade, quando comparados aos filmes controle (filmes sem LA2). A adição de LA2 também foi essencial para obter filmes de amido com maiores valores de alongamento, que aumentaram quase oito vezes (adicionando 15% de LA2).

Os resultados obtidos neste trabalho mostram uma aplicabilidade promissora do laurato de amido para melhorar as propriedades físico-químicas dos filmes de amido, que poderiam ser utilizados em substituição a materiais sintéticos em embalagens de alimentos. No entanto, ainda é necessário ajustar a composição dos filmes propostos para melhorar a resistência à tração e o módulo elástico para substituir efetivamente materiais de fontes não renováveis.

Além disso, a adição do LA1 (descartado para aplicação em filmes para embalagens de alimento) à uma emulsão inversa promoveu aumento da sua viscosidade aparente, o que o torna uma interessante alternativa como modificador reológico em fluidos de perfuração sintéticos.

Diante disso, o uso de amido de uma fonte não alimentar e subproduto do agronegócio (manga) em produtos industriais oferece interessantes alternativas de valorização dos resíduos industriais.

REFERÊNCIAS

ABURTO, J. et al. Free-solvent Synthesis and Properties of Higher Fatty Esters of Starch – Part 2. Starch/Stärke, v. 51, n. 8–9, p. 302–307, 1999.

ABURTO, J.; ALRIC, I.; FRANCE, T. C. Preparation of Long-chain Esters of Starch Using Fatty Acid Chlorides in the Absence of an Organic Solvent. Starch/Stärke, v. 51, n. 4, p. 132–135, 1999.

ALCÁZAR-ALAY, S. C.; ANGELA, M.; MEIRELES, A. Physicochemical properties , modifications and applications of starches from different botanical sources. a Food

Science and Technology, v. 35, n. 2, p. 215–236, 2015.

ALMEIDA, E. C.; BORA, P. S.; ZÁRATE, N. A. H. AMIDO NATIVO E MODIFICADO DE TARO (Colocasia esculenta L. Schott): CARACTERIZAÇÃO QUÍMICA, MORFOLÓGICA E PROPRIEDADES DE PASTA. Boletim do Centro de

Pesquisa de Processamento de Alimentos, v. 31, n. 1, p. 67–82, 12 jul. 2013.

ASTM D882-12 (2002). Standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM International.

ASTM E96/E96M-16 (2002). Standard test methods for water vapor transmission of materials. West Conshohocken: ASTM International.

ARORA, A. et al. Process design and techno-economic analysis of an integrated mango processing waste biore fi nery. Industrial Crops & Products, v. 116, n. January, p. 24– 34, 2018.

AVELLA, M. et al. Food Chemistry Biodegradable starch / clay nanocomposite films for food packaging applications. Food Chemistry, v. 93, p. 467–474, 2005.

BANERJEE, J. et al. A hydrocolloid based biore fi nery approach to the valorisation of mango peel waste. Food hydrocolloids, v. 77, p. 142–151, 2018.

ENN R ; HILLING R G V Drilling fluids : S a e of e ar Journal of

Petroleum Science and Engineering, v. 14, n. 6, p. 221–230, 1996.

CESCON, S. et al. Cationic starch derivatives as reactive shale inhibitors for water- based drilling fluids. Jornal applied polymer Science, v. 20, n. 4, p. 1–11, 2018. CORDEIRO, E. M. S. et al. Polymer Biocomposites and Nanobiocomposites Obtained from Mango Seeds. Macromolecular Symposia, v. 344, p. 39–54, 2014.

CORRÊA, C. C. et al. Avaliação do potencial uso de bioglicerina como base para formulação de fluidos de perfuração aquosos para poços de petróleo e gás. Química

Nova, v. 40, n. 4, p. 378–387, 2017.

CYRAS, V. P.; MANFREDI, L. B. Physical and mechanical properties of thermoplastic starch / montmorillonite nanocomposite films. Carbohydrate Polymers, v. 73, p. 55– 63, 2008.

Ciência e Tecnologia de Alimentos, v. 2, n. 4204, p. 388–397, 2011.

DENARDIN, C. C. Estrutura dos grânulos de amido e sua relação com propriedades físico-químicas. Ciência Rural, p. 1–10, 2006.

DIAS, F.; SOUZA, R.; LUCAS, E. Starch fatty esters for potential use in petroleum.

CHEMISTRY & CHEMICAL TECHNOLOGY Vol., v. 7, n. 4, p. 451–456, 2013.

DIAS, F. T. G.; SOUZA, R. R.; LUCAS, E. F. Influence of modified starches composition on their performance as fluid loss additives in invert-emulsion drilling fluids. FUEL, v. 140, p. 711–716, 2015.

FAKHOURI, F. M. et al. Effect of Fatty Acid Addition on the Properties of Biopolymer Films Based on Lipophilic Maize Starch and Gelatin. Starch - Stärke, v. 61, n. 9, p. 528–536, set. 2009.

GARCÍA-TEJEDA, Y. V. et al. Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions. Carbohydrate Polymers, v. 194, n. April, p. 177–183, 2018.

GARG, S.; KUMAR, A. Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers, v. 83, n. 4, p. 1623–1630, 2011.

HEREMANS, K. Pressure – Te pera ure Gela iniza ion P ase Diagra of S arc  : n In Situ Fourier. Biopolymers, v. 54, p. 524–530, 2000.

HERMAWAN, E. et al. Transesterification of Sago Starch Using Various Fatty Acid Methyl Esters in Densified CO 2. International Journal of Chemical Engineering

and Applications, v. 6, n. 3, 2015.

JAFARI, S. M.; HE, Y.; BHANDARI, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, v. 82, n. 4, p. 478–488, out. 2007.

JANAÍNA, L. et al. Obtenção de amidos termoplásticos para a extrusão de pós cerâmicos Obtaining thermoplastic starches for extrusion of ceramic powders.

Polimeros, v. 26, n. 1, p. 1–8, 2016.

JAYASEKARA, R. et al. Preparation , surface modification and characterisation of solution cast starch PVA blended films. Polymer Testing, v. 23, p. 17–27, 2004. JIANG, G. et al. Preparation of amphoteric starch-based flocculants by reactive extrusion for removing useless solids from water-based drilling fluids. Colloids and

Surfaces A, v. 558, n. August, p. 343–350, 2018.

JIMÉNEZ, A. et al. Physical properties and antioxidant capacity of starch – sodium caseinate films containing lipids. Journal of Food Engineering, v. 116, p. 695–702, 2013.

JOST, V. et al. Influence of plasticiser on the barrier , mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, v. 110, p. 309–319, 2014.

KAUR, M. et al. Physicochemical , morphological , thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L .) . Food Chemistry, v. 85, p. 131–140, 2004.

KHWALDIA, K. et al. Mechanical and barrier properties of sodium caseinate- anhydrous milk fat edible films. International Journal of Food Science and

Technology, v. 39, n. 4, p. 403–411, 2004.

KOCH, K. et al. Mechanical and structural properties of solution-cast high-amylose maize starch films. International Journal of Biological Macromolecules, v. 46, p. 13– 19, 2010.

LEARY, M. O.; HANSON, B.; SMITH, C. Viscosity and Non-Newtonian Features of Thickened Fluids Used for Dysphagia Therapy. Journal of Food Science, v. 75, n. 6, p. 330–338, 2010.

LIMA, B. L. B. et al. HPAM-g-PE PP  : R eological odi fi ers in aqueous edia of high temperature and high ionic strength. Jornal applied polymer Science, v. 47453, n. 12, p. 1–10, 2019.

LIU, H. et al. Preparation and characterization of glycerol plasticized ( high-amylose ) starch – chitosan films. Journal of Food Engineering, v. 116, n. 2, p. 588–597, 2013. LU, Y.; TIGHZERT, L. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydrate Polymers, v. 61, p. 174–182, 2005.

MA, Q. et al. Theoretical studies of hydrolysis and stability of polyacrylamide polymers. Polymer Degradation and Stability, v. 121, p. 69–77, 2015.

MADSEN, M. H.; CHRISTENSEN, D. H.; DENMARK, T. Changes in Viscosity Properties os potato starch During Growth. Starch - Stärke, v. 48, n. 7, p. 245–249, 1996.

MALGARESI, G. V. C. et al. A new crude-glycerin-based drilling fl uid. Journal of

Petroleum Science and Engineering, v. 160, n. March 2017, p. 401–411, 2018.

MARQUES, N. DO N. et al. Turning Industrial Waste into a Valuable Bioproduct: Starch from Mango Kernel Derivative to Oil Industry Mango Starch Derivative in Oil Industry. Journal of Renewable Materials, v. 7, n. 2, p. 139–152, 2019.

MENDES, J. F. et al. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, v. 137, p. 452–458, 2016.

MENZEL, C. et al. Improved material properties of solution-cas s arc fil s : Effec of varying amylopectin structure and amylose content of starch from genetically modified potatoes. Carbohydrate Polymers, v. 130, p. 388–397, 2015.

MULJANA, H. et al. Synthesis of fatty acid starch esters in supercritical carbon dioxide. Carbohydrate Polymers, v. 82, n. 2, p. 346–354, 2010a.

MULJ N H e al Green s arc con ersions : S udies on s arc ace yla ion in densified CO 2. Carbohydrate Polymers, v. 82, n. 3, p. 653–662, 2010b.

NAMAZI, H.; DADKHAH, A. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydrate Polymers, v. 79, n. 3, p. 731–737, 2010.

NAMAZI, H.; FATHI, F.; DADKHAH, A. Sharif University of Technology Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Scientia Iranica, v. 18, n. 3, p. 439–445, 2011.

NISA, I. et al. Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. Jornal Food Science Technology, v. 52, n. November, p. 7245–7253, 2015.

OLIVEIRA, A. V. et al. Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. Starch - Stärke, v. 70, n. 11–12, p. 1800028, nov. 2018.

PAN, J. et al. Industrial Crops & Products Bioactive phenolics from mango leaves ( Mangifera indica L .). Industrial Crops & Products, v. 111, n. November 2017, p. 400–406, 2018.

PARKER, R.; RING, S. G. Aspects of the Physical Chemistry of Starch. Journal of

Cereal Science, v. 34, p. 1–17, 2001.

PÉREZ, S. E; BERTOFT, E. The molecular structures of starch components and their con ribu ion o e arc i ec ure of s arc granules : co pre ensi e re iew Starch -

Stärke, v. 62, p. 389–420, 2010.

PICCHIONI, F.; JANSSEN, L. P. B. M.; HEERES, H. J. Experimental and Modeling Studies on the. v. 61, p. 69–80, 2009.

RODRIGUES, D. C. et al. Emulsion films from tamarind kernel xyloglucan and sesame seed oil by different emulsification techniques. Food Hydrocolloids, v. 77, p. 270–276, 1 abr. 2018.

ROSSI, L. F. DOS S.; GUIMARÃES, I. B. Estudo dos constituintes dos fluidos de perfuraç o : propos a de u a for ulaç o o i izada e a bien al en e corre a p 1–8, 2007.

SHAH, U. et al. FOOD SCIENCE & TECHNOLOGY | REVIEW ARTICLE A review of the recent advances in starch as active and nanocomposite packaging films. Cogent

Food & Agriculture, v. 5, n. 1, p. 1–9, 2015.

SHIRSATH, N. et al. Biocomposite formation using β ‑ cyclode trin as a biomaterial in poly (acrylamide‑co‑acrylic acid): preparation , characterization , and salinity profile.

Iranian Polymer Journal, v. 27, n. 4, p. 217–224, 2018.

SILVA, A. P. M. et al. Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, v. 211, n. November 2018, p. 209– 216, 2019.

SINGH, N. et al. Morphological , thermal and rheological properties of starches from different botanical sources. Food Chemistry, v. 81, p. 219–231, 2003.

SLAVUTSKY, A. M.; BERTUZZI, M. A. LWT - Food Science and Technology Formulation and characterization of nanolaminated starch based fi lm. LWT - Food

Science and Technology, v. 61, n. 2, p. 407–413, 2015.

SMITH, A. M. et al. The Biosynthesis of Starch Granules. p. 335–341, 2001.

SUGIH, A. K. Chapter 4 Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants. In: Synthesis and properties of starch based

biomaterials. [s.l: s.n.]. p. 68–84.

TAJEDDIN, B.; RAHMAN, R. A.; ABDULAH, L. C. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.

International Journal of Biological Macromolecules, v. 47, n. 2, p. 292–297, 2010.

TESTER, R. F.; KARKALAS, J.; QI, X. Starch — composition , fine structure and architecture. Journal of Cereal Science, v. 39, p. 151–165, 2004.

THAKUR, R. et al. Effect of starch physiology , gelatinization , and retrogradation on the attributes of rice starch- i -carrageenan film. Starch/Stärke, v. 70, n. 6, p. 1–10, 2018.

TUPA, M. et al. Simple organocatalytic route for the synthesis of starch esters.

Carbohydrate Polymers, v. 98, n. 1, p. 349–357, 2013.

VANDEPUTTE, G. E.; DELCOUR, J. A. From sucrose to starch granule to starch p ysical be a iour : a focus on rice s arc . Carbohydrate Polymers, v. 58, p. 245–266, 2004.

VI TÓRI M ; GR SSM NN E ; Y M SHIT F Fil es de a ido : produç o propriedades e po encial de u ilizaç o S arc fil s : produc ion proper ies and potential of utilization. p. 137–156, [s.d.].

VIERA, P. A. FONTES et al. Caracterização química do resíduo do processamento agroindustrial da manga. Revista Brasileira de Tecnologia Agroindustrial, V.6, p. 617–623, 2009.

WINKLER, H.; VORWERG, W.; WETZEL, H. Synthesis and properties of fatty acid starch esters. Carbohydrate Polymers, v. 98, n. 1, p. 208–216, 2013.

XIE, W.; WANG, Y. Synthesis of high fatty acid starch esters with 1-butyl- 3- methylimidazolium chloride as a reaction medium. Starch/Stärke, V. 63, p. 190–197, 2011.

ZHANG, Z. et al. Chemical modification of starch and the application of expanded starch and its esters in hot melt adhesive. RSCAdvances, V.4, p. 1-10, 2014.

Documentos relacionados