• Nenhum resultado encontrado

Os géis de poliacrilamida com nanopartículas superparamagnéticas dispersas foram preparados através do método de co-precipitação em matrizes de gel aquoso do polímero. Os materiais resultantes, todos com propriedades superparamagnéticas, tinham tamanho de cristalito dependente da concentração de PAM: quanto maior o conteúdo do gel de poliacrilamida, menor o tamanho de cristalito. Reometria, espectroscopia IRTF, DRX e MEV indicaram que essa diminuição foi resultado de dois fatores:

i. Fator termodinâmico: à medida que a concentração de PAM aumenta, a energia superficial diminui, resultando em um tamanho crítico menor para a segregação de nanopartículas;

ii. Fator cinético: a taxa de crescimento de partículas é proporcional ao coeficiente de difusão das espécies reagentes: como os íons Fe interagem fortemente com o PAM na matriz aquosa, a difusão das espécies reagentes é desfavorecida, além disso, como o coeficiente de difusão é inversamente proporcional à viscosidade, o simples aumento da viscosidade (como resultado do aumento na concentração de PAM) teria o mesmo resultado.

Finalmente, o método utilizado neste trabalho pode ser considerado uma alternativa promissora e de baixo custo para a produção de géis PAM/Fe3O4 com

REFERÊNCIAS BIBLIOGRÁFICAS

ABOBATTA, Waleed. Impact of hydrogel polymer in agricultural sector. Advances in

Agriculture and Environmental Science: Open Access (AAEOA), v. 1, n. 2, p. 59–

64, 15 maio 2018. Disponível em: <http://ologyjournals.com/aaeoa/ aaeoa_00011.php>. ABU-DIEF, Ahmed M.; ABDEL-FATAH, Shimaa Mahdy. Development and

functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef University Journal of Basic and Applied Sciences, v. 7, n. 1, p. 55–67, mar. 2018. Disponível em: <http://dx.doi.org/10.1016/j.bjbas.2017.05.008>. ADNAN, Mohammed et al. In Situ Synthesis of Hybrid Inorganic–Polymer

Nanocomposites. Polymers, v. 10, n. 10, p. 1129, 11 out. 2018. Disponível em: <http://www.mdpi.com/2073-4360/10/10/1129>.

ANDEROGLU, Osman. Residual Stress Measurement Using X-Ray Diffraction. Texas

A&M University, n. December, p. 1–64, 2004. Disponível em:

<http://repository.tamu.edu/bitstream/handle/1969.1/1507/etd-tamu-2004C-MEEN- Anderog.pdf?sequence=1>.

ANG, K.L.; VENKATRAMAN, S.; RAMANUJAN, R.V. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Materials Science and Engineering:

C, v. 27, n. 3, p. 347–351, abr. 2007. Disponível em:

<https://linkinghub.elsevier.com/retrieve/pii/S0928493106001251>.

ARIAS, Laís et al. Iron Oxide Nanoparticles for Biomedical Applications: A

Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics, v. 7, n. 2, p. 46, 2018.

ATTA, Ayman M. et al. Synthesis and application of magnetite polyacrylamide amino- amidoxime nano-composites as adsorbents for water pollutants. Journal of Polymer

Research, v. 23, n. 4, 2016.

AUGUSTINHO, T R et al. Síntese E Caracterização De Polímeros Híbridos Orgânico / Inorgânicos Via Polimerização. p. 1–8, 2014.

B. D. CULLITY; C. D. GRAHAM. Introduction to magnetic materials. [S.l: s.n.], 2008.

BAJGROWICZ-CIESLAK, Magdalena et al. Optical glucose sensors based on

hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films. RSC Advances, v. 7, n. 85, p. 53916–53924, 2017. Disponível em: <http://dx.doi.org/10.1039/C7RA11184C>.

BARRIL, Patricia; NATES, Silvia. Introduction to Agarose and Polyacrylamide Gel Electrophoresis Matrices with Respect to Their Detection Sensitivities. Gel

Electrophoresis - Principles and Basics, 2012.

BEAN, C. P.; LIVINGSTON, J. D. Superparamagnetism. Journal of Applied Physics, v. 30, n. 4, p. S120–S129, abr. 1959. Disponível em:

<http://aip.scitation.org/doi/10.1063/1.2185850>.

BELLISOLA, Giuseppe; SORIO, Claudio. Infrared spectroscopy and microscopy in cancer research and diagnosis. American Journal of Cancer Research, v. 2, n. 1, p. 1– 21, 2012.

BENZ, Manuel. Superparamagnetism : Theory and Applications.

Superparamagnetism : Theory and Applications, p. 1–27, 2012.

BEZERRIL, L.M. et al. Rheology of Chitosan-Kaolin Dispersions. Colloids and

Surfaces A: Physicochemical and Engineering Aspects, v. 287, n. 1–3, p. 24–28,

2006.

BLUNDELL, Stephen. Magnetism in Condensed Matter. 1 edition ed. [S.l.]: Oxford University Press, Year: 2001, 2001.

BLYAKHMAN, Felix A. et al. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results in Physics, v. 7, p. 3624–3633, 2017. Disponível em: <https://doi.org/10.1016/j.rinp.2017.09.042>.

BRITO, E.L. et al. Superparamagnetic magnetite/IPEC particles. Colloids and

Surfaces A: Physicochemical and Engineering Aspects, v. 560, n. August 2018, p.

376–383, jan. 2019. Disponível em: <https://doi.org/10.1016/j.colsurfa.2018.09.067>. CAPEK, Ignác. Inverse Emulsion Polymerization of Acrylamide Initiated by Oil- and Water-soluble Initiators: Effect of Emulsifier Concentration. Polymer Journal, v. 36, n. 10, p. 793–803, 2004.

CARMONA-RIBEIRO, Ana; DE MELO CARRASCO, Letícia. Cationic Antimicrobial Polymers and Their Assemblies. International Journal of Molecular Sciences, v. 14, n. 5, p. 9906–9946, 10 maio 2013. Disponível em: <http://www.mdpi.com/1422- 0067/14/5/9906>.

CHEN, Dun et al. Functionalized magnetic Fe 3 O 4 nanoparticles for removal of heavy metal ions from aqueous solutions. E-Polymers, v. 16, n. 4, p. 313–322, 2016.

CHHABRA, Rajendra P. Non-Newtonian fluids: An introduction. Rheology of

Complex Fluids, p. 3–34, 2010.

COLMÁN, M. M. E. MONITORAMENTO DA POLIMERIZAÇÃO DE

ACRILAMIDA EM MINIEMULSÃO INVERSA POR ESPECTROSCOPIA RAMAN E NIR. Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Química, Florianópolis, 2013. , 2013, p. 1– 39.

CORNELL, R. M.; SCHWERTMANN, U. Introduction to the Iron Oxides. Iron

Oxides. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. p. 1–7.

Disponível em: <http://doi.wiley.com/10.1002/3527602097.ch1>.

CRACIUN, Gabriela et al. Synthesis and Characterization of Poly(Acrylamide-Co- Acrylic Acid) Flocculant Obtained by Electron Beam Irradiation. Materials Research, v. 18, n. 5, p. 984–993, out. 2015. Disponível em:

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 14392015000500984&lng=en&tlng=en>.

DANNERT, Corinna; STOKKE, Bjørn Torger; DIAS, Rita S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, v. 11, n. 2, p. 275, 6 fev. 2019. Disponível em: <http://www.mdpi.com/2073-4360/11/2/275>. DAVARAN, Soudabeh et al. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. International

DE SOUZA, T.V. et al. A novel approach to thickening characterization of an acrylic latex thickener. Progress in Organic Coatings, v. 106, 2017.

DRABEK, Jiri; ZATLOUKAL, Martin. Influence of long chain branching on fiber diameter distribution for polypropylene nonwovens produced by melt blown process.

Journal of Rheology, v. 63, n. 4, p. 519–532, jul. 2019. Disponível em:

<http://sor.scitation.org/doi/10.1122/1.5048585>.

EL HALAH, Amal; LÓPEZ-CARRASQUERO, Francisco; CONTRERAS, Jesús. Applications of hydrogels in the adsorption of metallic ions Aplicación de hidrogeles in la adsorción de iones metálicos. Ciencia e Ingeniería, v. 39, n. 1, p. 57–70, 2018. EVANS, Charles A; WILSON, Shaun. Encyclopeia of Materials Characterization. 1992.

FARRA, Sinara Oliveira Dal. ESTUDO CINÉTICO DA POLIMERIZAÇÃO DA

ACRILAMIDA EM SOLUÇÃO AQUOSA VIA RADICAL LIVRE: USUAL E REDOX. [S.l: s.n.], 2010. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

33645547325%7B&%7DpartnerID=40%7B&%7Dmd5=5c937a0c35f8be4ce16cb39238 1256da>.

FENG, B. et al. Synthesis of monodisperse magnetite nanoparticles via chitosan- poly(acrylic acid) template and their application in MRI. Journal of Alloys and

Compounds, v. 473, n. 1–2, p. 356–362, 2009.

FENG, Li et al. Fabricating an anionic polyacrylamide (APAM) with an anionic block structure for high turbidity water separation and purification. RSC Advances, v. 7, n. 46, p. 28918–28930, 2017. Disponível em: <http://dx.doi.org/10.1039/C7RA05151D>. FRANCO, José Ma; PARTAL, Pedro. RHEOLOGY - The Newtonian Fluid. Eolss, v. I, p. 74–77, 2010.

GARCIA, ALMUDENA; FERNÁNDEZ, EVA; CORTADELLAS, Núria; Biomedical and Biological Applications of Scanning Electron Microscopy. p. 1–9, 2012.

GHAZANFARI, Mohammad Reza et al. Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochemistry Research International, v. 2016, n. February 2017, 2016.

GHOSH, Subhadip et al. Effect of Compost and Hydroabsorbent Polymer on Tree Growth and Soil Properties in a Tropical Urban Environment. Communications in Soil

Science and Plant Analysis, v. 49, n. 10, p. 1229–1238, 2018. Disponível em:

<https://doi.org/10.1080/00103624.2018.1457154>.

HABILA, Mohamed et al. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe3O4 Nanoparticles for Enhancing Magnetic Adsorptive- Remediation of Heavy Metals. Molecules, v. 22, n. 12, p. 2074, 27 nov. 2017. Disponível em: <http://www.mdpi.com/1420-3049/22/12/2074>.

HAN, Lu et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials, v. 9, n. 4, p. e372–e372, 14 abr. 2017. Disponível em: <http://dx.doi.org/10.1038/am.2017.33>.

HÄRING, Marleen et al. Magnetic Gel Composites for Hyperthermia Cancer Therapy.

2861/1/2/135/>.

HOSSEINZADEH, Gholamreza Mahdavinia ; Ali Afzali ; Hossein Etemadi ; Hossein. Magnetic / pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose-g- polyacrylamide / montmorillonite for colon targeted drug deliver. Nanomedicine

Research Journal, v. 2, n. 2, p. 111–122, 2017.

JALILI, Nima A; MUSCARELLO, Madyson; GAHARWAR, Akhilesh K.

Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications.

Bioengineering & Translational Medicine, v. 1, n. 3, p. 297–305, set. 2016.

Disponível em: <http://doi.wiley.com/10.1002/btm2.10034>.

JIANG, Zhenzhen; ZHU, Junren. Cationic Polyacrylamide: Synthesis and Application in Sludge Dewatering Treatment. Asian Journal of Chemistry, v. 26, n. 3, p. 629–633, 2014. Disponível em:

<http://www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=26_4 _1>.

KAI, Jun. Modeling of Positive-Displacement Dispensing Process. n. March, p. 127, 2008.

KANGO, Sarita et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, v. 38, n. 8, p. 1232–1261, ago. 2013. Disponível em:

<http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003>.

KAZEMIAN, Sina; PRASAD, Arun; HUAT, Bujang. Review of Newtonian and non- Newtonian fluids behaviour in the context of grouts. Geotech. Asp. Undergr. Constr.

Soft Gr. [S.l.]: CRC Press, 2012. p. 321–326. Disponível em:

<http://www.crcnetbase.com/doi/10.1201/b12748-42>.

KEPPY, Nicole Krueziger; ALLEN, Michael W. The Biuret Method for the Determination of Total Protein Using an Evolution Array 8-Position Cell Changer.

Thermo Fisher Scientific, p. 8–9, 2000.

KICKELBICK, Guido. Hybrid Materials – Past, Present and Future. Hybrid Materials, v. 1, n. 1, 1 jan. 2014. Disponível em:

<http://access.portico.org/stable?au=pgh3kmmshp6>.

LATIF, Issam K; ABDULLAH, Hilal M; SALEEM, Maida H. Magnetic Conductive Hydrogel Nanocomposites as Drug Carrier. Nanoscience and Nanotechnology, v. 6, n. 3, p. 48–58, 2016.

LEE, Kangsoo; SHIN, Seo Yoon; YOON, Young Soo. Fe 3 O 4 nanoparticles on MWCNTs backbone for lithium ion batteries. Journal of the Korean Ceramic

Society, v. 53, n. 3, p. 376–380, 2016.

LI, Baojun et al. Superparamagnetic Fe 3 O 4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry, v. 21, n. 13, p. 5069–5075, 2011.

LI, Jianyu; MOONEY, David J. Designing hydrogels for controlled drug delivery.

Nature Reviews Materials, v. 1, n. 12, p. 16071, 18 dez. 2016. Disponível em:

<http://dx.doi.org/10.1038/natrevmats.2016.71>.

properties of highly crystalline Fe 3 O 4 nanoparticles. Scientific Reports, v. 7, n. 1, p. 1–4, 2017. Disponível em: <http://dx.doi.org/10.1038/s41598-017-09897-5>.

LIN, Hong-Ru. Solution polymerization of acrylamide using potassium persulfate as an initiator: kinetic studies, temperature and pH dependence. European Polymer Journal, v. 37, n. 7, p. 1507–1510, jul. 2001. Disponível em:

<http://linkinghub.elsevier.com/retrieve/pii/S0014305700002615>.

LOPES MONTEIRO NETO, João Luiz et al. Hydrogels in Brazilian Agriculture.

Revista Agro@Mbiente on-Line, v. 11, n. 4, p. 347, 2017.

LU, Jiao et al. Dispersion polymerization of anionic polyacrylamide in an aqueous salt medium. Petroleum Science, v. 7, n. 3, p. 410–415, 3 set. 2010. Disponível em: <http://link.springer.com/10.1007/s12182-010-0086-9>.

LUTTEROTTI, Luca. Maud : a Rietveld analysis program designed for the internet and experiment. n. June, 2014.

MAKARCHUK, Oksana V.; DONTSOVA, Tetiana A.; ASTRELIN, Ihor M. Magnetic Nanocomposites as Efficient Sorption Materials for Removing Dyes from Aqueous Solutions. Nanoscale Research Letters, v. 11, n. 1, p. 161, 22 dez. 2016. Disponível em: <http://dx.doi.org/10.1186/s11671-016-1364-2>.

MIR, Sajjad Husain et al. Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. Journal of The Electrochemical

Society, v. 165, n. 8, p. B3137–B3156, 4 maio 2018. Disponível em:

<http://jes.ecsdl.org/lookup/doi/10.1149/2.0191808jes>.

MIRANDA, M. A.R.; SASAKI, J. M. The limit of application of the Scherrer equation.

Acta Crystallographica Section A: Foundations and Advances, v. 74, n. 1, p. 54–65,

2018.

MOHSIN, Mahmoud A.; ATTIA, Nuha F. Inverse Emulsion Polymerization for the Synthesis of High Molecular Weight Polyacrylamide and Its Application as Sand Stabilizer. International Journal of Polymer Science, v. 2015, p. 1–10, 2015. Disponível em: <http://www.hindawi.com/journals/ijps/2015/436583/>.

MORDINA, Bablu et al. Smart elastomeric hydrogel of polyacrylamide containing nanosized barium ferrite and graphene oxide. Journal of Composite Materials, v. 53, n. 22, p. 3139–3156, 2 set. 2019. Disponível em:

<http://journals.sagepub.com/doi/10.1177/0021998319839128>.

NAMANGA, Jude et al. Synthesis and Magnetic Properties of a Superparamagnetic Nanocomposite “Pectin-Magnetite Nanocomposite”. Journal of Nanomaterials, v. 2013, p. 1–8, 2013. Disponível em:

<http://www.hindawi.com/journals/jnm/2013/137275/>.

NASCIMENTO, Mônica Helena Monteiro do; LOMBELLO, Christiane Bertachini. Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido

cartilaginoso. Polímeros, v. 26, n. 4, p. 360–370, 2016.

NI, X. et al. Suspension polymerization of acrylamide in an oscillatory baffled reactor: From drops to particles. AIChE Journal, v. 47, n. 8, p. 1746–1757, 2001.

PADILHA, Angelo Fernando. Materiais de engenharia. Livro, p. 349, 1997. Disponível em: <http://books.google.com/books?id=8IKJTHS5SfAC&pgis=1>.

PAKTINAT, Javad et al. Critical Evaluation of High Brine Tolerant Additives Used in Shale Slickwater Fracs. 4 abr. 2011, [S.l.]: Society of Petroleum Engineers, 4 abr. 2011. Disponível em: <http://www.onepetro.org/doi/10.2118/141356-MS>.

PANDEY, Sadanand; MISHRA, Shivani B. Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. Journal of Sol-Gel Science

and Technology, v. 59, n. 1, p. 73–94, 22 jul. 2011. Disponível em:

<http://link.springer.com/10.1007/s10971-011-2465-0>.

PEI, Yuxin et al. Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide. Petroleum, v. 2, n. 4, p. 399–407, dez. 2016. Disponível em:

<http://dx.doi.org/10.1016/j.petlm.2016.08.006>.

PETCHAROEN, K.; SIRIVAT, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and

Engineering B: Solid-State Materials for Advanced Technology, v. 177, n. 5, p.

421–427, 2012. Disponível em: <http://dx.doi.org/10.1016/j.mseb.2012.01.003>. PHAN, Manh-Huong et al. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems. Nanomaterials, v. 6, n. 11, p. 221, 2016.

REDDY, N. Narayana et al. Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, v. 385, n. 1–3, p. 20–27, jul. 2011.

Disponível em: <http://dx.doi.org/10.1016/j.colsurfa.2011.05.006>.

RINCÓN, F et al. Physicochemical and rheological characterization of Prosopis juliflora seed gum aqueous dispersions. Food Hydrocolloids, v. 35, p. 348–357, 2014. RODVELT, Gary; YUYI, Silumesii; VANGILDER, Criss. Use of a Salt-Tolerant Friction Reducer Improves Production in Utica Completions. 13 out. 2015, [S.l.]: Society of Petroleum Engineers, 13 out. 2015. p. 1–15. Disponível em:

<http://www.onepetro.org/doi/10.2118/177296-MS>.

ROSTAMI, Zohreh et al. Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives. Nanochemistry Research, v. 3, n. 2, p. 142–148, 2018. Disponível em: <http://www.nanochemres.org/article_81104.html>.

SABBAGH, Farzaneh; MUHAMAD, Ida Idayu. Acrylamide-based hydrogel drug delivery systems: Release of Acyclovir from MgO nanocomposite hydrogel. Journal of

the Taiwan Institute of Chemical Engineers, v. 72, p. 182–193, mar. 2017.

Disponível em: <http://dx.doi.org/10.1016/j.jtice.2016.11.032>.

SAHU, P. Lattice Imperfections in Intermetallic Ti-Al Alloys: An X-Ray Diffraction Study of the Microstructure by the Rietveld Method. Intermetallics, v. 14, n. 2, p. 180– 188, 2006.

SAMPAIO, Luiz C et al. Tecnicas de Magnetometria. Revista Brasileira de Ensino de

Física, v. 22, n. 3, p. 406–410, 2000.

SCHNEIDER, Caroline A; RASBAND, Wayne S; ELICEIRI, Kevin W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, v. 9, n. 7, p. 671–675, 28 jul. 2012. Disponível em:

ov/articlerender.fcgi?artid=PMC5554542>.

SHEN, Lazhen; LI, Bei; QIAO, Yongsheng. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, v. 11, n. 2, p. 1–29, 2018.

SILVA, Elsa D. et al. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. Nanomedicine: Nanotechnology, Biology, and Medicine, v. 14, n. 7, p. 2375–2385, 2018.

SIVUDU, K. Samba; RHEE, K.Y. Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, v. 349, n. 1–3, p. 29–34, out. 2009. Disponível em:

<https://linkinghub.elsevier.com/retrieve/pii/S0927775709004671>.

SKOOG, Douglas A.; CROUCH, Stanley R.; HOLLER, F.James. Principles of

Instrumental Analysis 7th edition Skoog. [S.l: s.n.], 2017.

SONG, Wencheng et al. Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater.

Chemical Engineering Journal, v. 246, p. 268–276, jun. 2014. Disponível em:

<http://dx.doi.org/10.1016/j.cej.2014.02.101>.

STEPHEN, Zachary R.; KIEVIT, Forrest M.; ZHANG, Miqin. Magnetite nanoparticles for medical MR imaging. Materials Today, v. 14, n. 7–8, p. 330–338, 2011. Disponível em: <http://dx.doi.org/10.1016/S1369-7021(11)70163-8>.

TAN, Zhengchu et al. Composite hydrogel: A high fidelity soft tissue mimic for surgery. Materials and Design, v. 160, p. 886–894, 2018. Disponível em: <https://doi.org/10.1016/j.matdes.2018.10.018>.

THANH, N T K; MACLEAN, N; MAHIDDINE, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, v. 114, n. 15, p. 7610–7630, 2014.

THONIYOT, Praveen et al. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, v. 2, n. 1–2, p. 1–13, 2015.

WANG, Yongliang et al. Chitosan-induced synthesis of magnetite nanoparticles via iron ions assembly. Polymers for Advanced Technologies, v. 19, n. 9, p. 1256–1261, set. 2008. Disponível em: <http://doi.wiley.com/10.1002/pat.1121>.

______. CS-Fe(II,III) complex as precursor for magnetite nanocrystal. Polymers for

Advanced Technologies, v. 22, n. 12, p. 1681–1684, 2011.

______. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel.

Nanoscale Research Letters, v. 4, n. 9, p. 1041–1046, 30 set. 2009. Disponível em:

<http://www.nanoscalereslett.com/content/4/9/1041>.

WU, Baile et al. Application of magnetic hydrogel for anionic pollutants removal from wastewater with adsorbent regeneration and reuse. Journal of Hazardous, Toxic, and

Radioactive Waste, v. 21, n. 1, p. 1–9, 2017.

WU, Shuhui; SHANKS, R. A. Solubility study of polyacrylamide in polar solvents.

Journal of Applied Polymer Science, v. 93, n. 3, p. 1493–1499, 2004.

systems. npj Clean Water, v. 1, n. 1, 2018. Disponível em: <http://dx.doi.org/10.1038/s41545-018-0016-8>.

XU, Nan et al. Interactions of acetamide and acrylamide with heme models: Synthesis, infrared spectra, and solid state molecular structures of five- and six-coordinate ferric porphyrin derivatives. Journal of Inorganic Biochemistry, v. 194, n. December 2018, p. 160–169, 2019. Disponível em: <https://doi.org/10.1016/j.jinorgbio.2019.03.003>. Y. ABU-THABIT, Nedal. Thermochemistry of Acrylamide Polymerization: An Illustration of Auto-acceleration and Gel Effect. World Journal of Chemical

Education, v. 5, n. 3, p. 94–101, 2017.

YEW, Yen Pin et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arabian Journal of Chemistry, 2018. Disponível em:

<https://doi.org/10.1016/j.arabjc.2018.04.013>.

YU, Yanhao et al. Ferrofluids containing Fe3O4 nanoparticles in solidified photoresist carrier. Chemical Research in Chinese Universities, v. 32, n. 3, p. 480–483, 2016. YUE, Yiying et al. Assembly of Polyacrylamide-Sodium Alginate-Based Organic- Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers, v. 11, n. 8, p. 1239, 26 jul. 2019. Disponível em: <https://www.mdpi.com/2073-4360/11/8/1239>. ZARE, Yasser; SHABANI, Iman. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering: C, v. 60, n. 28, p. 195–203, mar. 2016. Disponível em: <http://dx.doi.org/10.1016/j.msec.2015.11.023>.

ZHANG, Yaling et al. A magnetic self-healing hydrogel. Chemical Communications, v. 48, n. 74, p. 9305–9307, 2012.

ZHANG, Zhi Qiang; SONG, Soo Chang. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia.

Biomaterials, v. 106, p. 13–23, 2016. Disponível em:

<http://dx.doi.org/10.1016/j.biomaterials.2016.08.015>.

ZHAO, Fuli et al. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, v. 5, n. 4, p. 2054–2130, 2015.

ZHENG, Huaili et al. Synthesis and application of anionic polyacrylamide in water treatment. Asian Journal of Chemistry, v. 25, n. 13, p. 7071–7074, 2013.

ZHOU, Weilie et al. Fundamentals of scanning electron microscopy (SEM). Scanning

Microscopy for Nanotechnology: Techniques and Applications, p. 1–40, 2007.

ŻURAKOWSKA-ORSZAGH, J.; MIROWSKI, K.; CHAJEWSKI, A. Solid-state polymerization of acrylamide and its derivatives complexed with some lewis acids. II. Radiation-induced in-source polymerization. Journal of Polymer Science: Polymer

Documentos relacionados