• Nenhum resultado encontrado

O gene TCP5 se expressa em tecidos vegetativos, como folhas, mas também em tecidos florais, preferencialmente na região apical do meristema floral e dos primórdios dos órgãos florais. Este mesmo padrão de expressão foi observado em outros estudos com TCPs de classe II, e possivelmente reflete o papel destes genes na regulação negativa da divisão celular e consequente entrada no processo de diferenciação/expansão celular, já que os órgãos de plantas maturam no sentido distal-proximal.

A comparação de plantas transgênicas superexpressando TCP5 na epiderme (construção pATML1:TCP5) ou com níveis reduzidos de TCP5 (35S:miR-3TCP e mutante

52

simples tcp5) revelaram possíveis papéis biológicos para TCP5 no desenvolvimento dos órgãos florais. A supressão de TCP5, juntamente com TCP13 e TCP17, causou aumento nos tamanhos dos órgãos florais. Este aumento no tamanho pode ser devido a uma maior taxa de proliferação celular nestas plantas, como observado em pétalas neste estudo. A superexpressão de TCP5 na epiderme modificou a forma e o tamanho das pétalas, e a forma dos pistilos. As pétalas são mais compridas do que as do tipo selvagem, o que pode ser resultado de uma maior expansão das células que as compõem, uma vez que as células da epiderme adaxial são maiores. Observou-se ainda más-formações nos pistilos e germinação ectópica de grãos de pólen, o que pode afetar a fertilidade destas plantas. Juntos, os resultados corroboram a hipótese de que o gene TCP5 atua no desenvolvimento de órgãos florais da mesma maneira que outros CIN-TCPs: regulando negativamente a proliferação celular e aumentando a expansão celular.

53

REFERÊNCIAS

Abràmoff MD, Hospitals I, Magalhães PJ, Abràmoff M. 2004. Image Processing with ImageJ. Biophotonics Int. 11:36–42.

Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 19:458–472.

An R, Liu X, Wang R, Wu H, Liang S, Shao J, Qi Y, An L, Yu F. 2014. The over- expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS One. 9:1–12.

Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster GTS, Inzé D. 2012. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell. 22:64–78.

Bai Y, Falk S, Schnittger A, Jakoby MJ, Hülskamp M. 2010. Tissue layer specific regulation of leaf length and width in Arabidopsis as revealed by the cell autonomous action of ANGUSTIFOLIA. Plant J. 61:191–9.

Barkoulas M, Galinha C, Grigg SP, Tsiantis M. 2007. From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol. 10:660–6.

Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C. 2011. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci U S A. 108:3424–3429.

Chen K, Rajewsky N. 2007. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 8:93–103.

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature. 353:31–37.

Crawford BCW, Nath U, Carpenter R, Coen ES. 2004. CINCINNATA Controls Both Cell Differentiation and Growth in Petal Lobes and Leaves of Antirrhinum. Plant Physiol. 135:244–253.

Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18:215–222.

Cubas P. 2002. Role of TCP genes in the evolution of morphological characters in angiosperms. In: Dev Genet Plant Evol. p. 247–266.

Cubas P. 2004. Floral zygomorphy, the recurring evolution of a successful trait. Bioessays. 26:1175–84.

54

Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature. 386:485–488.

Efroni I, Blum E, Goldshmidt A, Eshed Y. 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell. 20:2293–2306.

Efroni I, Han S-K, Kim HJ, Wu M-F, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D. 2013. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev Cell. 24:438–45.

Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar a H, Murcha M, Whelan J. 2010. TCP transcription factors link the regulation of genes encoding

mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell. 22:3921–34.

Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M, Tasaka M. 2006.

Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell. 18:2946–57.

Hobert O. 2008. Gene Regulation by Transcription Factors and MicroRNAs. Science. 319:1785–1787.

Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A. 103:9101–6. Jones-Rhoades MW, Bartel DP, Bartel B. 2006. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol. 57:19–53.

Kieffer M, Master V, Waites R, Davies B. 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 68:147–58.

Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 11:353–7.

Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W. 1998. Genetic Control of Flowering Time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol. 49:345–370. Koornneef M, Scheres B. 2001. Arabidopsis thaliana as an Experimental Organism. Encycl Life Sci.:1–6.

Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell. 9:1607–19.

Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. 30:337–348.

55

Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell. 19:473–84.

Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell. 22:3574–3588. Koyama T, Ohme-Takagi M, Sato F. 2011. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana. Plant Signal Behav. 6:697–699.

Li C, Gutie RA, Doerner P, Potuschak T. 2005. Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci U S A. 102:12978–12983. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E, Antirrhinum W. 1999. Control of Organ Asymmetry in Flowers of Antirrhinum. Cell. 99:367–376.

Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends Plant Sci. 15:31–9.

Meinke DW. 1998. Arabidopsis thaliana: A Model Plant for Genome Analysis. Science. 282:662–682.

Nath U, Crawford BCW, Carpenter R, Coen E. 2003. Genetic control of surface curvature. Science. 299:1404–7.

Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, et al. 2007. Regulation of LANCEOLATE by miR319 is required for

compound-leaf development in tomato. Nat Genet. 39:787–91.

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature. 425:257–263.

Rohlf FJ, Marcus LF. 1993. A revolution in morphometrics. Trends Ecol Evol. 8:129–132. Rozen S, Skaletsky H. 2000. Primer3 on the WWW for General Users and for Biologist Programmers. Methods Mol Biol. 132:365–386.

Rubio-Somoza I, Weigel D. 2013. Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet. 9:1-10.

Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. 2010. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell. 22:2113–30.

56

Sarvepalli K, Nath U. 2011. Hyper-activation of the TCP4 transcription factor in

Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 67:595–607. Savaldi-Goldstein S, Chory J. 2008. Growth coordination and the shoot epidermis. Curr Opin Plant Biol. 11:42–8.

Savaldi-Goldstein S, Peto C, Chory J. 2007. The epidermis both drives and restricts plant shoot growth. Nature. 446:199–202.

Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF. 2014. Repression of Cell Proliferation by miR319-Regulated TCP4. Mol Plant. 7:1533–1544.

Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 6:1991–2001.

Scott MP, Driesch H, Hertwig O, Roux W, Spemann H, Sutton W, Weismann A. 2000. Development: The Natural History of Genes. Cell. 100:27–40.

Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N. 2011. Dynamic growth program

regulated by LANCEOLATE enables flexible leaf patterning. Development. 138:695–704. Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early Flower Development in

Arabidopsis. Plant Cell. 2:755–767.

Strauss RE. 2010. Discriminating Groups of Organisms. In: Elewa AMT, editor.

Morphometrics for Nonmorphometricians. Vol. 124. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 73–91.

Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM. 2006. Genome- Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genet. 2:1012–1024.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson G V, Provart NJ. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2:1–12.

Yanai O, Shani E, Russ D, Ori N. 2011. Gibberellin partly mediates LANCEOLATE activity in tomato. Plant J. 68:571–82.

Documentos relacionados