• Nenhum resultado encontrado

O estudo de albuminas 2S expressas em sementes de Moringa oleifera tem fornecidos evidências de uma grande diversidade de isoformas, em parte, devido à origem multigênica, além do intenso processamento pós-traducional (MPT). Foram consideradas as PTMs: como hidroxilação de prolina, fosforilação de serina ou treonina, oxidação de metionina e cliclização de glutamina N-terminal em piroglutamato (pGlu).

Após alinhamento múltiplo das sequências de aminoácidos deduzidas foi possível agrupá-las em oito grupos distintos. Onde, quatro isoformas foram descritas anteriormente (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 e Mo-CBP3-4), enquanto que as isoformas Mo-CBP3- 2A (163 resíduos de aminoácidos), Mo-CBP3-2B (162 resíduos), Mo-CBP3-3A (160 resíduos) e Mo-CBP3-3B (160 aa) foram descritas pela primeira vez neste trabalho. Embora existam outras isoformas de albuminas 2S na M. oleifera, as quais não foi possível serem identicadas neste trabalho.

Análises das sequências de aminoácidos, deduzidas de DNA genômico, sugeriram que as isoformas de Mo-CBP3 são sintetizadas como preproproteínas, contendo um peptídeo sinal N-terminal, um propeptídeo N-terminal, uma cadeia menor com cerca de 4 kDa, um peptídeo de ligação entre as duas cadeias, uma cadeia maior com aproximadamente 8 kDa, e uma extensão C-terminal.

Estes resultados constituem importantes avanços na compreensão dos mecanismos pós-traducionais inerentes que operam durante a biossíntese das albuminas 2S nas sementes da M. oleifera.

REFERÊNCIAS

ABIYU, A. et al. Wastewater treatment potential of Moringa stenopetala over Moringa

olifera as a natural coagulant, antimicrobial agent and heavy metal removals. Cogent

Environmental Science. v. 4, p. 1–13, 2018.

AGIZZIO, A. P. et al. A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Archives of

Biochemistry and Biophysics. v. 416, p. 188–195, 2003.

AGIZZIO, A. P. et al. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells. Plant Science. v. 171, p. 515–522, 2006.

AGRAWAL, H.; SHEE, C.; SHARMA, A. K. Isolation of a 66 kDa Protein with coagulation activity from seeds of Moringa oleifera. Research Journal of Agriculture and Biological Sciences. v. 3, p. 418–421, 2007.

AHN, K. et al. Identification of two pistachio allergens, Pis v 1 and Pis v 2, belonging to the 2S albumin and 11S globulin family. Clinical and Experimental Allergy. v. 39, p. 926–934, 2009.

ALLEN, R. D. et al. Sequence and expression of a gene encoding an albumin storage protein in sunflower. Molecular & General Genetics. v. 210, p. 211–218, 1987.

ALTSCHUL, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research. v. 25, p. 3389-3402, 1997.

ASHRAF, M. et al. Microscopic evaluation of the antimicrobial activity of seed extracts of

Moringa oleifera. Agriculture. v. 40, p. 1349–1358, 2008.

BAPTISTA, A. T. A. et al. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology. v. 180, p. 114–124, 2017.

BATISTA, A. B. et. al. New Insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds. PLoS One. v.9, p. e111427, 2014.

BELTRAO, P. et. al. Evolution and functional cross-talk of protein post-translational modifications. Molecular Systems Biology. v. 9, p. 1-13, 2013.

BLOM, N. et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. v. 4, p. 1633-1649, 2004.

BOUALEG, I.; BOUTEBBA, A. Purification of water soluble proteins (2S albumins)

extracted from peanut defatted flour and isolation of their isoforms by gel filtration and anion exchange chromatography. Social Studies of Science. v. 18, 135-143, 2017.

BREITENEDER, H.; RADAUER, C. A classification of plant food allergens. Journal of Allergy and Clinical Immunology. v. 113, p. 821–830, 2004.

CÁCERES, A. et al. Pharmacological properties of Moringa oleifera. 1: Preliminary

CÂNDIDO, E. DE S. et al. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. The FASEB Journal. v. 25, p. 3290–3305, 2011.

CHEN, M. Elucidation of bactericidal effects incurred by Moringa oleifera and chitosan. Journal of the U.S. SJWP. v. 4, p. 65–79, 2009.

COSTA, T. G. et al. Identification of a novel 2S albumin with antitryptic activity from

Caryocar brasiliense seeds. Journal of Agricultural Science. v. 7, p. 197-206, 2015.

COTTRELL, J. S. Protein identification using MS/MS data. Journal of Proteomics. v. 74. p. 1842-1851, 2011.

Da SILVA, J. G. et al. Amino acid sequence of a new 2S albumin from Ricinus communis which is part of a 29-kDa precursor protein. Archives of Biochemistry and Biophysics. v. 336, p. 10–18, 1996.

De la CRUZ, S. et al. TaqMan real-time PCR assay for detection of traces of Brazil nut (Bertholletia excelsa) in food products. Food Control. v. 33, p. 105-113, 2013.

DUAN, X. H. et al. Some 2S albumin from peanut seeds exhibits inhibitory activity against

Aspergillus flavus. Plant Physiology and Biochemistry. v. 66, p. 84–90, 2013.

EBISAWA, M. et al. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. Journal of Allergy and Clinical Immunology. v. 132, 2013. EDGAR, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. v. 32, p. 1792-1797, 2004.

ELGAMILY, H. et al. Microbiological assessment of Moringa oleifera extracts and its incorporation in novel dental remedies against some oral pathogens. Macedonian Journal of Medical Sciences. v. 4, p. 585–590, 2016.

EYRAUD, V. et al. The interaction of the bioinsecticide PA1b (Pea Albumin 1 subunit b) with the insect V-ATPase triggers apoptosis. Scientific Reports. v. 7, p. 1–10, 2017.

FANG, E. F. et al. Biochemical characterization of the RNA-hydrolytic activity of a pumpkin 2S albumin. FEBS Letters. v. 584, p. 4089–4096, 2010.

FERRÈ, F.; CLOTE, P. DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research. v. 34, p. 182-185, 2006.

FERREIRA, P. M. P. et al. Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. Anais da Academia

Brasileira de Ciências. v. 81, p. 207–16, 2009.

FRANKE, B. et al. Two proteins for the price of one: Structural studies of the dual-destiny protein preproalbumin with sunflower trypsin inhibitor-1. Journal of Biological Chemistry. v. 292, p. 12398-12411, 2017.

FREIRE, J. E. C. et al. Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. PLoS One. v. 10, p. 1-24, 2015.

FRISO, G.; van WIJK, K. J. Update: Post-translational protein modifications in plant metabolism. Plant Physiology. v. 169, p.1-43, 2015.

GALLÃO, M. I.; DAMASCENO, L. F.; BRITO, E. S. Avaliação química e estrutural da semente de moringa. Revista Ciência Agronômica. v. 37, p. 106–9, 2006.

GANGULY, R.; GUHA, D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian Journal of Medical Research. v. 128, p. 744–751, 2008.

GARINO, C. et al. Isolation, cloning, and characterization of the 2S albumin: A new allergen from hazelnut. Molecular Nutrition and Food Research. v. 54, p. 1257–1265, 2010. GASSENSCHMIDT, U. et al. Isolation and characterization of a flocculating protein from

Moringa oleifera Lam. Biochimica et Biophysica Acta. v. 1243, p. 477–81, 1995.

GASTEIGER, E. et al. Protein Identification and Analysis Tools on the ExPASy Server., in The Proteomics Protocols Handbook, 2005, p. 571–607.

GEHRIG, P.M. et. al. Mass spectrometric amino acid sequencing of a mixture of seed

storage proteins (napin) from Brassica napus, products of a multigene family. Proceedings of the National Academy of Sciences. v. 93, p. 3647-3652, 1996.

GENOV, N. et al. A novel thermostable inhibitor of trypsin and subtilisin from the seeds of

Brassica nigra: Amino acid sequence, inhibitory and spectroscopic properties and

thermostability. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology. v. 1341, p. 157–164, 1997.

GHEBREMICHAEL, K. A. et al. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research. v. 39, p. 2338–2344, 2005.

GIBSON, T. J.; SULSTON, J. E. Preparation of large numbers of plasmid DNA samples in microtiter plates by the alkaline lysis method. Gene Analysis Techniques. v.4, p. 41-44, 1987.

GIFONI, J. M. et al. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers. v. 98, p. 406–415, 2012.

GOYAL, B. R. et al. Phyto-pharmacology of Moringa oleifera Lam . ó An overview. Natural Product Radiance. v. 6, p. 347–353, 2007.

GRESSENT, F. et al. Pea albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. Toxins. v. 3, p. 1502–1517, 2011.

GUPTA, P.; GAUR, V.; SALUNKE, D. M. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris. Acta

Crystallographica Section F: Structural Biology and Crystallization Communications. v. 64, p. 733–736, 2008.

HALL, T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. v. 41, p. 95-98, 1999.

HEATH, J. D. et al. Analysis of storage proteins in normal and aborted seeds from embryo- lethal mutants of Arabidopsis thaliana. Planta. v. 169, p. 304–312, 1986.

HUMMEL, M.; WIGGER, T.; BROCKMEYER, J. Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics: A consensus set of isoforms of Sin a 1. Journal of Proteome Research. v. 14, p. 1547-1556, 2015.

IRWIN, S. D. et al. The Ricinus communis 2S albumin precursor: A single preproprotein may be processed into two different heterodimeric storage proteins. Molecular and General Genetics. v. 222, p. 400–408, 1990.

JYOTHI, T. C. et al. Napin from Brassica juncea: thermodynamic and structural analysis of stability. Biochimica et Biophysica Acta. v. 1774, p. 907-919, 2007.

KAWAGOE, Y. et. al. The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Society. v.17, p. 1141-1153, 2005.

KHAN, S. et al. Purification and characterization of 2S albumin from Nelumbo nucifera. Bioscience, Biotechnology and Biochemistry. v. 80, p. 2109–2114, 2016.

KOU, X. et al. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients. v. 10, p. 343, 2018.

KREBBERS, E. et al. Determination of the processing sites of an Arabidopsis 2S Albumin and characterization of the complete gene family. Plant Physiology. v. 87, p. 859-866, 1988. KUMAR, A.; BACHHAWAT, A. K. Pyroglutamic acid: Throwing light on a lightly studied metabolite. Current Science. v. 102, p. 288-297, 2012.

LEE, P. Y. et al. Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments. v. 62, p.1-5, 2012.

LEHMANN, K. et al. Structure and stability of 2S albumin-type peanut allergens:

implications for the severity of peanut allergic reactions. Biochemical Journal. v. 395, p. 463-472, 2006.

PEREIRA, M. L. et al. Purification of a chitin-binding protein from Moringa oleifera seeds with potential to relieve pain and inflammation. Protein and Peptide Letters. v. 18, p. 1078– 1085, 2011.

LEONE, A. et al. Moringa oleifera seeds and oil: Characteristics and uses for human health. International Journal of Molecular Sciences. v. 17, p. 1–14, 2016.

LI, D. F. et al. Wang, Crystal structure of mabinlin II: A novel structural type of sweet proteins and the main structural basis for its sweetness. Journal of Structural Biology. v. 162, p. 50-62, 2008.

LI, L. et al. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. The Plant cell. v. 18, p. 3535–3547, 2006.

LIPIPUN, V. et al. Efficacy of Thai medicinal plant extracts against Herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Research. v. 60, p. 175–180, 2003. LIU, N. Y. et. al. Examination of segmental average mass spectra from liquid

chromatography-tandem mass spectrometric (LC-MS/MS) data enables screening of multiple types of protein modifications. Analytica Chimica Acta. v. 892, p. 115-122, 2015.

MAKKAR, H. P. S.; BECKER, K. Nutrients and antiquality factors in different

morphological parts of the Moringa oleifera tree. The Journal of Agricultural Science. v. 128, p. 311–322, 1997.

MANDAL, S. et al. Precursor of the inactive 2S seed storage protein from the Indian mustard

Brassica juncea is a novel trypsin inhibitor. Characterization, post-translational processing

studies, and transgenic expression to develop insect-resistant plants. Journal of Biological Chemistry. v. 277, p. 37161–37168, 2002.

MARCHLER-BAUER, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research. v. 45, p. D200-D203, 2017.

MARIA-NETO, S. et al. Bactericidal activity identified in 2S albumin from sesame seeds and

in silico studies of structure-function relations. Protein Journal. v. 30, p. 340–350, 2011.

MARTINOIA, E.; MAESHIMA, M.; NEUHAUS, H. E. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany. v. 58, p. 83–102, 2007. MENÉNDEZ-ARIAS, L. et al. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. European journal of Bochemistry/FEBS. v. 177, p. 159– 166, 1988.

MONSALVE, R. I.; VILLALBA, M.; RODRÍGUEZ, R. Allergy to mustard seeds: The importance of 2S albumins as food allergens. Internet Symposium on Food Allergens. v. 3, p. 57-69, 2001.

MORENO, F. J. et al. Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochimica et Biophysica Acta - Proteins and Proteomics. v. 1698, p. 175–186, 2004.

MORENO, F. J. et al. Thermostability and in vitro digestibility of a purified major allergen 2S albumin (Ses i 1) from white sesame seeds (Sesamum indicum L.). Biochimica et Biophysica Acta - Proteins and Proteomics. v. 1752, p. 142–153, 2005.

MORENO, F. J.; CLEMENTE, A. 2S albumin storage proteins: What makes them food allergens? The Open Biochemistry Journal. v.2, p. 16-28, 2008.

MYLNE, J. S.; HARA-NISHIMURA, I.; ROSENGREN, K. J. Seed storage albumins: biosynthesis, trafficking and structures. Functional Plant Biology. v. 41, p. 671–7, 2014. NASCIMENTO, V. V. et al. In silico structural characteristics and α-amylase inhibitory properties of Ric c 1 and Ric c 3, allergenic 2S albumins from ricinus communis seeds. Journal of Agricultural and Food Chemistry. v. 59, p. 4814-4821, 2011.

NAWROT, R. et al. Plant antimicrobial peptides. Host Defense Peptides and Their Potential as Therapeutic Agents. v. 59, p. 181–196, 2014.

NDABIGENGESERE, A.; SUBBA NARASIAH, K.; TALBOT, B. G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research. v. 29, p. 703–710, 1995.

NETO, J. X. S. et al. A chitin-binding protein purified from Moringa oleifera seeds presents anticandidal activity by increasing cell membrane permeability and reactive oxygen species production. Frontiers in Microbiology. v. 8, p.1-12, 2017.

NIRASAWA, S. et al. Cloning and sequencing of a cDNA encoding a heat-stable sweet protein, mabinlin II. Gene. v. 181, p. 225-227, 1993.

NWOSU, M.; OKAFOR, J. I. Preliminary studies of the antifungal activities of some medicial plants against Basidiobolus and some other pathogenic fungi. Mycoses. v. 38, p. 191–5, 1995.

ODINTSOVA, T. I. et al. Antifungal activity of storage 2S albumins from seeds of the invasive weed dandelion Taraxacum officinale Wigg. Protein and Peptide Letters. v. 17, p. 522–529, 2010.

OGURI, S. et al. Characterization and sequence of tomato 2S seed albumin: a storage protein with sequence similarities to the fruit lectin. Planta. v. 216, p. 976-984, 2003.

OKUDA, T. et al. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research. v. 35, p. 405–410, 2001.

ONYEKE, C. C.; AKUESHI, C. O. Infectivity and reproduction of Meloidogyne incognita (Kofoid and White) Chitwood on African yam bean, Sphenostylis stenocarpa (Hochst Ex. A. Rich) Harms accessions as influenced by botanical soil amendments. African Journal of Biotechnology. v. 11, p. 13095–103, 2012.

ORRUÑO, E.; MORGAN, M. R. A. Resistance of purified seed storage proteins from sesame (Sesamum indicum L.) to proteolytic digestive enzymes. Food Chemistry. v. 128, p. 923– 929, 2011.

PANTOJA-UCEDA, D. et al. Solution structure and stability against digestion of rproBnib, a recombinant 2S albumin from rapeseed: relationship to its allergenic properties.

Biochemistry. v. 43, p. 16036-16045, 2004a.

PANTOJA-UCEDA, D. et al. Solution structure of a methionine-rich 2S albumin from sunflower seeds: Relationship to its allergenic and emulsifying properties. Biochemistry. v. 43, p. 6976-6986, 2004b.

PANTOJA-UCEDA, D. et al. Solution structure of RicC3, a 2S albumin storage protein from

Ricinus communis. Biochemistry. v. 42, p. 13839-13847, 2003.

PANTOJA-UCEDA, D. et. al. Solution structure and stability against digestion of rproBnIb, a recombinant 2S albumin from rapeseed: Relationship to its allergenic properties.

Biochemistry. v. 43, p. 16036-16045, 2004.

PETERSEN, T. N. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. v. 8, p. 785-786, 2011.

PFEIFER, S. et al. Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion. Molecular Nutrition & Food Research. v. 59, p. 2077–2086, 2015.

PFEIFER, S. et. al. Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion. Molecular Nutrition & Food Research. v. 59, p. 2077-2086, 2015.

RAMACHANDRAN, C.; PETER, K. V.; GOPALAKRISHNAN, P. K. Drumstick (Moringa

RANI, N. Z. A.; HUSAIN, K.; KUMOLOSASI, E. Moringa Genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology. v. 9, p. 1–26, 2018. REGENTE, M.; DE LA CANAL, L. Do sunflower 2S albumins play a role in resistance to fungi? Plant Physiology and Biochemistry. v. 39, p. 407–413, 2001.

RIBEIRO, S. F. F. et al. Antifungal and other biological activities of two 2S albumin- homologous proteins against pathogenic fungi. Protein Journal. v. 31, p. 59–67, 2011a. RIBEIRO, S. M. et al. Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides. v.32, p. 868-874, 2011.

RICO, M. et al. 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Biochemistry. v. 35. p. 15672-15682, 1996.

ROBOTHAM, J. M. et al. Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family. Journal of Allergy and Clinical Immunology. v. 115, p. 1284–1290, 2005.

ROCHA, M. F. G. et al. Extratos de Moringa oleifera e Vernonia sp. sobre Candida albicans e Microsporum canis isolados de cães e gatos e análise da toxicidade em Artemia sp. Ciência Rural. v. 41, p. 1807–1812, 2011.

ROLIM, L. A. D. M. M. et al. Genotoxicity evaluation of Moringa oleifera seed extract and lectin. Journal of Food Science. v. 76, p. T53-T58, 2011.

RUNDQVIST, L. et al. Solution structure, copper binding and backbone dynamics of

recombinant Ber e 1 - The major allergen from brazil nut. PLoS One. v. 7. p. e46435, 2012. SAHAY, S.; YADAV, U.; SRINIVASAMURTHY, S. Potential of Moringa oleifera as a functional food ingredient: A review. International Journal of Food Science and Nutrition. v. 2, p. 31–37, 2017.

SAMBROOK, J.; FRITSCH, T. E. Molecular Cloning: A Laboratory Manual, in: 2nd Ed., Cold Spring Harb. Lab. Press. Cold Spring Harb., 1989.

SANTOS, A. F. S. et al. Isolation of a seed coagulant Moringa oleifera lectin. Process Biochemistry. v. 44, p. 504–508, 2009.

SAPANA, M. M.; SONAL, G. C.; RAUT, P. Use of Moringa oleifera (Drumstick) seed as natural absorbent and an antimicrobial agent for ground water treatment. Research Journal of Recent Sciences. v. 1, p. 31–40, 2012.

SCHÄGGER, H. Tricine-SDS-PAGE. Nature Protocols. v.1, p. 16-22, 2006.

SHARIEF, F. S.; LI, S. S. Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. The Journal of biological chemistry. v. 257, p. 14753– 14759, 1982.

SHARMA, A. et al. Purification and characterization of 2S albumin from seeds of Wrightia tinctoria exhibiting antibacterial and DNase activity. Protein and Peptide Letters. v. 24, p. 368–378, 2017.

SHARMA, G. M. et al. Cloning and characterization of 2s albumin, Car i 1, a major allergen in pecan. Journal of Agricultural and Food Chemistry. v. 59, p. 4130–4139, 2011.

SHEVCHENKO, A. et al. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analytical Chemistry. v. 68, p. 850-858, 1996.

SHEWRY, P. R.; NAPIER, J. A; TATHAM, A S. Seed storage proteins: structures and biosynthesis. The Plant cell. v. 7, p. 945–956, 1995.

SHIH, M. C. et al. Effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa oleifera.

International Journal of Molecular Sciences. v. 12, p. 6077–6088, 2011.

SIEVERS, F.; HIGGINS, D. G. Clustal Omega, accurate alignment of very large numbers of sequences, in: Russell D. Mult. Seq. Alignment Methods. Methods Mol. Biol. (Methods Protoc. Vol 1079. Humana Press. Totowa, NJ, 2014.

SOUZA, P. F. N. et al. A 2S albumin from the seed cake of Ricinus communis inhibits trypsin and has strong antibacterial activity against human pathogenic bacteria. Journal of Natural Products. v. 79, p. 2423–31, 2016.

SOUZA, P. F. N. et. al. A 2S albumin from the seed cake of Ricinus communis inhibits trypsin and has strong antibacterial activity against human pathogenic bacteria. Journal of Natural Products. v. 79, p. 2423-2431, 2016.

TAI, S. S. K. et al. Expression pattern and deposition of three storage proteins, 11S globulin, 2S albumin and 7S globulin in maturing sesame seeds. Plant Physiology and Biochemistry. v. 39, p. 981–992, 2001.

TAI, S. S. K. et al. Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in Sesame. Journal of Agricultural and Food Chemistry. v. 47, p. 4932–8, 1999.

TAMURA, K. et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. v. 30, p. 2725-2729, 2013.

TAN-WILSON, A. L.; WILSON, K. A. Mobilization of seed protein reserves. Physiologia Plantarum. v. 145, p. 140–153, 2012.

TERRAS, F. R. et al. A new family of basic cysteine-rich plant antifungal proteins from

Brassicaceae species. FEBS letters. v. 316, p. 233–240, 1993.

TERRAS, F. R. G. et al. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. Journal of Biological Chemistry. v. 267, p. 15301– 15309, 1992.

TOMAR, P. P. S. et al. Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin. Biochemical and Biophysical Research Communications. v. 448, p. 349–354, 2014a.

TOMAR, P. P. S. et al. Purification, characterisation and cloning of a 2S albumin with DNase, RNase and antifungal activities from Putranjiva Roxburghii. Applied Biochemistry and Biotechnology. v. 174, p. 1-12, 2014b.

ULLAH, A. et al. Crystal structure of mature 2S albumin from Moringa oleifera seeds. Biochemical and Biophysical Research Communications. v. 468, p. 365-371, 2015.

VAN DER KLEI, H. et al. A fifth 2S albumin isoform is present in Arabidopsis thaliana. Plant Physiology. v. 101, p. 1415–1416, 1993.

VICENTE, T. et al. Tratabilidade de água superficial utilizando coagulantes naturais à base de tanino e extratos de sementes de Moringa oleifera. Ensaios e Ciência: C. Biológicas, Agrárias e da Saúde. v. 1, p. 152–155, 2017.

VIEIRA, H.; CHAVES, L. H. G.; VIÉGAS, R. A. Acumulação de nutrientes em mudas de moringa (Moringa oleifera Lam) sob omissão de macronutrients. Revista Ciência

Agronômica. v. 39, p. 130–136, 2008.

VIERA, G. H. F. et al. Antibacterial effect (in vitro) of Moringa oleifera and Annona

muricata against Gram positive and Gram negative bacteria. Revista do Instituto de

Medicina Tropical de São Paulo. v. 52, p. 129–132, 2010.

VITALE, A; GALILI, G. The endomembrane system and the problem of protein sorting. Plant Physiology.v. 125, p. 115–118, 2001.

von HEIJNE, G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry. v. 133 p. 17-21, 1983.

WANG, X. et al. Purification and characterization of three antifungal proteins from

cheeseweed (Malva parviflora). Biochemical and Biophysical Research Communications. v. 282, p. 1224–1228, 2001.

WANG, X.; BUNKERS, G. J. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Biochemical and Biophysical Research Communications. v. 279, p. 669–673, 2000.

WARNER, S. A. J. Genomic DNA isolation and lambda library construction, in: G.D. Foster. D. Twell (Eds.), Plant Gene Isol. Princ. Pr. John Wiley Sons, West Sussex, 1996: pp. 51–73.

WILSON, K. A. et al. Role of vacuolar membrane proton pumps in the acidification of

protein storage vacuoles following germination. Plant Physiology and Biochemistry. v. 104, p. 242–249, 2016.

XU, Y. et al. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. International Journal of Molecular Sciences. v. 15, p. 7594-7610, 2014.

YOULE, R. J.; HUANG, A. H. C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. American Journal of Botany. v. 68, p. 44, 1981.

ZAINI, N. M. et al. Single step purification of 2S albumin from Theobroma cacao. International Journal of Advanced and Applied Sciences. v. 4, p. 57-61, 2017. ZAKU, S. G. et al. Moringa oleifera: An underutilized tree in Nigeria with amazing versatility: A review. African Journal of Food Science. v. 9, p. 456–461, 2015.

APÊNDICE - SUPPLEMENTARY MATERIAL: POST-TRANSLATIONAL MODIFICATIONS REVEAL THAT Mo-CBP3, A 2S MORINGA OLEIFERA CHITIN-

BINDING ALBUMIN, IS A COMPLEX MIXTURE OF ISOFORMS

Table S1. DNA sequences and primer-binding sites of the oligonucleotide primers used in the present work. The sequences of the primers were based on the cDNA sequences, previously determined by Freire et al. (Freire et al., 2015).

Primer Sequence Primer-

binding site Target Mo- CBP3 isoform GenBank accession number of the cDNA sequence P1 P2 5ʹ-CGTCAGTATATCAGAAGCAGTTTAA-3ʹ 5ʹ-AGCTTCGAGCTCTACGAACACACAC-3ʹ 27-51 (+) 670-694 (−) 1/4 KF616830, KF616831 P3 P4 5ʹ-CGTCAGTATATCAGAAGCAGTTTAC-3ʹ 5ʹ-CACGGGGTACATTTGAGCAACTAGC-3ʹ 28-50 (+) 692-716 (−) 2 KF616832 P5 P6 5ʹ-TCAGCAGCAACCAACACCACACCGG-3ʹ 5ʹ-GTTACACCGCTAGTGGCTCTCGTCT-3ʹ 27-51(+) 664-688 (−) 3 KF616833 Fonte: elaborada pelo autor.

Documentos relacionados