• Nenhum resultado encontrado

a) Resultados experimentais para a deformação do nióbio demonstram a eficiente do projeto da matriz ECAP para o refinamento microestrutural em matrizes de 90° e 120°.

b) Amostras de nióbio foram deformadas por ECAP, nas matrizes de 90° e 120°, de 1 a 14 passes, e não apresentaram trincas e fissuras;

c) O processo de deformação ECAP apresentou eficiência no refino da microestrutura logo na primeira passagem, em boa parte da amostra deformada para as matrizes de 90° e 120°, com severidade mais acentuada para a matriz de 90°;

d) O estado estacionário de refinamento para o ângulo de 120° ocorreu em 8 passes e para o ângulo de 90° esse estágio foi observado em 6 passes. O estado estacionário depende do nível de deformação e como a matriz de 90° apresenta maior severidade, o estado estacionário foi observado em menor número de passes;

e) O estado estacionário de refinamento nas matrizes de 90° e 120°, analisados do ponto de vista da microestrutura, apresenta em ambos os casos, cristalitos em toda a amostra, e ausência de bandas de cisalhamento e zonas mortas;

f) Houve aumento significativo dos valores de dureza com o aumento do número de passes (1 – 14) em ambas as matrizes;

g) Na matriz de 120° com 14 passes, não foi obtida uma microestrutura formada de grãos equiaxiais direcionadas no sentido de extrusão, enquanto na matriz de 90°, entre 12 e 14 passes, foi observado o direcionamento de cristalitos;

h) A importância dos dados experimentais ECAP obtidos com nióbio validaram as matrizes projetadas e a variáveis de processo analisadas e as variáveis experimentais produziram informações que possibilitaram a realização de um novo projeto de matrizes. Os dados levantados estão sendo utilizados nesse momento no projeto de duas novas matrizes.

SUGESTÕES DE TRABALHOS FUTUROS

a) Realizar os ensaios de tração para avaliar a resistência à tração de materiais deformados por ECAP;

b) Mensurar os tamanhos de contornos de grãos com o aumento do número de passes;

c) Avaliar o efeito do número de passes na resistência à corrosão da liga por meio de técnicas de ensaios eletroquímicos;

REFERÊNCIAS

ADEDOKUN, S. T. “A Review on Equal Channel Angular Extrusion as a Deformation and Grain Refinement Process”, Journal of Emerging Trends in Engineering and

Applied Sciences, v. 2, pp. 360-363, 2011.

AIDA, T.; MATSUKI, K.; HORITA, Z.; LANGDON, T. G. “Estimating the equivalent strain in equal channel angular pressing”. Scripta Materialia, v. 44, p. 575–579, 2001. ARAUJO, A.C., MAGALHÃES, F.C., et al. “Análise da formação de bandas de cisalhamento por meio de corpos-de-prova de tração especiais”, R. Esc. Minas, Ouro Preto, v. 63, pp. 501-507, 2010.

AZUSHIMA, A.; KOPP, R.; KORHONEN, A. et al., “Severe plastic deformation (SPD) processes for metals”. CIRP Annals – Manufacturing Technology, v. 57, p. 716- 735, 2008.

BERNARDI, H. H. Processamento e caracterização microestrutural de nióbio

deformado plasticamente por extrusão em canal angular. Tese (Doutorado em

Engenharia de Materiais), Escola de Engenharia de Lorena - Universidade de São Paulo, 2009.

DIETER, G. E. Metalurgia Mecânica. Segunda Edição. Editora Guanabara Dois S. A. 1982.

DUMOULIN, S., ROVEN, H.J., WERENSKIOLD, J.C. “Finite element modeling of equal channel angular pressing: effect of material properties, friction and die geometry”.

Materials Science and Engineering A, v. 410-411, p. 248-251, 2005.

DHAL A., S.K. PANIGRAHI S.K., M.S. SHUNMUGAM, M.S. “Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys” Journal of Alloys and Compounds, v.726, pp.1205 – 1219, 2017.

ELAAL, M. I. & SADAWY, M. M. “Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum” Trans. Nonferrous Met. Soc. China, v.25, pp.3865−3876, 2015.

FANG D.R., Q.Q. DUAN, Q.Q., ZHAO, N.Q. et al. “Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing”. Materials

FIGUEIREDO, R. B.; AGUILAR, M. T. P.; CETLIN, P. R. “Finite element modeling of plastic instability during ECAP processing of flow-softening materials”. Materials

Science and Engineering A, v.430, p. 179-184, 2006.

FURUKAWA, M.; IWAHASHI, Y.; HORITA, Z.; NEMOTO, M.; LANGDON, T.G. “The shearing characteristics associated with equal-channel angular pressing”.

Materials Science and Engineering A, v. 257, p. 328-332, 1998.

FURUKAWA, M.; HORITA, Z.; NEMOTO, M.; LANGDON, T.G. “Review: processing of metals by equal-channel angular pressing”. Journal of Materials Science, v. 36, p. 2835-2843, 2001.

FUKUDA, Y.; OH-ISHI, K.; FURUKAWA, M.; HORITA, Z.; LANGDON, T.G. “Influence of crystal orientation on ECAP of aluminum single Crystal”. Materials

Science and Engineering A, v. 420, p. 79-86, 2006.

GOLOBORODKO, A.; SITDIKOV, O.; SAKAI, T.; KAIBYSHEV, R.; MIURA, H. “Grain refinement in as-cast 7475 aluminum alloy under hot equal-channel angular pressing” Materials Transactions, v. 44, p.766-774, 2003.

GRAHAM, R. A., SUTHERLIN, R. C. W. C., “Niobium and Niobium Alloys in Corrosive Applications”, Niobium Science and Technology, pp 337 – 355, 2001.

HORITA, Z.; FUJINAMI, T.; LANGDON, T.G. “The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties”. Materials Science

and Engineering A, v. 318, p. 34-41, 2001.

HORITA, Z.; FUJINAMI, T.; NEMOTO, M.; LANGDON, T.G. “Improvement of mechanical properties for Al alloys using equal-channel angular pressing”. Journal of

Materials Processing Technology, v. 117, p. 288-292, 2001.

HUGHES, D.A.; HANSEN, N. “High angle boundaries formed by grain subdivision mechanisms". Acta Materialia, v. 45, p. 3871-3886, 1997.

IWAHASHI, Y.; HORITA, Z.; NEMOTO, M.; LANGDON, T.G. The process of grain refinement in equal-channel angular pressing. Acta Materialia, v. 46, p. 3317-3331, 1998.

ITO, Y., HORITA Z. “Microstructural evolution in pure aluminum processed by high- pressure torsion”, Materials Science and Engineering: A, 503, pp. 32-36, 2009.

IWAHASHI, Y.; HORITA, Z.; NEMOTO, M.; LANGDON, T. G. “The process of grain refinement in equal-channel angular pressing”. Acta Materialia, v. 46, n. 9, p. 3317-3331, 1998.

KAPOOR R., “Severe Plastic Deformation Of materials”, Materials Under Extreme

Conditions, p. 717–754, 2017.

LANGDON, T.G. “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement”, Acta Materialia, v. 61, pp. 7035 - 7059, 2013.

LENARD, J.G. “13 – Severe Plastic Deformation – Accumulative Roll Bonding”,

Primer on Flat Rolling (Second Edition), pp.303–322, 2014.

LEITNER T., TRUMMER G., PIPPAN R., A. HOHENWARTER A., “Influence of severe plastic deformation and specimen orientation on the fatigue crack propagation behavior of a pearlitic steel”, Materials Science & Engineering A, v.710, pp.260-270, 2018.

LI, C. Y.; HUANG, J. F.; LU, J.; CAO, L. Y.; FEI, J. “Effect of Nb coating on oxidation behavior C/C composites”. Corrosion Science, v. 63, p. 182-186, 2012.

LINS, J.F.C. Estudo da recuperação e da recristalização do nióbio com microestrutura

oligocristalina laminado a frio. Dissertação de Mestrado. Faculdade de Engenharia

Química de Lorena, 2001.

MARIANO, C. Obtenção e revestimentos de nióbio depositados por aspersão térmica para proteção à corrosão marinha. Dissertação, Universidade Federal do Paraná, Brasil, 2008.

MAZURINA I., SAKAI T., MIURA H., et al. “Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP”, Materials Science

and Engineering A, v.486, pp.662–671, 2008.

MATHAUDHU, S.N., HARTWIG, K.T. “Grain refinement and recrystallization of heavily worked tantalum”, Materials Science and Engineering A, v. 426, p. 128-142, 2006.

MATHAUDHU, S.N.; BLUM, S.; BARBER, R.E.; HARTWIG, K.T. “Severe plastic deformation of bulk Nb for Nb3Sn superconductors”. IEEE Transactions on Applied

MEDEIROS, N. Análises teórica e numérica do processo de prensagem em canais

equiangulares. Tese (Doutorado em Engenharia Metalúrgica), Universidade Federal

Fluminense, 217f, Volta Redonda, 2008.

MENON, E. S. K., MENDIRATTA, M. G., et al., “Oxidation behavior of complex niobium based alloys. In: Proceedings of the International Symposium Niobium”,

Niobium Science and Technology, Orlando, Florida, USA, 2001, p. 121-145, 2002.

MESHI L., SAMUHA S., et al. “Dislocation structure and hardness of surface layers under friction of copper in different lubricant conditions”, Acta Mater, v.59, pp.342– 348, 2011.

MOSHKOVICH A., LAPSKER I., et al. “Severe plastic deformation of four FCC metals during friction under lubricated conditions”, Wear, v. 386–387, pp. 49–57, 2017.

MOROVVATI, M.R., DARIANI, B. M. “The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding”, Journal of Manufacturing Processes, v.30, pp. 241–254, 2017.

MUHAMMAD J. Q., SIVASWAMYA G., et al. “On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP)”, Materials Science & Engineering A v.699, pp.31– 47, 2017.

NAGASEKHAR, A.V.; TICK-HON, Y.; SEOW, H.P. “Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing”. Journal of Materials

Processing Technology, v. 192-193, p. 449-452, 2007.

NAKASHIMA, K.; HORITA, Z.; NEMOTO, M.; LANGDON, T. G. “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing”. Acta Materialia, v.46, n. 5, p. 1589-1599, 1998.

POPOV, V.V., POPOVA, E.N. et al. “Nanostructuring Nb by various techniques of severe plastic deformation” Materials Science and Engineering A, v.539 p. 22–29, 2012.

POGGIALI, F.S.J. “Determinação da influência do refino de grão por ECAP no comportamento em compressão do magnésio comercialmente puro”, Tese de D.Sc (Engenharia Metalúrgica), Universidade Federal de Minas Gerais, 2015.

QARNI M.J., SIVASWAMY G., ROSOCHOWSKI A., BOCZKAL, B. “On the evolution of microstructure and texture in commercial purity titanium during multiple passes of incremental equal channel angular pressing (I-ECAP)”, Materials Science and

Engineering: A, v.699, n.24, pp.31-47.

QUANG, P., NGHIEP, M., KIM, H. S., 2015, “Simulation of the effective of friction on the deformation in equal channel angular pressing (ECAP)”. In: Key Engineering

Materials. Trans Tech Publications, pp. 526-531.

RATNER, B. D., HOFFMAN, A.S., SCHOEN, F.J., LEMOS, J.E. “Introduction – Biomaterials Science: An Evolving, Multidisciplinary Endeavor”, Biomaterials Science (Third Edition), pp. xxv–xxxix, 2013.

RENZETTI, R.A. Avaliação da estabilidade microestrutural e sua influência nas

propriedades magnéticas do ferro puro severamente deformado. Dissertação (Mestrado

em Engenharia de Materiais) – Escola de Engenharia de Lorena - Universidade de São Paulo, Lorena, 199f, 2008.

ROODPOSHTI, P. S., FARAHBAKHSH, N., SARKAR, A., et al. “Microstructural approach to equal channel angular processing of commercially pure titanium—A review”, Transactions of Nonferrous Metals Society of China, v. 25, n. 5, pp. 1353- 1366, 2015.

SANKAR, M., BALIGIDAD R. G., GOKHALE A. A. “Effect of oxygenon microstructure and mechanical properties of niobium”. Materials Science &

Engineering A, v.569 pp.132–136, 2013.

SANTOS FILHO, O. C. Caracterizações de Propriedades Microestruturais e

Mecânicas de Ligas AA 1100 e AA 5052 Processadas pela Técnica de Laminação Acumulativa (“Accumulated Roll Bonding” – ARB”), Tese de doutorado, Escola

Politécnica da Universidade de São Paulo, São Paulo, 2009.

SANDIM, H.R.Z.; BERNARDI, H.H.; VERLINDEN, B.; RAABE, D. “Equal channel angular extrusion of niobium single crystals”. Materials Science and Engineering A, v.467, p. 44-52, 2007.

SABIROV I., YU, M. MURASHKIN, R.Z. VALIEV. “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development”,

Materials Science & Engineering A, v.560, p.1-24, 2013.

SANDIM, H.R.Z. Preparação de ligas Nb-TiO2 por metalurgia do pó e sua

caracterização microestrutural, Tese de Doutorado. Escola Politécnica da Universidade

SEGAL V.M. “Methods of Stress–Strain Analysis in Metalforming, Sc.D. Thesis, Minsk”.1974.

SEGAL, V. M., REZNIKOV, V., DROBYSHEVKIY, A., et al., “Plastic working of metals by simple shear”. Russian Metallurgy, v. 1, pp. 99-105, 1981.

SEGAL, V. M. “Materials processing by simple shear”. Materials Science and

Engineering A, v.197, pp. 157-164, 1995.

SEGAL, V.M.; HARTWIG, K.T.; GOFORTH, R.E. In situ composites processed by simple shear. Materials Science and Engineering A, v. 224, p. 107-115, 1997.

SEGAL, V. M., 2004, “Engineering and commercialization of equal channel angular extrusion (ECAE)”, Materials Science and Engineering A, v. 386, pp. 269−276, 2004. SEGAL, V. M. “Equal channel angular extrusion: from macromechanics to structure formation". Materials Science and Engineering A, v. 271, p. 322-333, 1999.

SIVAKUMAR, S.M.; ORTIZ, M. “Microstructure evolution in the equal channel angular extrusion process”, Computer Methods in Applied Mechanics and Engineering, v. 193, pp.5177-5194, 2004.

SIVAKUMAR, S.M.; ORTIZ, M. “Microstructure evolution in the equal channel angular extrusion process”. Computer Methods in Applied Mechanics and Engineering, v. 193, p.5177-5194, 2004.

SILVA, K. F. D., “Efeito do processo ECAP sobre a microestrutura e as propriedades

mecânicas da liga Ti-35Nb-0,15Si e do Ti CP”, Dissertação de mestrado (Ciência e

Engenharia de Materiais), Universidade Federal de Sergipe, 105f, 2017.

SILVA, A.G.S.G. Estudo do comportamento eletroquímico do nióbio e do tântalo sob

carregamentos de hidrogênio para desenvolvimento de um sensor de monitoramento de permeação de hidrogênio. Tese (Doutorado em Engenharia) Universidade Federal do

Paraná, Curitiba, 2012.

SORDI, V. L., FERRANTE, M., KAWASAKI, M. “Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling”,

Journal of Materials Science, v. 47, pp. 7870-7876, 2012.

STOLYAROV, Y.T. ZHU, I.V. ALEXANDROV, T.C. LOWE, R.Z. VALIEV. Mater.

STOLYAROV V. V., LAPOVOK R., BRODOVA I. G., THOMSON P. F. Ultrafine- grained Al−5wt.% Fe alloy processed by ECAP with backpressure [J]. Materials Science and Engineering A, 2003, 357: 159−167.

SURESH, K. S., GEETHA, M., RICHARD, C., et al. “Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid”, Materials Science and Engineering C, v. 32, pp. 763–771, 2012. SUWAS S., G. GOTTSTEIN, R. KUMAR. “Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium”, Mater. Sci. Eng. A v.471, pp.1–14, 2007.

TAVARES, A. M. G., FERNANDES, B. S., SOUZA, S. A. “The Addition of Si to the Ti–35Nb Alloy and its Effect on the Corrosion Resistance, When Applied to Biomedical Materials”, Journal of Alloys and Compounds, v. 591, pp. 91-99, 2014. VALIEV, R. Z., ALEXANDROV, I. V. “Paradox of strength and ductility in metals processed by severe plastic deformation”, Journal of Material Research Society, v. 17, pp. 5−8, 2002.

VALIEV R. Z., Y. ESTRIN, Z. HORITA, T. G. LANGDON, M. J. ZEHETBAUER, Y. T. ZHU. “Fundamentals of Superior Properties in Bulk Nano SPD Materials”, Mater.

Res. Lett. v.4 p.1–21, 2015.

VALIEV, R. Z., ISLAMGALIEV, R. K., ALEXANDROV, I. V. “Bulk nanostructured materials from severe plastic deformation”. Progress in Materials Science, v. 45, pp. 103-189, 2000.

VALIEV, R. Z., LANGDON, T.G. “Principles of equal-channel angular pressingas a processing tool for grain refinement”. Progress in Materials Science, v. 51, pp.881-981, 2006.

VALIEV, R. Z., MURASHKIN, M., GANEEV, A. V., “Superstrength of nanostructured metals and alloys produced by severe plastic deformation”, Phys. Met.

Metallography, v. 113, n. 13, pp. 1193-1201, 2012.

VALIEV, R. Z., LANGDON, T. G. “Report of International Nano SPD Steering Committee and statistics on recent Nano SPD activities”. In: IOP Conference Series in

Materials Science Engineering, v. 63, pp. 1-2, 2014.

VALIEV, R.Z. “Nanostructuring of metals by severe plastic deformation for advanced properties”. Nature Materials, v. 3, pp. 511-516, 2004.

VALIEV, R. Z. “Structure and mechanical properties of ultrafine grained metals”,

Materials Science and Engineering A, pp. 234−236: 59−66, 1997.

VALIEV, R. Z.; LOWE, T. C.; MUKHERJEE, A. K. “Understanding the unique properties of SPD-induced microstructures”. Journal of the Minerals, Metals &

Materials Society, v.52, p.37-40, 2000.

WU, P. D.; HUANG, Y.; LLOYD, D. J. “Studying grain fragmentation in ECAE by simulating simple shear”. Scripta Materialia, v. 54, p. 2107-2112, 2006.

XU, C.; FURUKAWA, M.; HORITA, Z.; LANGDON, T. G. “The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP”. Materials Science and Engineering A, v. 398, p. 66-76, 2005.

XU C., XIA K., LANGDON TERENCE G. “Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure”. Materials Science and

Engineering A, 527: 205−211, 2009.

XU, C. LANGDON, T. G. “The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP”, J Mater Sci, v.42, pp.1542-1550, 2007. YAN, X. Y. FRAY, D. J. “Production of Niobium Powder by Direct Electrochemical Reduction of solid Nb2O5 in a Eutectic CaCl2-NaCl” Melt. Metallurgical and

Materials Transitions B. v 33, p 685-693, 2002.

YAMASHITA, A., YAMAGUCHI, D., HORITA, Z., LANGDON T.G. “Influence of pressing temperature on microstructural development in equal-channel angular pressing”, Materials Science and Engineering A, v.287, pp.100–106, 2000.

ZHAO, X., YANG, X., LIU, X., et al. “The processing of pure titanium through multiple passes of ECAP at room temperature”. Materials Science and Engineering: A, 527, n. 23, pp. 6335-6339, 2010.

ZHU, Y. T.; LOWE, T. C. “Observations and issues on mechanisms of grain refinement during ECAP process”. Materials Science and Engineering A, v.291, p.46–53, 2000. ZHILYAEV, A., PARKHIMOVICH, N., RAAB, G., et al. “Microstructure and texture homogeneity of ecap titanium”. Rev. Adv. Mater. Sci, v. 43, p. 61-66, 2015.

ZHILYAEV, A. P., LANGDON, T.G. “Using high-pressure torsion for metal processing: Fundamentals and applications”, Progress in Materials Science,v.53, n.6, pp.893-979, 2008.

ZIMMERMANN, A. J. O. Encruamento, Recristalização e Textura Cristalográfica de

Zircônio Puro e da Liga Zircaloy-4. Tese (Doutorado), Escola Politécnica da

Documentos relacionados