• Nenhum resultado encontrado

O presente estudo foi o primeiro a avaliar os efeitos do exercício resistido sobre a reatividade vascular desencadeada pela insulina em artérias mesentéricas superiores de ratos. Uma sessão de exercício resistido aumentou os relaxamentos via IR/PI3K/NOS. Este aumento, se devem em parte a uma maior produção de NO, associado a um aumento da participação dos canais para K+ e da Na+/K+-ATPase. Além disso, foi observado um discreto aumento da via IR/MAPK/ET-1, entretanto sem promover prejuízos no relaxamento destes animais induzidos pela insulina. Conjuntamente, estes resultados demostram que o exercício resistido agudo é capaz de promover ajustes vasculares importantes que atuam diretamente no favorecimento do melhor controledo tônus vascular.

REFERÊNCIAS

American College of Sports Medicine (ACSM). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults Medicine & Science in Sports & Exercise,41(3): 687-708, 2009.

ARAÚJO, A.J.; SANTOS, A.C.; SOUZA, K.D.; AIRES, M.B.; SANTANA-FILHO, V.J.; FIORETTO, E.T.; MOTA, M.M.; SANTOS, M.R. Resistance training controls arterial blood pressure in rats with L-NAME- induced hypertension. Arquivos Brasileiros de Cardiologia (In Press) 2013.

ARTERO, E.G.; LEE, D.; RUIZ, J.R.; SUI, X.; ORTEGA, F.B.; CHURCH, T.S.; LAVIE, C.J.; CASTILLO, M.J.; BLAIR, S.N. A Prospective Study of Muscular Strength and All-Cause Mortality in Men with Hypertension. Journal American College of Cardiology, 57(18): 1831-7, 2011.

AUGHEY, R.J.; MURPHY, K.T.; CLARK, S.A.; GARNHAM, A.P.; SNOW, R.J.; CAMERON-SMITH, D.; HAWLEY, J.A.; MCKENNA, M.J. Muscle Na+-K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. Journal of Applied Physiology, 103(1): 39-47, 2007.

BARAUNA, VG.; BATISTA, M.L.JR.; COSTA ROSA, L.F.; CASARINI, D.E.; KRIEGER, J.E.; OLIVEIRA, E.M. Cardiovascular adaptations in rats submitted to a resistance-training model. Clinical and Experimental Pharmacology and Physiology, 32(4): 249-54, 2005.

BARAUNA, V.G.; ROSA, K.T.; IRIGOYEN, M.C.; OLIVEIRA, E.M. Effects of Resistance Training on Ventricular Function and Hypertrophy in a Rat Model. Clinical Medicine & Research, 5(2): 114-120, 2007.

BARBOSA, V.A.; LUCIANO, T.F.; MARQUES, S.O.; VITTO, M.F.; SOUZA, D.R.; SILVA, L.A.; SANTOS, J.P.; MOREIRA, J.C.; DAL-PIZZOL, F.; LIRA, F.S.; PINHO, R.A.; DE SOUZA, C.T. Acute exercise induce endothelial nitric oxide synthase phosphorylation via Akt and AMP-activated protein kinase in aorta of rats: Role of reactive oxygen species. International Journal of Cardiology (In Press) 2012.

BAUER, V.; SOTNÍKOVÁ, R. Nitric oxide--the endothelium-derived relaxing factor and its role in endothelial functions. General Physiology and Biophysics, 29(4): 319- 40, 2010.

BECHARA, L.R.G.; TANAKA, L.Y.; RAMIRES, P.R. Endotélio e exercício físico. In: NEGRÃO C.E.; BARRETTO A.C.P. Cardiologia do Exercício: Do Atleta ao Cardiopata. Barueri-SP: Editora Manole. 3ª Ed. 382-399, 2010.

BOLOTINA, V.M.; NAJIBI, S.; PALACINO, J.J.; PAGANO, P.J.; COHEN, R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 368(6474):850-3, 1994.

BOO, Y.C.; SORESCU, G.; BOYD, N.; SHIOJIMA, I.; WALSH, K.; DU, J.; JO, H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179

by Akt-independent mechanisms: role of protein kinase A. Journal of Biological Chemistry, 277(5): 3388-96, 2002.

BRAITH, R.W.; STEWART, K.J. Resistance Exercise Training Its Role in the Prevention of Cardiovascular Disease. Circulation, 113(22): 2642-2650, 2006.

BRUM, P.C.; FORJAZ, C.L.M.; TINUCCI, T.; NEGRÃO, C.E. Adaptações agudas e crônicas do exercício físico no sistema cardiovascular. Revista Paulista de Educação Física, 18(1): 21-31, 2004.

CARDILLO, C.; KILCOYNE, C.M.; CANNON, R.O.; PANZA, J.A. Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension, 35(6): 1237-41, 2000.

CARNETHON, M.R. Physical activity and cardiovascular disease: how much is enough? American Journal of Lifestyle Medicine, 3(1): 44S-49S, 2009.

CARVALHO, M.H.C.; NIGRO, D.; LEMOS, V.S.; TOSTES, R.C.A.; FORTES, Z.B. Hipertensão arterial: o endotélio e suas múltiplas funções. Revista Brasileira de Hipertensão, 8(1): 76-88, 2001.

CARVALHO, R.T.; VIEIRA, M.L.C.; ROMANO, A.; KOPEL, L.; LAGE, S.G. Exercício Resistido na Avaliação da Disfunção Endotelial na Insuficiência Cardíaca. Arquivos Brasileiros de Cardiologia, 86(6): 459-465, 2005.

CARVALHO, T.; NÓBREGA, A.C.L.; LAZZOLI, J.K.; MAGNI, J.R.T.; REZENDE, L.; DRUMMOND, F.A.; OLIVEIRA, M.A.B.; DE ROSE, E.H.; ARAÚJO, C.G.S.; TEIXEIRA, J.A.C. Posição oficial da Sociedade Brasileira de Medicina do Esporte: atividade física e saúde. Revista Brasileira de Medicina do Esporte, 2(4): 79-81, 1996.

CERSOSIMO, E.; DEFRONZO, R.A. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes/Metabolism Research and Reviews, 22(6):423-36, 2006.

CHEN, K.H.; CHEN, S.J.; WU, C.C. Regulation of Na+-K+-AtPase in rat aortas: pharmacological and functional evidence. Chinese Journal of Physiology, 48(2): 86- 92, 2005.

CLELAND, S.J.; PETRIE, J.R.; UEDA, S.; ELLIOTT, H.L.; CONNELL, J.M. Insulin as a vascular hormone: implications for the pathophysiology of cardiovascular disease. Clinical and Experimental Pharmacology and Physiology. 25: 175–184, 1998. COLE, W.C.; MCPHERSON, C.D.; SONTAG, D. ATP regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circulation Research, 69(3): 571-581, 1991.

DA SILVA, C.A.; RIBEIRO, J.P.; CANTO, J.C.; DA SILVA, R.E.; SILVA Jr, G.B.; BOTURA, E.; MALSCHITZKY, M.A. High-intensity aerobic training improves endothelium-dependent vasodilation in patients with metabolic syndrome and

type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 95(2): 237-45, 2012.

DOS SANTOS, L.; XAVIER, F.E.; VASSALLO, D.V.; ROSSONI, L.V. Cyclooxygenase pathway is involved in the vascular reactivity and inhibition of the Na+, K+-ATPase activity in the tail artery from L-NAME-treated rats. Life Science, 74(5): 613-27, 2003.

DUDZINSKI, D.M.; MICHEL, T. Life history of eNOS: partners and pathways. Cardiovascular Research, 75(2): 247-60, 2007.

FARIA, T.O.; TARGUETA, G.P.; ANGELI, J.K.; ALMEIDA, E.A.S.; STEFANON, I.; VASSALLO, D.V.; LIZARDO, J.H.F. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rat. European Journal of Applied Physiology, 110(2): 359-366, 2010.

FÉLÉTOU, M.; VANHOUTTE, P.M. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Acta Pharmacologica Sinica, 21(1):1-18, 2000.

FERRI, C.; PITTONI, V.; PICCOLI, A.; LAURENTI, O.; CASSONE, M.R.; BELLINI, C.; PROPERZI, G.; VALESINI, G.; DEMATTIA, G.; SANTUCCI, A. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. Journal of Clinical Endocrinology & Metabolism, 80:829 – 835, 1995.

FITZGERALD, S.J.; BARLOW, C.E.; KAMPERT, J.B.; MORROW, J.R.; JACKSON, A.W.; BLAIR, S.N. Muscular Fitness and All-Cause Mortality: Prospective Observations. Journal of Physical Activity and Health, 1(1): 7-18, 2004.

FLECK, S.J; KRAEMER, W.J. Fundamentos do Treinamento de Força Muscular, ArtMed, 3° Ed., 2007. 375p.

FLEMING, I.; BUSSE, R. Signal transduction of eNOS activation. Cardiovascular Research, 43(3): 532-41, 1999.

FORJAZ, C.L.M.; REZK, C.C.; CARDOSO JR, C.G,; TINUCCI, T. Sistema Cardiovascular e Exercício Resistidos In: NEGRÃO C.E.; BARRETTO A.C.P. Cardiologia do Exercício: Do Atleta ao Cardiopata. Barueri-SP: Editora Manole. 3ª Ed. 382-399, 2010.

FRASER, S.F.; LI, J.L.; CAREY, M.F.; WANG, X.N.; SANGKABUTRA, T.; SOSTARIC, S.; SELIG, S.E.; KJELDSEN, K.; MCKENNA, M.J. Fadiga deprime máxima no músculo esquelético vitro Na + -K + -ATPase atividade em indivíduos não treinados e treinados. J Appl Physiol 93 : 1650 -1659, 2002 .

FURCHGOTT, R.F; ZAWADZKI, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789): 373-176, 1980.

FURCHGOTT, R.F.; VANHOUTTE, P.M. Endothelium-derived relaxing and contracting factors. Journal of Federation of American Societies for Experimental

Biology, 3(9): 2007-18, 1989.

GALLEY, H.F.; WEBSTER, N.R. Physiology of the endothelium. British Journal of Anaesthesia, 93(1): 105-13, 2004.

GHAFOURI, S.; HAJIZADEH, S.; MANI, A.R. Enhancement of insulin-induced cutaneous vasorelaxation by exercise in rats: A role for nitric oxide and KCa2+ channels. European Journal of Pharmacology, 652(1-3): 89-95, 2011.

GOLUB, M.S.; CHANG, C.T.; TUCK, M.L.; BERGER, M.E. Evidence for increased functional vascular Na+/K+ pump activity in the obese Zucker rat. Hypertension Research, 21(4):283-8, 1998.

GREEN, D.J.; WALSH, J.H.; MAIORANA, A.; BEST, M.J.; TAYLOR, R.R.; O'DRISCOLL, J.G. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. American Journal of Physiology - Heart and Circulatory Physiology, 285(1): H2679-H2687, 2003.

GREEN, D.J.; SPENCE, A.; HALLIWILL, J.R.; CABLE, N.T.; THIJSSEN, D.H. Exercise and vascular adaptation in asymptomatic humans. Experimental Physiology, 96(2): 57-70, 2011.

GÜZEL, N.A.; HAZAR, N.; ERBAS, D. Effects of different resistance exercise protocols on nitric oxide, lipid peroxidation and creatine kinase activity in sedentary males. Journal of Sports Science and Medicine, 6(1): 417-422, 2007.

HAMBRECHT, R.; ADAMS, V.; ERBS, S.; LINKE, A.; KRANKEL, N.; SHU, Y.; BAITHER, Y.; GIELEN, S.; THIELE, H.; GUMMERT, J.F.; MOHR, F.W.; SCHULER, G. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation, 107(25): 3152-3158, 2003.

HAMBRECHT, R.; FIEHN, E.; WEIGL, C.; GIELEN, S.; HAMANN, C.; KAISER, R.; YU, J.; ADAMS, V.; NIEBAUER, J.; SCHULER, G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation, 98(24): 2709-2715, 1998.

HARRIS, M.B.; SLACK, K.N.; PRESTOSA, D.T.; HRYVNIAK, D.J. Resistance training improves femoral artery endothelial dysfunction in aged rats. European Journal of Applied Physiology, 108(3): 533-40, 2010.

HASKELL, W. L.; LEE, I.M.; PATE, R.R.; POWELL, K.E.; BLAIR, S.N.; FRANKLIN, B.A.; MACERA, C.A.; HEATH, G.W.; THOMPSON, P.D.; BAUMAN, A. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sports and Exercise, 39(8): 1423-1434, 2007.

HEFFERNAN, K.S.; YOON, E.S.; SHARMAN, J.E.; DAVIES, J.E.; SHIH, Y.T.; CHEN, C.H.; FERNHALL, B.; JAE, S.Y. Resistance exercise training reduces arterial reservoir pressure in older adults with prehypertension and hypertension. Hypertens Res, (in press) 2012.

HENRIKSEN, E.J. Invited review: Effects of acute exercise and exercise training on insulin resistance. Journal of Applied Physiology, 93(2): 788-96, 2002.

IIDA, S.; TAGUCHI, H.; WATANABE, N.; KUSHIRO, T.; KANMATSUSE, K. Insulin-induced relaxation of rat mesenteric artery is mediated by Ca(2+)-activated K(+) channels. European Journal of Pharmacology. 411(1-2): 155-160, 2001.

JENKINS, N.T.; MARTIN, J.S.; LAUGHLIN, M.H.; PADILLA, J. Exercise-induced Signals for Vascular Endothelial Adaptations: Implications for Cardiovascular Disease. Current Cardiovascular Risk Reports, 6(4): 331-346, 2012.

JIANG, Z.Y.; HE, Z.; KING, B.L.; KUROKI, T.; OPLAND, D.M.; SUZUMA, K.; SUZUMA, I.; UEKI, K.; KULKARNI, R.N.; KAHN, C.R.; KING, G.L. Characterization of multiple signaling pathways of insulin in the regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. Journal of Biological Chemistry, 278(34):31964-71, 2003.

KO, E.A.; HAN, J.; JUNG, I.D.; PARK, W.S. Physiological roles of K+ channels in vascular smooth muscle cells. Journal of Smooth Muscle Research, 44(2):65-81, 2008.

KRISAN, A.D.; COLLINS, D.E.; CRAIN, A.M.; KWONG, C.C.; SINGH, M.K.; BERNARD, J.R.; YASPELKIS, B.B. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. Journal of Applied Physiology, 96(5): 1691-700, 2004.

KUBOKI, K.; JIANG, Z.Y.; TAKAHARA, N.; HA, S.W.; IGARASHI, M.; YAMAUCHI, T.; FEENER, E.P.; HERBERT, T.P.; RHODES, C.J.; KING, G.L. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation, 101(6): 676-81, 2000.

LEVINE, A.B.; PUNIHAOLE, D.; LEVINE, T.B. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology, 122(1): 55-68, 2012.

LEWIS, T.V.; DART, A.M.; CHIN-DUSTING, J.P.; KINGWELL, B.A. Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(11): 2782-2787, 1999.

LI, J.; SIEGRIST, J. Physical activity and risk of cardiovascular disease--a meta- analysis of prospective cohort studies. International Journal of Environmental Research and Public Health, 9(2): 391-407, 2012.

LIZARDO, J.H.; SILVEIRA, E.A.; VASSALLO, D.V.; OLIVEIRA, E.M. Post- resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide. Clinical and Experimental Pharmacology and Physiology, 35(7): 782-7, 2008. LOWE, D.A.; ALWAYS, S.E. Animal models for inducing muscle hypertrophy: are they relevant for clinical applications in humans? Journal of Orthopaedic & Sports Physical Therapy, 32(2):36-43, 2002.

MAARBJERG, S.J.; SYLOW, L.; RICHTER, E.A. Current understanding of increased insulin sensitivity after exercise - emerging candidates. Acta Physiologica, 202(3): 323- 35, 2011.

MAEDA, S. ;MIYAUCHI, T. ; GOTO, K. ; MATSUDA, M. Alteration of plasma endothelin-1 by exercise at intensities lower and higher than ventilatory threshold. Journal of Applied Physiology, 77(3):1399-402, 1994.

MAEDA, S. ; MIYAUCHI, T. ; IEMITSU, M. ; TANABE, T. ; IRUKAYAMA- TOMOBE, Y. ; GOTO, K. ; YAMAGUCHI, I. ; MATSUDA, M . Involvement of endogenous endothelin-1 in exercise-induced redistribution of tissue blood flow: an endothelin receptor antagonist reduces the redistribution. Circulation,106(17):2188-93, 2001.

MATHER, K.; ANDERSON, T.J.; VERMA, S. Insulin Action in the Vasculature: Physiology and Pathophysiology. Journal of Vascular Research, 38(5): 415-22, 2001. MATHER, K.J.; STEINBERG, H.O.; BARON, A.D. Insulin resistance in the vasculature. Journal of Clinical Investigation,123(3): 1003-4, 2013.

MCCOMMIS, K.S.; MCGEE, A.M.; LAUGHLIN, M.H.; BOWLES, D.K.; BAINES, C.P.. Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 301(5): R1250-R1258, 2011.

MCKAY, M.K.; HESTER, R.L. Role of nitric oxide, Adenosine, and ATP- sensitive potassium channels in insulin induced vasodilation. Hypertension, 28(2): 202-208, 1996.

MERKUS, D.; SOROP, O.; HOUWELING, B.; HOOGTEIJLING, B.A.; DUNCKER, D.J. KCa+ channels contribute to exercise-induced coronary vasodilation in swine.

American Journal of Physiology- Heart and Circulatory Physiology, 291(5):H2090- 7, 2006.

METKUS, T.S.JR.; BAUGHMAN, K.L.; THOMPSON, P.D. Exercise prescription and primary prevention of cardiovascular disease. Circulation. 121(23): 2601-4, 2010. MONTAGNANI, M.; CHEN, H.; BARR, V.A.; QUON, M.J. Insulin-stimulated Activation of eNOS Is Independent of Ca2+ but Requires Phosphorylation by Akt at Ser1179. The Journal of Biological Chemistry, 276(32): 30392-30398, 2001.

MONTEIRO, W.D. Aspectos fisiológicos e metodológicos do condicionamento físico na promoção da saúde. Revista Brasileira de Atividade Física e Saúde, 1(3): 44-58, 1996.

MÜLSCH, A.; BASSENGE, E.; BUSSE, R. Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn-Schmiedeberg's Archives of Pharmacology, 340(6 Pt 2):767-70, 1989. MUNIYAPPA, R.; IANTORNO, M.; QUON, M.J. An integrated view of insulin resistance and endothelial dysfunction. Endocrinology and Metabolism Clinics of North America, 37(3):685-711, 2008.

MUNIYAPPA, R.; MONTAGNANI, M.; KOH, K.K.; QUON, M.J. Cardiovascular Actions of Insulin. Endocrine Reviews, 28(5):463– 491, 2007.

MUNIYAPPA, R.; QUON, M.J. Insulin action and insulin resistance in vascular endothelium. Current Opinion in Clinical Nutrition and Metabolic Care, 10(4): 523-30, 2007.

MUNIYAPPA, R.; SOWERS, J.R. Role of insulin resistance in endothelial dysfunction. Reviews in Endocrine and Metabolic Disorders. 14(1): 5-12, 2013.

MYERS, J. Exercise and cardiovascular health. Circulation. 107(5): 1-4, 2003.

NEGRÃO, C.E.; SANTOS, A.C. ALVES, M.J.N.N. Exercício físico e endotélio. In: LUZ, P.L.; LAURINDO, F.R.M.; CHAGAS, A.C.P. Endotélio e doenças cardiovasculares. São Paulo-SP: Editora Atheneu. 161-171, 2005.

NELSON, M.E.; REJESKI, W.J.; BLAIR, S.N.; DUNCAN, P.W.; JUDGE, J.O.; KING, A.C.; MACERA, C.A.; CASTANEDA-SCEPPA, C. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise, 39(8): 1435- 1445, 2007.

NOBREGA, A.C.L. The subacute effects of exercise: Concept, characteristics, and clinical implications. Exercise and Sport Sciences Reviews, 33(2): 84 – 87, 2005. PAGÁN, R.M.; PRIETO, D.; HERNÁNDEZ, M.; CORREA, C.; GARCÍA- SACRISTÁN, A.; BENEDITO, S.; MARTÍNEZ, A.C. Regulation of NO-dependent acetylcholine relaxation by K+ channels and the Na+-K+ATPase pump in porcine internal mammary artery. European Journal of Pharmacology, 641(1): 61-6, 2010. PADILLA, J.; SIMMONS, J.H.; BENDER, S.B.; ARCE-ESQUIVEL, A.A.; WHYTE, J.J.; LAUGHLIN, M.H. Vascular Effects of Exercise: Endothelial Adaptations Beyond Active Muscle Beds. Physiology, 26(3): 132-145, 2011.

PINTER, R.C.C.E.; PADILHA, A.S.; OLIVEIRA, E.M.; VASSALLO, D.M.; LIZARDO, J.H.F. Cardiovascular adaptive responses in rats submitted to moderate resistance training. European Journal of Applied Physiology, 103(5): 605-613, 2008.

POLLOCK, M.L.; FRANKLIN, B.A.; BALADY, G.J.; CHAITMAN, B.L.; FLEG, J.L.; FLETCHER, B.; LIMACHER, M.; PIÑA, I.L.; STEIN, R.A.; WILLIAMS. M.; BAZZARRE. T. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the committee on exercise, rehabilitation, and prevention, council on clinical cardiology, American Heart Association. Circulation, 101(7): 828-33, 2000.

RAKOBOWCHUK, M.; MCGOWAN, C.L.; DE GROOT, P.C.; BRUINSMA, D.; HARTMAN, J.W.; PHILLIPS, S.M.; MACDONALD, M.J. Effect of whole body resistance training on arterial compliance in young men. Experimental Physiology, 90(4): 645-51, 2005.

RASMUSSEN, M.K.; JUEL, C.; NORDSBORG, N.B. Exercise-induced regulation of muscular Na+-K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 300(5):R1209-20, 2011.

RATTMANN, Y.D. Mecanismos endoteliais envolvidos nos efeitos vasculares da

dicksonia sellowiana (presl.) hook. Curitiba: Universidade Federal do Paraná, Curitiba:

2009. 125. Tese de Doutorado apresentada ao Programa de Pós-Graduação em Farmacologia, Curitiba: 2009.

REN, J.; SAMSON, W.K.; SOWERS, J.R. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. Journal of molecular and Cellular Cardiology. 31(11):2049-61, 1993.

ROSSONI, L.V.; SALAICES, M.; MARÍN, J.; VASSALLO, D.V.; ALONSO, M.J. Alterations in phenylephrine-induced contractions and the vascular expression of Na+,K+-ATPase in ouabain-induced hypertension. British Journal of Pharmacology, 135(3):771-81, 2002.

SALT, I.P. Examining the role of insulin in the regulation of cardiovascular health. Future Cardiology, 9(1): 39-52, 2013.

SELIGMAN, B.G.; POLANCZYK, C.A.; SANTOS, A.S.; FOPPA, M.; JUNGES, M.; BONZANINI, L.; NICOLAIDIS, G.; CAMEY, S.; LOPES, A.L.; SEHL, P.; DUNCAN, B.B.; CLAUSELL, N. Intensive practical lifestyle intervention improves endothelial function in metabolic syndrome independent of weight loss: a randomized controlled trial. Metabolism, 60(12): 1736-40, 2011.

SILVA, A.S.; ZANESCO, A. Exercício físico, receptores ß-adrenérgicos e resposta vascular. Jornal Vascular Brasileiro, 9(2): 47-56, 2010.

SHI, L.; LIU, B.; LI, N.; XUE, Z.; LIU, X. Aerobic exercise increases BKCa channel contribution to regulation of mesenteric arterial tone by upregulating β1-subunit.

Experimental Physiology, 98(1): 326-36, 2013.

SWEENEY, G.; KLIP, A. Regulation of the Na+/K+-ATPase by insulin: why and how? Molecular and Cellular Biochemistry, 182(1-2):121-33, 1998.

TACK, C.J.; LUTTERMAN, J.A.; VERVOORT, G.; THIEN, T.; SMITS, P. Activation of the sodium-potassium pump contributes to insulin-induced vasodilation in humans. Hypertension. 28(3):426-32, 1996.

TADDEI, S. ; VIRDIS, A. ; MATTEI, P. ; NATALI, A. ; FERRANNINI, E. ; SALVETTI, A. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation, 92: 2911-2918, 1995. TAMAKI, T.; UCHIYAMA, S.; NAKANO, S. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Medicine & Science in Sports & Exercise, 24(8):881-6, 1992.

THOMPSON, P. D., S. F. CROUSE, B. GOODPASTER, D. KELLEY, N. MOYNA, and L. PESCATELLO. The acute versus the chronic response to exercise. Medicine and Science in Sports and Exercise, 33(6): S438-S445, 2001.

TJØNNA, A.E.; ROGNMO, Ø.; BYE, A.; STØLEN, T.O.; WISLØFF, U. Time course of endothelial adaptation after acute and chronic exercise in patients with metabolic syndrome. The Journal of Strength & Conditioning Research, 25(9): 2552-8, 2011. VAN HINSBERGH, V.W. The endothelium: vascular control of haemostasis. European journal of obstetrics and gynecology and reproductive biology, 95(2): 198-201, 2001. VINCENT, M.A.; MONTAGNANI, M.; QUON, M.J. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Current Diabetes Reports, 3(4): 279-88, 2003.

ZANESCO, A.; ANTUNES, E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacology & Therapeutics, 114(3): 307- 17, 2007.

ZECCHIN, H.G.; PRIVIERO, F.B.M.; SOUZA, C.T.; ZECCHIN, K.G.; PRADA, P.O.; CARVALHEIRA, J.B.C.; VELLOSO, L.A.; ANTUNES, E.; SAAD, M.J.A. Defective Insulin and Acetylcholine Induction of Endothelial Cell–Nitric Oxide Synthase Through Insulin Receptor Substrate/Akt Signaling Pathway in Aorta of Obese Rats. Diabetes, 56(4): 1014 -1024, 2007

ZHANG, Q.J.; MCMILLIN, S.L.; TANNER, J.M.; PALIONYTE, M.; ABEL, E.D.; SYMONS, J.D. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases. Journal of Physiology, 587(15): 3911-3920, 2009.

YASUI, S.; MAWATARI, K.; KAWANO, T.; MORIZUMI, R.; HAMAMOTO, A.; FURUKAWA, H.; KOYAMA, K.; NAKAMURA, A.; HATTORI, A.; NAKANO, M.; HARADA, N.; HOSAKA, T.; TAKAHASHI, A.; OSHITA, S.; NAKAYA, Y. Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells. Journal of Vascular Research, 45(3): 233-43, 2008.

YANG, A.L.; SU, C.T.; LIN, K.L.; LEE, S.D. Enhancement of vascular function mediated by insulin and insulin-like growth factor-1 following single exercise session. Chinese Journal of Physiology, 51(2): 71-77, 2008

YANG, A.L.; YEH, C.K.; SU, C.T.; LO, C.W.; LIN, K.L.; LEE, S.D. Aerobic exercise acutely improves insulin- and insulin-like growth factor-1-mediated vasorelaxation in hypertensive rats. Experimental Physiology, 95(5): 622-9, 2010.

YASPELKIS, B.B. Resistance training improves insulin signaling and action in skeletal muscle. Exercise and Sport Sciences Reviews, 34(1): 42-46, 2006.

YU, Q.; GAO, F.; MA, X.L. Insulin says NO to cardiovascular disease. Cardiovascular Research, 89(3):516-24, 2011.

WANG, Y.; WANG, S.; WIER, W.G.; ZHANG, Q.; JIANG, H.; LI, Q.; CHEN, S.; TIAN, Z.; LI, Y.; YU, X.; ZHAO, M.; LIU, J.; YANG, J.; ZHANG, J.; ZANG, W. Exercise improves the dilatation function of mesenteric arteries in postmyocardial infarction rats via a PI3K/Akt/eNOS pathway-mediated mechanism. American Journal of Physiology - Heart and Circulatory Physiology. 299(6): 2097-2106, 2010.

WARBURTON, D.E.R.; NICOL, C.W.; BREDIN, S.S.D. Health benefits of physical activity: the evidence. Canadian Medical Association Journal, 174(6): 801-809, 2006. WESTCOTT, W.L. Resistance training is medicine: effects of strength training on health. Current Sports Medicine Reports, 11(4): 209-16, 2012.

WHAYNE Jr, T.F. Atherosclerosis: current status of prevention and treatment. International Journal of Angiology, 20(4): 213-22, 2011.

WILLIAMS, A.D.; AHUJA, K.D.; ALMOND, J.B.; ROBERTSON, I.K.; BALL, M.J. Progressive resistance training might improve vascular function in older women but not in older men. Journal of Science and Medicine in Sport, 16(1): 76-81, 2013.

WISE, F.M.; PATRICK, J.M. Resistance exercise in cardiac rehabilitation. Clinical Rehabilitation, 25(12): 1059-1065, 2011.

WOLPERT, H.A.; STEEN, S.N.; ISTFAN, N.W.; SIMONSON, D.C. Insulin modulates circulating endothelin-1 levels in humans. Metabolism, 42: 1027–1030, 1993.

Documentos relacionados