• Nenhum resultado encontrado

Correlação entre distância genética e uso de diferentes espécies de hospedeiras Apenas os resultados para o gene ITS2 indicaram grande variação entre as duas

espécies de planta hospedeira (Tabela 11). Porém, todos os indivíduos coletados sobre

Crotalaria vitellina pertencem à população de Ubatuba, onde a vegetação local limita a

capacidade de dispersão de U. ornatrix, tornando possível que a variação encontrada não tenha relação com o uso diferencial de espécies de hospedeiras.

Estes dados são muito semelhantes aos encontrados nas análises do gene COI na população de Itanhaém (Figura 7), com a diferença de que, nesse caso, os indivíduos foram coletados sobre C. pallida, fortalecendo esta última hipótese.

Além de C. pallida e C. vitelina, há várias outras espécies do gênero ocorrendo no Brasil, e sabe-se que determinadas espécies geram defesas mais eficientes contra a predação nos adultos de U. ornatrix (Martins et al., 2015). Dessa forma, mais estudos comparando distância genética e uso de diferentes espécies de Crotalaria por U. ornatrix são necessários para que se tenha dados mais conclusivos sobre a diferenciação associada ao hospedeiro nesta espécie.

6. CONCLUSÕES

As análises de diversidade intrapopulacional, bem como as relações entre os haplótipos e os testes de neutralidade, permitem concluir que Utetheisa ornatrix provavelmente sofreu expansão populacional recente de forma acelerada a partir de um pequeno tamanho efetivo. É possível que este tipo de evento seja comum na espécie, devido às variações demográficas em suas plantas hospedeiras, o que faz com que ocorram sucessivos processos de extinção, colonização e recolonização. Tais conclusões são suportadas por dados de estudos ecológicos sobre a espécie e também sobre outros insetos fitófagos cuja estrutura populacional sofre influência de suas hospedeiras.

Assim como outras espécies de lepidópteros, Utetheisa ornatrix provavelmente possui grande capacidade de dispersão, porém os resultados da AMOVA e FST entre pares de populações mostram que a conectividade entre populações diferentes varia em função da disponibilidade de plantas hospedeiras nas rotas de dispersão. Dessa forma, em ambientes propícios para o crescimento de Crotalaria, as populações de U. ornatrix tendem a estar conectadas por grandes distâncias. Por outro lado, em locais pouco propícios ou altamente sujeitos a distúrbios, a baixa disponibilidade de plantas hospedeiras pode reduzir a conectividade entre as populações, aumentando a diferenciação entre elas. Dessa forma, populações próximas à região litorânea tenderiam a possuir maior grau de diferenciação em relação às demais. Tal fenômeno já foi documentado para outras espécies de insetos fitófagos que possuem características de história de vida semelhantes às de U. ornatrix.

Não foi possível concluir se ocorre diferenciação ecológica em U. ornatrix a partir deste estudo, pois os dados podem ter sofrido influência de fatores geográficos, levantando questões que podem ser respondidas em trabalhos posteriores que analisem populações coletadas sobre uma maior variedade de plantas hospedeiras, incluindo as que compartilham as mesmas localidades que Crotalaria pallida, como Crotalaria

micans e Crotalaria lanceolata .

Outra sugestão para um trabalho futuro é analisar populações em uma extensão geográfica mais ampla para avaliar a influência de fatores geográficos em uma escala maior. Sabe-se que Utetheisa ornatrix já foi coletada em estados da região Sul do Brasil, bem como no Nordeste, porém não há dados comparando populações dentro e entre estas localidades.

7. REFERÊNCIAS

Abrahamson, W. G., Blair, C. P., Eubanks, M. D., & Morehead, S. A. (2003). Sequential radiation of unrelated organisms: the gall fly Eurosta solidaginis and the tumbling flower beetle Mordellistena convicta. Journal of Evolutionary

Biology, 16, 781-789.

Abrahamson, W. G., & Weis, A. E. (1997). Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton University Press. Princeton, NJ, USA.

Agosta, S. J. (2006). On ecological fitting, plant-insect associations, herbivore host shifts, and hosts plant seletion. Oikos, 114, 556-565.

Angelella, G. M., Michel, A. P. & Kaplan, I. (2019). Using host-associated differenciation to track source population and dispersal distance among insect vectors of plant pathogens. Evolutionary applications, 12, 692-704.

Antwi, J. B., Sword, G. A. & Medina, R. F. (2015). Host-associated differentiation in a highly polyphagous, sexually reproducing insect herbivore. Ecology and

evolution, 5, 2533-2543.

Arnegard, M. E., McGee, M. D., Matthews, B., Marchinko, K. B., Conte, G. L., Kabir, S., Bedford, N., Bergek, S., Chan, Y. F., Jones, F. C., Kingsley, D. M., Peichel, C. L., & Schluter, D. (2014). Genetics of ecological divergence during speciation. Nature, 511, 307-311.

Avise, J. C. (2004). Molecular markers, natural history, and evolution. 2ªed. Sinauer Associates, Sunderland, Massachusetts.

Barman, A. K., Parajulee, M. N., Sansone, C. G., Suh, C. P. C., & Medina, R. F. (2012). Geographic pattern of host-associated differentiation in the cotton fleahopper,

Pseudatomoscelis seriatus. Entomologia Experimentalis et Applicata, 143, 31-

41.

Berlocher, S. H., & Feder, J. L. (2002). Sympatric speciation in phytophagous insects: Moving beyond controversy? Annual Review of Entomology, 47, 773-815.

Bezzerides, A. (2004). Phenotypic and genetic benefits of promiscuity in an arctiid moth (Utetheisa ornatrix). Dissertação de Ph.D., Cornell University, Ithaca.

Bezzerides, A., & Eisner, T. (2002). Apportionment of nuptial alkaloidal gifts by a multiply-mated female moth (Utetheisa ornatrix): eggs individually receive alkaloid from more than one male source. Chemoecology, 12, 213-218.

Bezzerides, A., Bezzerides, J., & Eisner, T. (2004). Isolation of five polymorphic microsatellite markers in Utetheisa ornatrix (Lepidoptera: Arctiidae). Molecular

Ecology Notes, 4, 566-567.

Bezzerides, A., Iyengar, V. K., & Eisner, T. (2008). Female promiscuity does not lead to increased fertility or fecundity in an Arctiid Moth (Utetheisa ornatrix).

Journal of Insect Behavior, 21, 213-221.

Blair, C. P., Abrahamson, W. G., Jackman, J. A., & Tyrrell, L. (2005). Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution, 59, 304-316.

Blanquart, F., Gandon, S., & Nuismer, S. L. (2012). The effects of migration and drift on local adaptation to a heterogeneous environment. Journal of Evolutionary

Biology, 25, 1351-1363.

Bologna, M. A., Oliverio, M., Pitzalis, M., & Mariottini, P. (2008). Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae). Molecular

Brouat, C., Chevallier, H., Meusnier, S., Noblecourt, T., & Rasplus, J. Y. (2004). Specialization and habitat: special and environmental effects on abundance and genetic diversity of forest generalist and specialist Carabus species. Molecular

Ecology, 13, 1815-1826.

Brower, A. V. Z. (1994). Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). Molecular

Phylogenetics and Evolution, 3, 159-174.

Brown, J. K., Ehler, L. E., Sforza, R., & Mateille, T. (2004). Tracing the origin of cryptic insect pests and vectors, and their natural enemies. Genetics, evolution

and biological control, 113-135.

Cano, D., Arango, R. E., & Saldamando, C. I. (2015). Molecular Identification of

Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn and Rice Strains in

Colombia by Using a PCR-RFLP of the Mitochondrial Gene Cytochrome Oxydase I (COI) and a PCR of the Gene FR (For Rice). Annals of the

Entomological Society of America, 108, 172-180.

Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002). TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International

Proceedings, 2, 184.

Cogni, R. (2010). Resistance to plant invasion? A native specialist herbivore shows preference for and higher fitness on an introduced host. Biotropica, 42, 188-193.

Cogni, R., & Futuyma, D. J. (2009). Local adaptation in a plant herbivore interaction depends on the spatial scale. Biological Journal of the Linnean Society, 97, 494- 502.

Cogni, R., & Trigo, J. R. (2016). Pyrrolizidine Alkaloids Negatively Affect a Generalist Herbivore Feeding on the Chemically Protected Legume Crotalaria pallida.

Cogni, R., Trigo, J. R., & Futuyma, D. J. (2011). Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction. PLoS One, 6, e29220.

Cogni, R., Trigo, J. R., & Futuyma, D. J. (2012). A free lunch? No cost for acquiring defensive plant pyrrolizidine alkaloids in a specialist arctiid moth (Utetheisa

ornatrix). Molecular Ecology, 21, 6152-6162.

Coleman, A. W. (2003). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics, 19, 370-375.

Conner, W. E. (2009). Utetheisa ornatrix, the ornate arctiid. In: CONNER, W. E. (ed) Tigermoths and woolly bears – behavior, ecology and evolution of the Arctiidae.

Oxford University Press, New York, pp 1-10.

Corander, J., & Tang, J. (2007). Bayesian analysis of population structure based on linked molecular information. Mathematical Biosciences, 205, 19-31.

Corander, J., Marttinen, P., Sirén, J., & Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC

Bioinformatics, 9, 539.

Cote, C.A., Greer, C. L., & Peculis, B.A. (2002). Dynamic conformational model for the role of ITS2 in pre-RNA processing in yest. RNA, 8, 786-797.

Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA.

Darwell, C. T., Fox, K. A., & Althoff, D. M. (2014). The roles of geography and founder effects in promoting host-associated differentiation in the generalist bogus yucca moth Prodoxus decipiens. Journal of Evolutionary Biology, 27, 2706-2718.

Dickey, A. M., & Medina, R. F. (2012). Host-associated genetic differentiation in pecan leaf phylloxera. Entomologia Experimentalis et Applicata. 143, 127-137.

Dlugosch, K. M., & Parker, I. M. (2008). Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular

ecology, 17, 431-449.

Downey, M., & Nice, C. C. (2013). A role for both ecology and geography as mechanisms of genetic differentiation in specialized butterflies. Evolutionary

Ecology, 27, 565-578.

Drés, M., & Mallet, J. (2002). Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society B-

Biological Sciences, 357, 471-492.

Dussourd, D. E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., & Eisner, T. (1988). Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of Sciences, 85, 5992-5996.

Dussourd, D. E., Harvis, C. A., Meinwald, J., & Eisner, T. (1991). Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proceedings

of the National Academy of Sciences USA, 88, 9224-9227.

Egan, S. P., & Funk, D. J. (2009). Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus bebbianae leaf beetles. Proceedings of

the National Academy of Sciences of the United States of America, 106, 19426-

19431.

Egan, A. L., Hook, K. A., Reeve, H. K., & Iyengar, V. K. (2015). Polyandrous females provide sons with more competitive sperm: Support for the sexy-sperm hypothesis in the rattlebox mouth (Utetheisa ornatrix). Evolution, 70, 72-81.

Eisner, T., & Meinwald, J. (1995). The chemistry os sexual selection. Proceedings of

the National Academy of Sciences USA, 92, 50-55.

Eisner, T., Eisner, M., Rossini, C., Iyengar, V. K., Roach, B. L., Benedikt, E., & Meinwald, J. (2000). Chemical defense against predation in an insect egg.

Proceedings of the National Academy of Sciences, 97, 1634-1639.

Endersby, N. M., Hoffmann, A. A., McKechnie, S. W., & Weeks, A. R. (2006). Is there genetic structure in populations of Helicoverpa armigera from Australia?

Entomologia Experimentalis et Applicata, 122, 253-263.

Evans, L. M., Allan, G. J., Meneses, N., Max, T. L., & Whitham, T. G. (2013). Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evolutionary Ecology, 27, 65-81.

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suíte ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows.

Molecular Ecology Resources, 10, 564-567.

Farrel, B., & Mitter, C. (2017). Macroevolutionary Aspects of Insect-Plant Relationships. Insect-Plant interactions, 1990, 35-78.

Frankham, R. (2005). Genetics and Extinction. Biological Conservation, 126, 131-40.

Feder, J. L., Chicote, C. A., & Bush, G. L. (1988). Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature, 336, 61–64.

Feder, J. L., Opp, S. B., Wlazlo, B., Reynolds, K., Go, W., & Spisak, S. (1994). Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National Academy of Sciences of the USA, 91, 7990–7994.

Feder, J. L., Roethele, J. B., Wlazlo, B., & Berlocher, S. H. (1997). Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proceedings of the National Academy of Sciences of the USA, 94, 11417 – 11421.

Feder, J. L., Roethele, F. B., Filchak, K., Niedbalski, J., & Romero-Severson J. (2003). Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella. Genetics, 163, 939 – 953.

Ferrari, J., West, J. A., Via, S., & Godfray, H. C. J. (2012). Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution, 66, 375-390.

Ferro, V. G., Guimarães, P. R., & Trigo, J. R.. (2006). Why do larvae of Utetheisa

ornatrix penetrate and feed in pods of Crotalaria species? Larval performance

vs. chemical and physical constraints. Entomologia Experimentalis et Applicata, 121, 23-29.

Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265-280.

Flatt, T. (2005). The Evolutionary Genetics of Canalization. The Quarterly Review of

Biology, 80, 287-316.

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294- 299.

Forbes, A. A., Devine, S. N., Hippee, A. C., Tvedte, E. S., Ward, A. K. G., Widmayer, H. A. & Wilson, C. J. (2017). Revisiting the particular role of host-shifts in iniciating insect speciation. Evolution, 71, 1126-1137.

Franco, M. S. & Cogni, R. (2013). Common-Garden Experiments Reveal Geographical Variation in the Interaction Among Crotalaria pallida (Leguminosae: Papilionidae), Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and Extrafloral Nectary Visiting Ants. Neotropical Entomology, 42, 223-229.

Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126, 131-140.

Fu, Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925.

Funk, D. J., Filchak, K. E., & Feder, J. L. (2002). Herbivorous insects: model systems for the comparative study of speciation ecology. Genetica, 116, 251-267.

Gavrilets, S., & Hastings, A. (1996). Founder Effect Speciation: A Theoretical Reassessment. The American Naturalist, 147, 466-491.

Grace-Lema, D. M., Yared, S., Quitadamo, A., Janies, D. A., Wheeler, W. C., Balkew, M., Hailu, A., Warburg, A., & Clouse, R. M. (2015). A phylogeny of sand flies (Diptera: Psychodidae: Phlebotominae), using recent Ethiopian collections and a broad selection of publicly available DNA sequence data. Systematic

Entomology, 40, 733-744.

Haila, Y. (2002). A conceptual genealogy of fragmentation research: from island biogrography to landscape ecology. Ecological applications, 12, 321-334.

Handley, L. J. L., Estoup, A., Evans, D. M., Thomas, C. E., Lombaert, E., Facon, B., Aebi, A., & Roy, H. E. (2011). Ecological genetics of invasive alien species.

BioControl, 56, 409-428.

Hare, J. F., & Eisner, T. (1993). Pyrrolizidine alkaloid deters ant predators of Utetheisa

ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior

Hartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics, 3ª ed. Sinauer Associates, Sunderland, Massachusetts: 1 – 530.

Hebert, J. B., Scheffer, S. J., & Hawthorne, D. J. (2013). Reproductive Isolation between Host Races of Phytomyza glabricola on Ilex coriacea and I. glabra.

PLoS ONE, 8, e73976.

Hedrick, P. (2005). Genetics of Populations, 3ª ed. Jones and Bartlett Publishers, Sudbury, Massachusetts.

Hendry, A. P. (2016). Eco-evolutionary dynamics. Princeton university press.

Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247- 276.

Hoina, A., Martins, C. H. Z., Trigo, J. R., & Cogni, R. (2013). Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arcttid moth

Utetheisa ornatrix depends on previous experience. Arthropod-Plant Interactions, 7, 169-175.

IGBE. (2012). Manual Técnico da Vegetação Brasileira. 2a ed. Rio de Janeiro. Disponível em: www.ibge.gov.br.

Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal. Heredity, 77, 282-291.

Imada, Y., Kawakita, A.; & Kato, M. (2011). Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proceedings of the Royal Society of London B: Biological

Iyengar, V. K., Rossini, C., & Eisner, T. (2001). Precopulatory assessment of male quality in an actiid moth (Utetheisa ornatrix): hydroxydanaidal is the only criterion of choice. Behavioral Ecology and Sociobiology, 49, 283-288.

Janz, N. (2011). Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annual Review of Ecology, Evolution, and Systematics, 42, 71-89.

Kaňuch, P., Berggren, Â., & Cassel-Lundhagen, A. (2014). Genetic diversity of a successful colonizer: isolated populations of Metrioptera roeselii regain variation at an unusually rapid rate. Ecology and Evolution, 4, 1117-1126.

Keller, I., Nentwig, W., & Largiadèr, C. R. (2004). Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Molecular Ecology, 13, 2983-2994.

Keyghobadi, N., Roland, J., Matter, S. F., & Strobeck, C. (2005). Among-and within- patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proceedings of the Royal Society of

London B: Biological Sciences, 272, 553-560.

Kimura, M., & Weiss, G. H. (1964). The stepping-stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576.

LaMunyon, C. W., & Eisner, T. (1993). Postcopulatory sexual selection in an actiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, 90, 4689-4692.

LaMunyon, C. W., Eisner, T. (1994). Spermatophore size as determinant of paternity in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of

Le Corre, V., & Kremer, A. (1998). Cumulative effects of founding events during colonization on genetic diversity and differentiation in an island and stepping- stone model. Journal of Evolutionary Biology, 11, 495-512.

Leppänen, S. A., Malm, T., Värri, K., & Nyman, T. (2014). A Comparative Analysis of Genetic Differentiation across Six Shared Willow Host Species in Leaf- and Bud-Galling Sawflies. PLoS ONE, 9, e116286.

Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 26, 1451-1452.

Liu, H., & Beckenbach, A. T. (1992). Evolution of the mitochondrial cytochrome oxidase II gene among tem orders of insects. Molecular Phylogenetics and

Evolution, 1, 41-52.

Lopez-Vaamonde, C., Wikström, N., Labandeira, C., Godfray, H. C. J., Goodman, S. J., & Cook, J. M. (2006). Fossil-calibrated molecular phylogenies reveal that leaf- mining moths radiated millions of years after their host plant. Journal of

Evolutionary Biology, 19, 1314-1326.

Long, I. & Sourakovw, A. (2017). Remarkable longevity of the chemically defended moth, Utetheisa ornatrix (Lepidoptera: Erebidae) and the factors that affect it.

Macel, M. (2010). Attract and deter: a dual role for pyrrolizidine alkaloids in plant- insect interactions. Phytochemistry Reviews, 10, 75-82.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209-220.

Marques, J. F., Wang, H., Svensson, G. P., Frago, E., & Anderbrant, O. (2014). Genetic divergence and evidence for sympatric host-races in the highly polyphagous brown tail moth, Euproctis chrysorrhoea (Lepidoptera: Erebidae). Evolutionary

Martins, C. H. Z., Cunha, B. P., Solferini, V. N., & Trigo, J. R. (2015). Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore. PLoS

ONE, 10: e0141480.

Matsubayashi, K. W., Ohshima, I., Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata, 134, 1-27.

Mattsson, M., Hood, G. R., Feder, J. L., Ruedas, L. A. (2015). Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States. Ecology and Evolution, 5, 5823-5837.

Maxwell, S. A., Thistlewood, H. M. A., & Keyghobadi, N. (2014). Population genetic structure of the western cherry fruit fly Rhagoletis indifferens (Diptera: Tephritidae) in British Columbia, Canada. Agricultural and Forest Entomology, 16, 33-44.

Medina, R. F., Szendrei, Z., Harrison, K., Isaacs, R., Averill, A., Malo, E. A., & Rodriguez-Saona, C. (2014). Exploring host-associated differentiation in the North American native cranberry fruitworm, Acrobasis vaccinia, from blueberries and cranberries. Entomologia Experimentalis et Applicata, 150, 136- 148.

Menken, S. B. J., Boomsma, J. J., & Van Nieukerken, E. J. (2009). Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution, 64, 1098-1119.

Mitter, C. B., Farrell, B., & Weigmann, B. (1988). The phylogenetic study of adaptative zones: Has phytophagy promoted insect diversification? The American

Mlynarek, J. J. & Heard, S. B. (2018). Strong and complex host-and habitat-associated genetic differentiation in na apparently polyphagous leaf mining insect.

Biological Journal of the Linnean Society, 125, 885-899.

Moin-Vaziri, V., Oshaghi, M. A., Yaghoobi-Ershadi, M. R., Derakhshandeh-Peykar, P., Abaei, M. R., Mohtarami, F., Zahraei-Ramezani, & A. R., Nadim, A. (2016). ITS2-rDNA Sequence Variation of Phlebotomus sergenti s.I. (Dip: Psychodidae) Populations in Iran. Journal of Arthropod-Borne Diseases, 10, 462-473.

Monteiro, A., & Pierce, N. E. (2000). Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1α gene sequences. Molecular

Phylogenetics and Evolution, 18, 264 – 281.

Nichols, R. A., & Hewitt, G. M. (1994). The genetic consequences of long distance dispersal during colonization. Heredity, 72, 312-317.

Nice, C. C.; Fordyce, J. A.; Bell, K. L. & Forister, Z. G. (2019) Vertical differentiation in tropical forest butterflies: a novel mechanism generating insect diversity?

Biology Letters, 15, 20180723.

Nishida, R. (2002). Sequestration of defensive substances from plants by Lepidoptera.

Annual Review of Entomology, 47, 57-92.

Nyman, T., Vikberg, V., Smith, D. R., & Boevé, J. L. (2010). How common is ecological speciation in plant-feeding insects? A ‘higher’ Nematinae perspective. BMC Evolutionary Biology, 10, 266.

Opitz, S. E. W., & Müller, C. (2009). Plant chemistry and insect sequestration.

Chemoecology, 19, 117-154.

Oroño, L., Paulin, L., Albertini, A. C., Hilal, M., Ovruski, S., Vilardi, J. C., Rull, J., & Aluja, M. (2013). Effect of Host Plant Chemistry on Genetic Differentiation and Reduction of Gene Flow Among Anastrepha fraterculus (Diptera: Tephritidae)

Populations Exploiting Sympatric, Synchronic Hosts. Enviromental Entomology, 42, 790-798.

Peccoud, J., Ollivier, A., Plantegenest, M., & Simon, J. C. (2009). A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences of the United States

of America, 106, 7495-7500.

Posada, D., Crandall, K. A., & Templeton, A. R. (2000). GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes.

Molecular Ecology, 9, 487-488.

Powell, T. H. Q., Cha, D. H., Linn, C. E., & Feder, J. L. (2012). On the scent of standing variation for speciation: behavioral evidence for native sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae) in the southern united states. Evolution, 66, 2739-2756.

Powell, T. H. Q., Forbes, A. A., Hood, G. R., & Feder, J. L. (2014). Ecological adaptation and reproductive isolation in sympatry: genetic amd phenotypic evidence for native host races of Rhagoletis pomonella. Molecular Ecology, 23, 688-704.

Powell, T. H. Q., Dowle, E., Feder, J. L., Ragland, G. J., & Hahn, D. A. (2017). Rapid adaptation to a new seasonal regime drives genetic divergence and ecological speciation in the apple maggot fly Rhagoletis pomonella. Integrative and

Comparative Biology, 57, 379.

Price, P. W. (1980). Evolutionary biology of parasites. Princeton University Press Princeton, NJ.

Pyron, A. R., Costa, G. C., Patten, M. A., & Burbrink, F. T. (2015). Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological

Ragland, G. J., Almskaar, K., Vertacnik, K. L., Gough, H. M., Feder, J. L., Hahn, D. A., & Schwarz, D. (2015). Differences in performance and transcriptome-wide gene expression associated with Ragholetis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments. Molecular Ecology, 24, 2759-2776.

Roff, D. A. (1986). The evolution of wing dimorphism in insects. Evolution, 40, 1009- 1020.

Rull, J., Aluja, M., & Feder, J. L. (2010). Evolution of intrinsic reproductive isolation among four North American populations of Rhagoletis pomonella (Diptera: Tephritidae). Biological Journal of the Linnean Society, 100, 213-223.

Salinas, H., & Saldamando, C. I. (2011). Haplotype Identification within Spodoptera

frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) Corn and Rice Strains from

Colombia. Neotropical Entomology, 40, 421-430.

Saldamando, I. C., & Marquez, E. J. (2012). Approach to Spodoptera (Lepidoptera: Noctuidae) phylogeny based on the sequence of the cytochrome oxidase I (COI) mitochondrial gene. Revista de Biologia Tropical, 60, 1237-1248.

Saunders, D. A.; Hobbs R. J., & Margules, C. R. (1991). Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 5, 18-32.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the

Entomological Society of America, 87, 651-701.

Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.

Sourakovw, A., & Locascio, L. M. (2013). Exotic Crotalaria species (Fabales: Fabaceae) as host plants of the ornate bella moth, Utetheisa ornatrix

Documentos relacionados