• Nenhum resultado encontrado

CONSIDERAÇÕES FINAIS E CONCLUSÃO

CONSIDERAÇÕES FINAIS

Considerando os dados obtidos, pode-se concluir que os métodos analíticos propostos oferecem a oportunidade para obter parâmetros farmacocinéticos com uma adequada precisão e exatidão, pois estão dentro dos limites necessários exigidos pela legislação para os estudos bioequivalência e farmacocinéticos. Além disso, os ensaios são rápidos e o tempo da corrida analítica não ultrapassou os 7 minutos para os três estudos.

A capacidade de manterem-se inalterados em pequenas variações nos parâmetros caracterizou a robustez dos métodos, possibilitando a intercambialidade entre laboratórios e doseamento em outros fluidos biológicos. Possuem vantagens em termos de custos, em comparação com outros métodos descritos, pois utilizam procedimentos de preparo de amostras relativamente simples sendo desnecessária a utilização de pré-tratamento em cartuchos e pré-colunas. Nas condições cromatográficas descritas, as substâncias analíticas foram bem separadas dos padrões interno com alta sensibilidade e reprodutibilidade.

As limitações da pesquisa são possíveis influências que podem ou não ser controladas pelo pesquisador. Este tipo de abordagem está relacionado ao emprego de recursos e técnicas estatísticas que visem quantificar os dados coletados. No desenvolvimento da pesquisa de natureza quantitativa devem-se formular hipóteses e classificar a relação entre as variáveis para garantir a precisão dos resultados, evitando contradições no processo de análise e interpretação. Assim, foi observada relativa dificuldade quanto à geração, interpretação e análise dos resultados estatísticos uma vez que esses parâmetros farmacocinéticos foram processados por empresa (Pharmacience Laboratórios Ltda) especializada e autorizada pela Agência Nacional de Vigilância Sanitária.

Os métodos analíticos mostraram-se precisos, pois os coeficientes de variação para os controles de qualidade, baixo, médio e alto permaneceram abaixo de 15% e abaixo de 20% para o controle de qualidade com a mesma concentração

do limite de quantificação. Verificou-se acurácia, pois os valores médios permaneceram dentro dos 15% do valor nominal para o controle de qualidade baixo, médio e alto e não se desviou mais que 20% de limite de quantificação.

Os métodos foram considerados sensíveis, pois os menores limites de quantificação dos métodos (LQ=0,5 µg/mL; 30ng/mL; 20/40 ng/mL, para amoxicilina, norfloxacino e OXC/MHD, respectivamente) apresentaram um coeficiente de variação inferior a 20%.

Os métodos mostraram-se específicos já que não houve interferência nos tempos de retenção dos picos dos analitos superior a 20% da resposta do limite de quantificação.

A estabilidade dos métodos foi assegurada, através dos testes de congelamento e descongelamento, onde se verificou não haver degradação devido à temperatura, em 3 ciclos de congelamento e descongelamento, bem como no pós- processamento, curta e longa duração de estocagem.

Os métodos analíticos utilizados HPLC/RP e LC-MS-MS para quantificação de norfloxacino e OXC/MHD em plasma humano, desenvolvido e validado, apresentam vantagens sobre os já descritos. A quantificação de amoxicilina demonstrou resultados semelhantes aos já publicados, embora utilizando outras técnicas de detecção como espectrometria de massa.

CONCLUSÃO

Os três métodos bioanalíticos propostos foram desenvolvidos, devidamente validados e quantificam com exatidão (acurácia) e precisão (reprodutibilidade) os parâmetros farmacocinéticos de formas farmacêuticas orais de amoxicilina, norfloxacino e oxcarbazepina em plasma de voluntários sadios, de modo que são válidos para o emprego em estudos de bioequivalência que envolvam esses fármacos.

REFERÊNCIAS

ABIFAM. Perfil mercadológico dos medicamentos genéricos. [S.l.], 2001.

ALMEIDA, A .M.; CASTEL-BRANCO, M. M.; FALCÃO, A. C. J. Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. Chromatogr. B, v. 774, p. 215, 2002.

ANVISA (Brasil). RDC nº 10, de 2 de janeiro de 2001. Regulamento técnico para medicamentos genéricos. Diário Oficial da República Federativa do Brasil, Poder executivo, Brasília, DF, 09 de janeiro de 2001.

ANVISA (Brasil). Resolução RE nº 899, de 29 de maio 2003. Guia para validação de métodos analíticos e bioanalíticos. Diário Oficial da República Federativa do Brasil, Poder executivo, Brasília, DF, 02 de juho de 2003.

ANDERSON, G. D.; LEVY, R. H. Phenobarbital: chemistry and biotransformation. In: LEVY, R. H.; MATTSON, R. H.; MELDRUM, B. S. (Ed.). Antiepileptic drugs. 4th ed. New York: Raven Press, 1995. p. 371-377

ANTIGNAC, J. P.; BIZEC, B. L.; MONTEAU, F.; POULAIN, F.; ANDRE, F. Collision- induced dissociation of corticosteroids in electrospray tandem mass spectrometry and development of a screening method by high performance liquid chromatography/tandem mass spectrometry, RCMS, v. 14, p. 33-39, 2000.

ASSOCIAÇÃO GRUPO DE ANALISTAS DE RESÍDUOS DE PESTICIDAS (GARP). Manual de Resíduos de Pesticidas em Alimentos. [S.l.], 1999. Apostila.

ATKINSON, H. C.; BEGG, E. J.; DARLOW, B. A. Drug in human milk: clinical pharmacokinetic considerations. Clin. Pharmacokinet., v. 14, p. 217-240, 1988. ATKINSON, J. A.; DANIELS, C. E.; DECRICK, R. L.; GRUDZINSKAS, C. V.; MARKEY, S. P. Principles of clinical pharmacology. London: Academic Press, London, 2001.

AUGUSTO, F.; ANDRADE, J. C.; CUSTÓDIO, R. The linear range of a calibration curve. Chemkeys, p. 1-8, 2000.

BAGLIE S.; ROSALEN, P. L.; FRANCO, L. M.; RUENIS, A. P.; BAGLIE, R. C.; FRANCO, G. C.; SILVA, P.; GROPPO, F. C. Comparative bioavailability of 875 mg amoxicillin tablets in healthy human volunteers. Int. J. Clin. Pharmacol. Therap., v. 43, p. 350-354, 2005.

BALL, A. P.; DAVEY, P.G.; GEDDES, A.M.; FARREI, I.D.; BROOKES, G. Clavulanic acid and amoxycillin: a clinical, bacteriological, and pharmacological study. Lancet, p. 620-623, 1980.

BARR, W.; ZOLA, E. M.; CANDLER, E. L. Differential absorption of amoxicilin from the human small and large intestine. Clin. Pharmacol. Ther., v. 56, p. 279-285, 1994.

BARROS NETO, B.; PIMENTEL, M. F.; ARAÚJO, M. C. U. Recomendações para calibração em química analítica - Parte I. Fundamentos e calibração com um componente (calibração univariada). Quim. Nova, v.25, n.5, p.856-865, 2002.

BENBROOK, D. M.; MILLER, R. V. Effects of norfloxacin on DNA metabolism in Ps. Aeruginosa. Antimicrob. Agents Chemother., v. 29, p. 1-6, 1986.

BENET, L. Z. Effect of rout of administration and distribution on drug action. J Pharmacokinet. Biopharm., v. 6, p. 559-585, 1978.

BENET, L. Z. Pharmacokinetic parameters: wich are necessary to define a drug substance? Eur. J. Res. Dis., v. 65, suppl. 134, p. 45-61, 1984.

BENET, L. Z.; GALEAZZI, R. L. Noncompartimental determination of the steady-state volume of distribution. J. Pharm. Sci., v. 68, p. 1971-1974, 1979.

BERG, R. G.; MURTA, A. L. M.; KUGLER, W. O método das adições padrão aplicado à análise cromatográfica quantitativa de fenóis em águas residuais. Quim. Nova, v. 11, p. 288-291, 1988.

BERGERON, M. G.; THABET, M.; ROY, R.; LESSARD, C.; FOUCAULT, P. Norfloxacin penetration into human renal and prostatic tissues. Antimicrob. Agents Chemother., v. 26, p. 110-111, 1984.

BIALER, M. Oxcarbazepine - chemistry, biotransformation and pharmacokinetics. In: LEVY, E. H.; MATTSON, R.; MELDRUM, B. S. et al. (Ed.). Antiepileptic Drugs.

Philadelphia: Lippincott-Williams and Wilkins, 2002. cap. 45, p. 459-465.

BLUMBERG, P. M.; STROMINGER, J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol. Rev., v. 38, p. 291, 1974.

BOX, G. E. P.; HUNTER, W. G.; HUNTER, J. S. Statistics for Experimenters. New York: Wiley, 1987.

BRIDGES, J. W. Metabolism and molecular interactions related toxicity. In: (Fowler, B.A. (Ed.). Mechanism of cell injury: Implications for human heath. New York: John Wiley & Sons, 1987.

BRETON, H.; COCIGLIO, M.; BRESSOLLE, F.; PEYRIERE, H.; BLAYAC, J. P.; HILLAIRE-BUYS, D. Liquid chromatography–electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J. Chromatogr. B, v. 828, p. 80-90, 2005.

BRODIE, P. Physicochemical factors in drug absorption. In: BINNS, T. B. (Ed.). Absorption and distribution of drug. Baltimore: The Williams & Wikins Co., 1964.

BRUCE, P.; MINKKINEN, P.; RIEKKOLA, M. L. Practical method validation: validation sufficient for an analysis method. Mikrochim. Acta, v. 128, p. 93-106, 1998.

BULL, J. P. The historical development of clinical therapeutics trials. J. Chron. Dis., v. 10, p. 218-248, 1959.

BURNS, D. T.; DANZER, K.; TOWNSHEND, A. Use of the term ”recovery“ and “apparent recovery” in analytical procedures. Pure Appl. Chem., v. 74, p. 2201- 2205, 2002.

CAUSON, R. Validation of chromatographic methods in biomedical analysis. Viewpoint and discussion. J. Chromatograp. B, v. 689, p. 175-180, 1997.

CARDONE, M. J.; WILLAVIZE, S. A.; LACY, M. E. Method validation revisited: a chemometric approach. Pharm. Res., v. 7, p. 154-160, 1990.

CASTILLO, S.; SCHMIDT, D. B.; WHITE, S. Oxcarbazepine add-on for drug-resistant partial epilepsy. Cochrane Database Syst. Rev., v. 3, CD002028, 2000.

CHARLES, B.; CHULAVATNATOL, S. Simple analysis of amoxicillin in plasma by high performance liquid chromatography with internal standardization and ultraviolet detection. Biomed. Chromatogr, v. 7, p. 204-207, 1993.

CHASIN, A. M.; CHASIN, M.; SALVADORI, M. C. Validação de métodos cromatográficos em análises toxicológicas. Rev. Farm. Bioquim. USP, v. 30, p. 41- 46, 1994.

CHUI, Q. S. H.; ZUCCHINI, R. R.; LICHTIG, J. Qualidade de medições em química analítica. Estudo de caso: determinação de cádmio por espectrofotometria de absorção atômica com chama. Quim. Nova, v. 24, p. 374-380, 2001.

CODEX ALIMENTARIUS. Commission on Methods of Analysis and Sampling; Criteria for Evaluating Acceptable Methods of Analysis for Codex, 1995.

COFSKY, R. D.; DUBONCHET, L.; LENDESMAN, S. H. Recovery of norfloxacin in feces after administration of a single oral dose to human volunteers. Antimicrob. Agents Chemother., v. 26, p. 110-111, 1984.

COLEBROOK, L.; PURDIE, A. W. Treatment of 106 cases of puerperal fever by sulphanilamide. Lancet, p. 1237-1242, 1291-1294, 1937.

COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. Introdução a métodos cromatográficos. 7. ed. Campinas, SP: UNICAMP, 1997.

CÓRDOBA-BORREGO, M.; CÓRDOBA-DÍAZ, M.; CÓRDOBA-DÍAZ, D. Validation of a high-performance liquid chromatographic method for the determination of norfloxacin and its application to stability studies (photo-stability study of norfloxacin). J. Pharm. Biomed. Anal., v. 18, p. 919–926, 1999.

COZZARELLI, N. R. DNA gyrase and the supercoiling of DNA. Science, v. 207, p. 953-960, 1980.

CRUMPLIN, G. C.; KENWRIGHT, M.; HIRST, T. Investigations into the mechanism action of the antibacterial agent norfloxacin. J. Antimicrob. Chemother., v. 13, p. 9- 23, 1984.

CUADROS-RODRÍGUEZ, L.; GÁMIZ-GRACIA, L.; ALMANSA-LÓPEZ, E. M.; BOSQUE-SENDRA, J. M. Calibration in chemical measurement processes. II. A me- thodological approach, Trends Anal. Chem., v. 20, p. 620-635, 2001.

CUADROS-RODRÍGUEZ, L.; GARCIA-CAMPAÑA, A. M.; ALMANSA-LÓPEZ, E. M.; EGEA-GONZÁLEZ, F. J.; CANO, M. L. C.; FRENICH, A. G.; MARTINEZ-VIDAL, J. L. Correction function on biased results due to matrix effects: Application to the routine analysis of pesticide residues. Anal. Chim. Acta, v. 478, p. 281-301, 2003.

CULLMANN, W.; DICK, W. A simple enzyme assay for the simultaneous determination of penicillin derivatives and clavulanic acid in biological fluids. Immun. Infect., v. 14, p. 188-190, 1986.

CUSTODIO, R.; DE ANDRADE, J. C.; AUGUSTO, F. O ajuste de funções matemáticas a dados experimentais. Quim. Nova, v. 20, p. 219-225, 1997.

DE ANDRADE, J. C. O papel dos erros determinados em análises químicas. Quim. Nova, v. 10, p. 159-165, 1987.

DOUSA, M.; HOSMANOVA, R. Rapid determination of amoxicillin in premixes by HPLC. J. Pharm. Biomed. Anal., v. 37, p. 373, 2005.

ERAH, P. O.; GODDARD, A. F.; BARRETT, D. A.; SHAW, P. N.; SPILLER, R. C. J. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice— relevance to the treatment of Helicobacter pylori infection. Antimicrob. Agents Chemother., v. 39, p. 5-12, 1997.

EGEA-GONZÁLEZ, F. J.; TORRES, M. E. H.; LÓPEZ, E. A.; CUADROS- RODRÍGUEZ, L.; VIDAL, J. L. M. Matrix-effects of vegetable commodities in electron- capture detection applied to pesticide multiresidue analysis. J. Chromatogr. A, v. 966, p. 155, 2002.

ENGLE, E. C.; MANES, S. H.; DRLICA, K. Differential effects of antibiotics inhibiting gyrase. J. Bacteriol., v. 149, p. 92-98, 1983.

ESPINOSA-MANSILLA, A.; DE LA PEÑA, A. M.; GÓMEZ, D. G.; SALINAS, F. HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorometric (PIF) detection and multiemission scanning: application to urine and serum. J. Chromatogr. B, v. 822, p. 185–193, 2005.

EURACHEM WORKING GROUP. The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, 1998.

FERGUSSON, F. R.; DAVEY, A. F.; TOPLEY, W. W. C. The value of mixed vaccines in the prevention of the common cold. J. Hyg., v. 26, p. 98-109, 1927.

FINK, G. D. Drug abuse. In: BRODY, T. M.; LARNER, J.; MINNEMAN, K. P. (Ed.). Human pharmacology: molecular to clinical. 3ª ed. St. Louis, MO: Mosby, 1998. FLESCH, G. Overview of the Clinical Pharmacokinetics of Oxcarbazepine. Clin. J. Invest., v. 24, p. 185, 2004.

FOOD AND DRUG ADMINISTRATION. Bioavailability and bioequivalence requirements. Fed. Regist., n. 320, p. 154-173, 1985.

FOOD AND DRUG ADMINISTRATION. Bioavailability and bioequivalence requirements; abbreviated applications; proposed revisions-FDA. Proposed rule. Fed. Regist., v. 63, n. 223, p. 64222-64228, 1998a.

FOOD AND DRUG ADMINSTRATION. Guidance for industry, bioanalytical methods validation for human studies. ., 1998b. Disponível em:<http://www.fda.gov/cder/guidance/1221.pdf>. Acesso em: 21 Dec. 2010.

FOOD AND DRUG ADMINSTRATION. In vivo bioequivalence guidances. Pharmacopeial Forum, v. 19, p. 6501-6508, 1993.

GLAUSER, T.A. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy, v. 21, p. 904-919, 2001.

GOLDSTEIN, A.; ARONOW, L.; KALMAN, S.M. Principles of drug action: The basis of pharmacology, 2ª ed. John Wiley & Sons Inc., New York, 1974.

GONZALEZ-ESQUIVEL, D.F.; ORTEGA-GAVILÁN, M.; ALCANTARA-LOPEZ, G. JUNG-COOK, H. Plasma level monitoring of oxcarbazepine in epileptic patients. Arch. Med. Res., v. 31, p. 202-205, 2000.

GOODMAN & GILMAN. As bases farmacológicas da terapêutica, 11ª ed., Guanabara Koogan, Rio de Janeiro, 2007.

GORDON, R.C.; GAMEY, C.; KIRBY, W.M.M. Comparative clinical pharmacology of amoxicillin and ampicillin administered orally. Antimicr Ag Chemother, v. 1, p. 504- 507, 1972.

GORDON, R.C.; WINSHELL, E.B. Pharmacological studies of 6 [D(-)-amino-p- hydroxyphenylacetamidol] penicilanic acid in humans. Antimicr Ag Chemoter, v. 1, p. 423-426, 1970.

GLAUSER, T.A. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy v. 21, p. 904-919, 2001.

GRANT, S.M.; FAULDS, D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs, v. 43, p. 873-888, 1992.

GREEN, J.M. A practical guide to analytical method validation. Anal. Chem., v. 68, p. A305-309, 1996.

GREENWOOD, M.; YULE, G.U. The statistics of anti-typhoid and anti-cholera inoculations and interpretation of such statistics in general. Proc R Soc Med, v. 8, p.113-194, 1915.

GUYTON, A.C. Tratado de Fisiologia Médica. 4ª ed., Guanabara Koogan, Rio de Janeiro, 1973.

HAN, Y.; WU, X.; YANG, J.; et al. The fluorescence characteristic of the

yttriumnorfloxacin system and its analytical application. J Pharm Biomed Anal. v. 38, p. 528–531, 2005.

HANDFIELD, H.H.; CLARK, H.; WALLACE, J.F.; HOLMES, K.K.; TURCK, M. Amoxicilin, a new penicillin antibiotic. Antimicr Ag Chem, v. 3, p. 262-265, 1973. HENION, J.; BREWER, E.; RULE, G. Sample preparation for LC/MS/MS: analyzing biological and environmental samples. Anal Chem, v. 70, p. 650-656, 1998.

HEYDEN, Y.V. Analysis. v. 22, p. M27, 1994.

HILL, A.R.C; REYNOLDS, S.L. Guidelines for in-house validation of analytical methods for pesticide residues in food and animal feeds. Analyst. v. 124, p. 953, 1999.

HOIZEY G., LAMIABLE D., FRANCES C., TRENQUE T., KALTENBACH M., DENIS J. E MILLART H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. Journal of Pharmaceutical and Biomedical Analysis v. 30, p. 661-666, 2002.

HOLMES, O.W. Currents and counter currents in medical science. In Work, v. 9, p. 185, 1891.

HOOPER, D.C.; WOLFSON, J.S. Mode of action of the quinolone antimicrobial agents. Review of recent information. Reviews of Infectious Diseases, v. 11, p. S902- S911, 1989.

HOOPER, W.D.; DICKINSON, R.G.; DUNSTAN, P.R. Oxcarbazepine: preliminary Clinical and pharmacokinetic studies on a new anticonvulsant. Clin Exp Neurol. v. 24, p. 105-112.

HORWITZ, W. Protocol for the design, conduct and interpretation of met hod-perf ormance studies. Pure Appl. Chem. v. 67, p. 331-343, 1995.

HORWITZ, W.; KAMPS, L.R.; BOYER, K.W. J. Assoc. Offic. Anal. Chem. v. 63, p. 1344, 1980.

HOUTKOOPER, M.A.; LAMMERTSMA, A.; MEYER, J.W. Oxcarbazepine (GP 47.680): a possible alternative to carbamazepine? Epilepsia, v. 28, p. 693-698, 1987.

HUBER, L. Validation of analytical methods: review and strategy. LC-GC Int., v. 11, p. 96-105, 1998.

HUBERT P.; CHIAP, P.; CROMMEN J. The SFSTP guide on the validation of chromatographic methods for drug bioanalysis: from the Washington Conference to the laboratory. Anal Chim Acta. v. 391, p. 135–148, 1999.

HUSSAIN, M.S.; CHUKWUMAEZE-OBIAJUNWA, V.; MICETICH, R.G. Sensitive high performance liquid chromatographic assay for norfloxacin utilizing fluorescence detection. J Chromatogr B. v. 63, p. 379–384, 1995.

INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL (INMETRO). Vocabulário Internacional de Termos Fundamentais e Gerais de Metrologia, 2ª ed., 2000.

INSTITUTO NACIONAL DE METROLOGIA. Normalização e Qualidade Industrial (INMETRO); Orientações sobre Validação de Métodos de Ensaios Químicos, DOQ- CGCRE-008, 2003.

INTERNACIONAL STANDARD ORGANIZATION. Precision of Test Methods, ISO 5725, 1994.

INTERNATIONAL CONFERENCE ON HARMONISATION (ICH); Validation of Analytical Procedures: Definitions and Terminology, Q2A (CPMP/ICH/381/95), 1995. INTERNATIONAL CONFERENCE ON HARMONISATION (ICH); Validation of Analytical Procedures: Methodology, Q2B (CPMP/ICH/281/95), 1995.

INTERNATIONAL STANDARD ORGANIZATION. General Requirements for the Competence of Testing and Calibration Laboratories, ISO/IEC 17025, 1999.

INTERNATIONAL STANDARD ORGANIZATION. Statistics-Vocabulary and Symbols- Part 1: Probability and General Statistical Terms, ISO 3534-1, 1993.

JENKE, D.R. Chromatographic Method Validation: A Review of Current Practices and Procedures. Instrument. Sci. Technol. v. 25, p. 345-359, 1997.

JENKE, D.R. Chromatographic Method Validation: A Review of Current Practices and Procedures. Part II. Guidelines for Primary Validation Parameters. Instrument. Sci. Technol. v. 26, p. 1-18, 1998a.

JENKE, D.R. Chromatographic Method Validation: A Review of Current Practices and Procedures. Part II. Guidelines for Primary Validation Parameters. Instrument. Sci. Technol. v. 26, p. 19-35, 1998b.

JUERGENS, U. HPLC analysis of antiepileptic drugs in blood samples: microbore separation of fourteen compounds. J Liquid Chromatogr v. 10, p. 507-532, 1987. KLOTZ, U.; AVANT, G.R.; HOUYUMPA, A.; SCHENKER, S.; WILKINSON, G.R. The effects of age and liver descase on the disposition and elimination of diazepam in adult man. J Clin Invest, v. 55, p. 347-359, 1975.

KOSMIDIS, P.; WILLIANS, J.D.; ANDREWS, J. Amoxicillin – pharmacology, bacteriology and clinical studies. Br J Clin Pract, v. 26, p. 341-346, 1972.

KRAUWINKEL, W.J.; VOLKERS-KAMERMANS, N.J.; VAN ZIJTVELD, J. Determination of amoxicillin in human plasma by high-performance liquid chromatography and solid phase extraction. J Chromatogr, v. 617, p. 334-338, 1993.

KRISTENSEN, O.; KLITGAARD, N.A.; JONSSON, B.; et al. Pharmacokinetics of 10-

OH-carbazepine, the main metabolite of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurol Scand, v. 68, p. 145-150, 1983.

KRULL, I.; SWARTZ, M.; Frequently Asked Questions about. Analytical Method Validation. LC-GC. v. 16, p. 464-467, 1998.

KYUANG-HWAN YOON; SO-YOUNG LEE; WON KIM; JONG-SEI PARK; HIE-JOON KIM., Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC-ESI mass spectrometry. J. Chromatogr. B, v. 813, p. 121-127, 2004.

LANCKMANS, K.; CLINCKERS, R.; VAN EECKHAUT, A.; SARRE, S.; SMOLDERS, I.; MICHOTTE, Y. Use of microbore LC-MS/MS for the quantification of oxcarbazepine and its active metabolite in rat brain microdialysis samples. J. Chromatogr. B. v. 831, p. 205, 2006.

LANÇAS, F.M. Cromatografia em Fase Gasosa, Acta: São Carlos, 1993.

LEENHEER, A.P.; NELIS, H.J.; LAMBERT, W.E.; BAUWENS, R.M. Chromatography of fat-soluble vitamins in clinical chemistry. J. Chromatogr. v. 429, p. 3-58, 1988. LEITE, F. Validação em Análise Química, 4a ed., Editora Átomo: Campinas, 2002. LEVERT, H.; ODOU, P.; ROBERT, H. LC determination of oxcarbazepine and its active metabolite in human serum. J Pharm Biomed Anal, v. 28, p. 517-25, 2002a. LEVERT, H.; ODOU, P.; ROBERT, H. Simultaneous determination of four

antiepileptic drugs in serum by high‐performance liquid chromatographyBiomed.

Chromatogr. v. 16, p. 19-24, 2002b.

LLOYD, P.; FLESCH, G.; DIETERLE, W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia, v. 35, p. S10-13, 1994.

LOBO, N.C. Desenvolvimento De Um Método Analítico de Norfloxacina em Plasma de Voluntários Sadios Usando Cromatografia Líquida de Alta Eficiência no Modo Reverso. Dissertação de Mestrado, Universidade São Francisco Bragança Paulista – SP, p. 8-39, 2001.

LOUIS, P.C.A. Essay on clinical instruction. London: S. Highley (ed), 1834.

MASCHER, H.J.; KIKUTA, C. Determination of norfloxacin in human plasma and urine by high-performance liquid chromatography and fluorescence detection. J Chromatogr A. v. 812, p. 381–385, 1998.

MASSART, D.L.; SMEYERS-VERBEKE, J.; VANDEGINSTE, B. An introduction to method validation. Analysis. v. 22, p. M14-16, 1994.

MATAR, K.M.; NICHOLLS, P.J.; AL-HASSAN, M.I.; et al. A rapid micromethod for

simultaneous measurement of oxcarbazepine and its active metabolite in plasma by high-performance liquid chromatography. J Clin Pharm Ther. v. 20, 229-234, 1995. MATUSZEWSKI, B.K.; CONSTANZER, M.L.; CHAVEZ-ENG, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. v. 75, p. 3019, 2003.

MAURER, H.H. Liquid chromatography-mass spectrometry in forensic and clinical toxicology. J Chromatogr B, v. 713, p. 3-25, 1998.

MAURER, H.H.; KRATZSCH, C.; WEBER, A.A.; PETERS, F.T.; KRAEMER, T. Validated assay for quantification of oxcarbazepine and its active dihydrometabolite 10-hydroxycarbazepine in plasma by atmospheric pressure chemical ionization liquid chromatography/mass spectrometry. J. Mass Spectrom. v. 37, p. 687-692, 2002. MAY, T.W.; KORN-MERKER, E.; RAMBECK, B. Clinical pharmacokinetics of oxcarbazepine. Clin Pharmacokinet. v. 42, p. 1023-1042, 2003.

MCLEAN, M.J.; SCHMUTZ, M., WAMIL, A.W. Oxcarbazepine: mechanisms of action. Epilepsia. v. 35, p. S5-9, 1994.

MENELAOU A.; SOMOGYI A.A.; BARCLAY M.L.; BOCHNER F. Simultaneous quantification of amoxycillin and metronidazole in plasma using high-performance liquid chromatography with photodiode array detection. Journal of Chromatography B. v. 731, p. 261-266, 1999.

MENGE, G.; DUBOIS, J.P. Determination of OXC in human plasma by high- performance liquid chromatography. J Chromatogr. v. 275, p. 189-194, 1983.

MENGE, G.; DUBOIS, J.P.; BAUER, G. Simultaneous determination of carbamazepine, oxcarbazepine and their main metabolites in plasma by liquid chromatography. J Chromatogr. v. 414, 477-483, 1987.

MILES, M.V.; TANG, P.H.; RYAN, M.A.; GRIM, S.A.; FAKHOURY, T.A.; STRAWSBURG, R.H.; DEGRAUW, T.J.; BAUMANN, R.J. Feasibility and limitation of oxcarbazepine monitoring using salivary monohydroxycarbamazepine (MHD). Ther. Drug Monit., v. 26, p. 300-304, 2004.

MILLER, J.C.; MILLER, J.N. Statistics for Analytical Chemistry, 2ª ed., Ellis Horwood: Chichester, 1988.

MIYAZAKI, K.; OHTANI, K.; SUNADA, K.; ARITA, T. Determination of ampicillin, amoxicillin, cephalexin and cephradine in plasma by high-performance liquid chromatography using fluorimetric detection. J Chromatogr, v. 276, p. 478-82, 1983. MUTH, P.; METZ, R.; BECK, H. BOLTEN, W.W.; VERGIN, H. Improved high- performance liquid chromatographic determination of amoxicillin in human plasma by means of column switching. J Chromatogr A, v. 729, p. 259-266, 1996.

MYERS, C.M.; BLUMER, J.L. High-performance liquid chromatography of ciprofloxacin and its metabolites in serum, urine and sputum. J Chromatogr. v. 422, p. 153–164, 1987.

NASIR M.I.; AHMAD A.; NAJI M.N. Bioequivalence evaluation of two brands of amoxicillin/clavulanic acid 250/125 mg combination tablets in healthy human volunteers: Use of replicate design approach. Biopharmaceutics & Drug Disposition. v. 25, p. 367-372, 2004.

NEBERT, D.W.; GONZALEZ, F.J. P450 genes: structure, evolution and regulation. Annu Rev Biochem, v. 56, p. 945-993, 1987.

NEDELMAN, J.R.; HOSSAIN, M.; CHANG, S.W.; et al. Oxcarbazepine: analysis of

concentration-efficacy/safety relationships [abstract]. Neurology. v. 52, p. A524, 1999.

NEU, H.C. Antimicrobial activity and human pharmacology of amoxicillin. J Infect Dis, v. 129, p. S123-S131, 1974.

NEU, H.C.; WINSHELL, E.B. Pharmacological studies of 6 [D(-)-amino-p- hydroxyphenylacetamidol] penicillanic acid in humans. Antimicr Ag Chemoter, v. 1, p. 423-26, 1970.

NORRBY, S.R. Pharmacokinetics of norfloxacin: clinical implications. European Journal of Chemotherapy and Antibiotics, v. 3, p. 19-25, 1983.

PAGE, C.; CURTIS, M.; SUTTER, M.; WALKER, M.; HOFFMAN, B. Integrated pharmacology. Mosby, Edinburgh, 2002.

PAINTAUD, G.; ALVÁN, G.; DAHL, M.L.; GRAHNÉN, A.; SJÖVALL, J.; SVENSON, J.O. Nonlinearity of amoxicilin absorption kinetics in human. Eur Clin Pharmacol, v. 43, p. 283-288, 1992.

PATSALOS, P.N.; ELYAS, A.A.; ZAKRZEWSKA, J.M. Protein binding of oxcarbazepine and its primary active metabolite, 10-hydroxy Clin Pharmacokinet. v. 42, p. 12, 2003.

PATSALOS, P.N.; ELYAS, A.A.; ZAKRZEWSKA, J.M. Protein binding of oxcarbazepine and its primary metabolite, l0-hydroxycarbazepine, in patients with trigeminal neuralgia. Eur J Clin Pharmacol. v. 39, p. 413-415, 1990.

PIENIMAKI, P.; FUCHS, S.; ISOJARVI, J.; VAHAKANGAS, K. Improved detection and determination of carbamazepine and oxcarbazepine and their metabolites by high-performance liquid chromatography. J. Chromatogr. B. v. 673, p. 97-105, 1995.

PILORZ, K.; CHROMA, I. Isocratic reversed-phase high-performance liquid chromatographic separation of tetracyclines and flumequine controlled by a chaotropic effect. J Chromatogr A. v. 1031, p. 303–305, 2004.

PISTOS, C.; TSANTILI-KAKOULIDOU, A.; KOUPPARIS, M. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion- interaction high performance liquid chromatography. J Pharm Biomed Anal. v. 39, p. 438–443, 2005.

PRESCOTT, L.F.; NIMMO, W.S. Drug absorption. ADIS Press, New York, 1981. RIBANI, M.; BOTTOLI, C.B.G.; COLLINS, C.H.; JARDIM, I.C.S.F.; MELO, L.F.C. Validação em métodos cromatográficos e eletroforéticos. Química Nova. v. 27, p. 771-780, 2004.

RIBEIRO, A.N.F. Medicamentos Genéricos. Informações para farmacêuticos ou profissionais da saúde. Maio, 2000.

RIDOUT, G.; SANTUS, G.C.; GUY, R.H. Pharmacokinetic considerations in the use of new transdermal formulations. Clinical Pharmacokinet, v. 15, p. 114-131, 1988. ROBERTS, M.S.; DONALDSON, J.D.; ROWLAND, M. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzimeheterogeniety, and systemic recycling on hepatic elimination. J Pharmacokinetic Biopharm, v. 16, p. 41-83, 1988.

ROWLAND, M. TOZER, T.N. Clinical Pharmacokinetics. Concepts and Applications. 3ªed. Lea & Febiger. London, 1995.

VAN BELLE, K.; VERFAILLIE, I.; EBINGER, G.; MICHOTTE, Y. Liquid chromatographic assay using a microcolumn coupled to a U-shaped optical cell for

high-sensitivity ultraviolet absorbance detection of oxcarbazepine and its major metabolite in microdialysates. J. Chromatogr. B. v. 672, p. 97-102, 1995.

VAN ROOYEN, G.F.; BADENHORST, D.; SWART, K.J.; HUNDT, H.K.L.; SCANES,T.; HUNDT, A.F. Determination of carbamazepine and carbamazepine 10,11-epoxide in human plasma by tandem liquid chromatography–mass spectrometry with electrospray ionisation. J. Chromatogr. B. v. 769, p. 1-7, 2002. ROUAN, M.C.; LECAILLON, J.B.; GODBILLON, J.; et al. The effect of renal