• Nenhum resultado encontrado

Etanol celulósico brasileiro

No documento ETANOL DE SEGUNDA GERAÇÃO (páginas 42-54)

A produção de etanol lignocelulósico tem sido realizada em escala laboratorial e em testes pilotos por meio de diversas tecnologias.

Para a efetiva industrialização do etanol celulósico inúmeros fatores devem ser levados em consideração, como a utilização de processos integrados de hidrólise e fermentação e de etanol lignocelulósico com o processo de primeira geração e cogeração, promovendo assim a possibilidade de melhores rendimentos de produção de etanol e auto-suficiência energética (Albarelli, 2013).

A figura 25 apresenta um fluxograma esquemático da integração do processo de etanol de primeira e segunda geração.

Figura 25 - Fluxograma esquemático da integração do processo de etanol de primeira e segunda geração, com o objetivo de obtenção

44 E ta n o l d e s eg un d a g er aç ão

A produtividade média de cana-de-açúcar no Brasil é de 85 toneladas por hectare, sendo que para cada tonelada de cana processada são gerados cerca de 140 kg de palha e 140 kg de bagaço em base seca, ou seja, 12 toneladas de palha e 12 toneladas de bagaço (Chandel et al., 2014).

Considerando que toda glicose vai ser convertida em etanol, o aproveitamento integral da cana-de-açúcar (colmo, palha e bagaço) poderá aumentar significativamente a produção de etanol por hectare, passando dos atuais 7.000 L para aproximadamente 14.000 L, sem necessidade de expansão da área cultivada (Santos et al., 2012).

A figura 26 apresenta os rendimentos teóricos de etanol celulósico e hemicelulósico a partir do aproveitamento da palha e do bagaço de cana-de– açúcar, considerando-se 0,51 g etanol/g glicose (Santos, 2012), 0,46 g etanol/g xilose (Aquino, 2013), 26,6 % de xilose na hemicelulose da palha (Moutta, 2009), 20,4 % de xilose na hemicelulose do bagaço de cana (Nascimento, 2011) e a densidade do etanol como 0,79kg.L-1.

Figura 26 – Rendimento teórico da produção de etanol celulósico e hemicelulósico a partir da palha e do bagaço da cana de açúcar. Por meio desses valores se percebe que os rendimentos em etanol, mesmo que estimados pelas conversões teóricas, serão significativamente maiores com a introdução da palha da cana-de-açúcar.

45 E ta n o l d e s eg un d a g er aç ão

Referências

Albarelli, J. Q., 2013. Produção de açúcar e etanol de primeira e segunda geração: simulação, integração energética e análise econômica. Tese de Doutorado - Universidade Estadual de Campinas, Faculdade de Engenharia Química -Campinas, SP, 244p.

Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M. J. 2010, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol, 101:4851–4861.

Aquino, P. M., 2013. Produção de etanol a partir de xilose com glicose isomerase e Saccharomyces cerevisae coimobilizadas em gel de alginato. Dissertação (Mestrado), Universidade Federal de São carlos, São Carlos- SP.

Arantes, V., Saddler, J. N., 2010. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis- Biotechnol Biofuels, 3(4): 1-11. Atalla, R. H., 1993. The structure of native cellulose. In: Proceedings of tricel symposium on Trichoderma reesei cellulases and other hidrolases, 2., Helsinquia, Anais.. Helsinquia foundation for biotechnical and industrial fermentation research, 8: 281- 290.

Bansal N., Tewari R., Soni R., Soni S.K. 2012, Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 2012;32:1341–1346.

Bensah, E. C., Moses Mensah, M. 2013, Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. International Journal of Chemical Engineering, 1-21.

Bobleter, O. 1994. Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science, 19(5): 797– 841.

Buckeridge, M. S.; Santos, W. D. dos; Souza, A. P., 2010. As rotas para o etanol celulósico no brasil. In: Cortez, L. A. B. (Coord.). Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade. São Paulo: Editora Blucher,. p. 365-380. Caminal G, López-Santín J, Solà C (1985) Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol Bioeng 27:1282–1290

Castro, H. F., 2009. Apostila de processos químicos industriais II. Escola de engenharia de lorena- Lorena –Sp . Papel e celulose. 30p.

CGEE, 2010. Centro de Gestão e Estudos Estratégicos “Quimica Verde no Brasil”, p. 142: Disponível em http://www.cgee.org.br/ . Acesso em 11 de março de 2014. Chandel, A. K., Junqueira, T. L., Morais, E. R., Gouveia, V. L. R., Cavalett, O., Rivera, E. C., Geraldo, V. C., Bonomi, A., Silva, S. S. 2014. Techno-economic analysis of second –generation ethanol in Brazil: competitive, complementary aspects with first- generation etanol. In Biofuels in Brazil- Fundamental aspects, recent developments, and future perspectives, Springer, 1-29.

Chen Y, Stipanovic AJ, Winter WT et al., (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline

46 E ta n o l d e s eg un d a g er aç ão celluloses. Cellulose 14:283–293

Chen, Y., R.R. Sharma-Shivappa, et al., 2007. Potential of agricultural residues and hay for bioetha-nol production. Applied Biochemistry and Biotechnology 142(3): 276-290

Cherubini, F. 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag, 51:1412–1421.

Chum, H. L., Black, S. K., Johnson, D. K., Sarkanen, K. V., Robert, D., 1999. Organosolv pretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structural studies of lignins. Clean Technol Environ Policy, 1:187–198.

Chum, H. L., Douglas, L. J., Feinberg, D. A., Schroeder, H. A. 1985. Evaluation of pretreatments for enzymatic hydrolysis of cellulose. Available from http://www. nrel.gov/docs/legosti/old/2183.pdf

Conab, 2013. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. – v. 1 – Brasília: Disponível em: http://www.conab.gov. br, acesso em 11 junho de 2014

Conde-Mejıa, C., Jimenez-Gutierreza, A., El-Halwagi, M., 2012, A comparison of pretreatment methods for bioethanol production from lignocellulosic materials, Safety and Environmental Protection, 90(3): 189–202.

Díaz MJ, Cara C, Ruiz E et al., (2011) Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks. Fuel 90(11):3225–3229

Du, B., Sharma, L. N., Becker, C., Chen, S. F., Mowery, R. A., VanWalsum, G. P. 2010, Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng, 107:430–440.

EIA, 2011. International Energy Outlook. In Energy, U. S. D. o., Ed. US Energy Information Administration: Washington DC.

EIA, 2014 - Previsão da emissão mundial de dióxido de carbono na atmosfera por setor, Energy Information Administration / Annual Energy Outlook 2014.

Eronen, P., Osterberg, M., Heikkinen, S., Tenkanen, M., Laine, J. 2011. Interactions of structurally different hemicelluloses with nanofibrillar cellulose Carbohydrate Polymers, 86: 1281-1290.

Farinas, C. S., 2011. A parede celular vegetal e as enzimas envolvidas na sua degradação. São Carlos: Embrapa Instrumentação.

Fengel, D., Wegener, G., 1989. Wood Chemistry, ultrastructure, reactions, Berlin, Walter de Gruyter.

fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 157:584–589

Festucci- Buselli, R. A., Otoni, W. C., Joshi, C. P., 2007. Structure, organization and functions of cellulose synthase complexes in higher plants. Braz. J. Plant Physiol. 19: 1-13.

47 E ta n o l d e s eg un d a g er aç ão

Freire, C. S. R., 2003. Compostos orgânicos de baixo peso molecular de Eucalyptus globulus: comportamento durante o cozimento Kraft da madeira e branqueamento da pasta celulósica. Tese (doutorado), Universidade de Aveiro. 200p.

Galbe, M., Zacchi, G. 2002. A review of the production of ethanol from softwood, Applied Microbiology and Biotechnology, 59(6): 618–628.

Gama P., F. M., 1996. Mecanismo bioquímico da acção de celulases de Trichoderma reesei. Dissertação de doutoramento. Universidade do Minho. Escola de Engenharia, Departamento de Engenharia Biológica.

Garrote, G., Kabel, M. A., Schols, H. A., Falque, E., Dominguez, H., Parajo, J. C. 2007. Effects of eucalyptus globulus wood autohydrolysis conditions on the reaction products. J Agric Food Chem, 55: 9006 – 9013.

Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., Bogel-Lucasik, R., 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, Vol. 101, pp. 4775-4800

Gullichsen, J., Paulapuro, H., 2000. Forest products chemistry. OyHelsinki: Fapet Oy, Book 3, 350 p.

Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa- Grauslund, M.F. (2007) Towards industrial pentose fermenting yeast strains. Appl. Microbiol. Biotechnol., Vol. 74, pp. 937–953.

Hallac, B. B., Ragauskas, A. J., 2011. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod. Bioref. 5:215–225 Hallac, B. B., Pu, Y., Ragauskas, A. J. 2010. Chemical Transformations of Buddleja davidii Lignin during Ethanol Organosolv Pretreatment, Energy and Fuels, 24(4): 2723–2732.

Harmsen, P., Huijgen, W., Bermudez, L., Bakker, R., 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR Food & Biobased Research. 54p.

Haverty, D., Dussan, K.,. Piterina, A. V., Leahy, J. J.,. Hayes, M. H. B., 2012. Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp, Bioresource Technology, 109: 173–177. Hendriks, A. T., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100: 10–18.

Himmel, M. E. 2008. Biomass Recalcitrance. Desconstructing the Plant Cell Wall for Bioenergy. Blackwell.

Hon, D. N. S., 1996. Chemical modification of lignocellulosic materials. Inc. 370p. Hu, F., Jung, S., Ragauskas, A. 2012. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology. 117(0): 7-12

48 E ta n o l d e s eg un d a g er aç ão

Jacquet, N., Vanderghema, C., Bleckerb, C., 2012. Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input. Cerevisia 27(3):82–87

Jalak, J., Väljamäe, P., 2010. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 106(6):871– 883

Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

Jin M, Gunawan C, Balan V, Yu X, Dale BE (2013) Continuous SSCF of AFEXTM pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Biotechnol Bioeng 110:1302–1311

Keshwani, D. R., Cheng, J. J., 2010. Microwave-based Alkali Pretreatment of Switchgrass and Coastal Bermudagrass for Bioethanol Production. Biotechnology Progress. 26(3): 644-652.

Kim K. S., Kim H., Baek I. S., Lee K. W., Han P. L., 2011. Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity. Psychopharmacology (Berl). 215, 391–398

Kirk, T. K., Cullen, D., 1998. Enzimology and molecular genetics of wood degradation by white-rot fungi. In Young, R., Akhtar, M. Environmentally friendly technologies for the pulp and papel industry. New York: John Wiley & Sons, 273- 308.

Klemm, D., Heublein, B., Fink, H. P., Bohn, A., 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44:3358–3393.

Klinke, H. B., A. B. Thomsen., 2004. “Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass.” Applied Microbiology and Biotechnology 66( 1): 10-26.

Ko, C. H., Chiu, P. C., Yang, C. L., Chang, K. H., 2008. Xylitol conversion by fermentation using five yeast strains and polyelectrolyte assisted ultrafiltration. Biotechnol Lett 30:81–86

Koo, B. W., Min, B. C., Gwak, K. S., 2012, Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis,” Biomass Bioenergy, 42: 24–32.

Koyama, M., Helbert, W., Imai, T., Sugiyama, J., Henrissat, B., 1997. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94:9091-9095.

Krishnan C, Sousa LC, Jin M et al., (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107:441–450

Kumar. R., Wyman, C. E., 2009. Does change in accessibility with conversion depend on both the substrate and pretreatment technology?, Bioresour Technol

49 E ta n o l d e s eg un d a g er aç ão 100(18):4193–4202

Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. 2009. Methods for pretreatment of lignocellulosic biomass for efficiente hydrolysis and biofuel production, Ind. Eng. Chem. Res., 48, 3713–3729.

Kurasin, M., Väljamäe, P., 2011. Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286(1):166–177

Li, H-Q., Li, C-L., Sang, T., Xu, J., 2013. Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnol Biofuels 6:76 Li, J. B., Henriksson, G., Gellerstedt, G. 2007. Lignin depolymerization/ repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol, 98:3061– 3068.

Li, J., Gellerstedt, G., 2008. Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind Crops Prod, 27:175–181

Lin, T. H., Huang, C. F., Guo. G. L., Hwang, W. S., Huang, S. L., 2012. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour Technol 116:314–319

Lynd, L. R., P. J. Weimer. ,2002. “Microbial cellulose utilization: fundamentals and biotechnology.” Microbiology and Molecular Biology Reviews 66(3): 506-577, 1092-2172

Menon, V., Rao, M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept, Progress in Energy and Combustion Science, 38(4): 522–550.

Mesa, L., Gonzalez, E., Cara, C., Gonzalez, M., Castro, E., Mussatto, S. I., 2011. The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse, Chemical Engineering Journal, 168(3): 1157–1162.

Meshgini, M., Sarkanen, K. V., 1989. Synthesis and kinetics of acid-catalyzed hydrolysis of some alpha-aryl ether lignin model compounds. Holzforschung, 43(4): 239–243.

Morais, A. R. C., Bogel-Lukasik, R., 2013. Green chemistry and the biorefinery concept. Sustainable Chemical Processes 1:18. doi:10.1186/2043-7129-1-18 Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M. R. 2005, Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol, 96: 1986–1993.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. 2005, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 96(6): 673–686.

Moutta, R. O. 2009. Hidrólise ácida de palha de cana-de-açúcar para obtenção de hidrolisado hemicelulósico visando á utilização em processos de produção de bioetanol. Dissertação (Mestrado), Escola de engenharia de Lorena, Universidade

50 E ta n o l d e s eg un d a g er aç ão

de São Paulo, Lorena- SP, 101p.

Mussatto, S.I., Roberto, I.C., 2004. Alternatives for detoxification of diluted- acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technol., Vol. 93, pp. 1–10.

Nagwani, M., 1992. Calcium hydroxide pretreatment of biomass, MS thesis. Texas A&M University, College Station.

Nascimento, V. M., 2011. Pré-tratamento alcalino (NaOH) do bagaço de cana-de- açúcar para a produção de etanol e obtenção de xilooligômeros. Dissertação (Mestrado) Universidade Federal de São Carlos, Departamento de engenharia Química, São Carlos- SP, 136p.

Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast, J Biotechnol 97:107–116

NREL-National Renewable Energy Laboratory (NREL) http://www.nrel.gov/docs/ fy11osti/47764.pdf

O’Sullivan, A. C. 1997, Cellulose: the structure slowly unravels, Cellulose, 4(3): 173-207.

Ogeda, T. L., Petri, D. F. S., 2010. Biomass Enzymatic Hydrolysis. Quimica Nova, 33(7):1549-1558

Oliveira LRM, Nascimento VM, Corso DLS, Silva VFN, Rocha GJM, Golçalves AR (2013) Effects of alkaline organosolv delignification on enzymatic conversion of cellulose from sugarcane bagasse pretreated by steam explosion. Investigaciones Aplicadas 7:1–10

Papatheofanous, M. G., Billa, E., Koullas, D. P., Monties, B., & Koukios, E. G. 1995. Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresource Technology, 54, 305–310. Park, N., Kim, H. Y., Koo, B.W., Yeo, H., Choi, I. G., 2010. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida),” Bioresource Technology, 101(18): 7046–7053.

Paul R, Teli MD (2011) Effect of swelling and reactive dyeing on the accessibility of cotton to cellulase enzymes. J Appl Polym Sci 121:1946–1950

Pauly, M., Keegstra, K., 2010. Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol. 13(3):305-312

Pereira Jr N., 2008. Biomass of lignocellulosic composition for fuel ethanol production within the context of biorefinery. 1st. ed. Rio de Janeiro: Escola de Química/UFRJ, v. 2, ISBN 978-85-903967-3-4.

Pereira Jr, N., 2010. Biorrefinarias - Rota bioquímica1Química verde no Brasil: 2010-2030 - Ed. rev. e atual. - Brasília, DF: Centro de Gestão e Estudos Estratégicos, 438 p

51 E ta n o l d e s eg un d a g er aç ão

Perez, S., Mazeau, K., 2004 Conformations, structures and morphologies of cellulosees, cap 2 In: Polysaccharides Structural Diversity and Functional Versatility, Second Edition, Edited by Severian Dumitriu DOI: 10.1201/9781420030822.ch2. Pettersen, R. C. 1984. Chemical composition of wood. In: ROWELL, R. (Ed.). The chemistry of solid wood. Washington: American Chemical Society, p. 54-126. Rabelo, S. C., 2007. Avaliação de desempenho do pré-tratamento com peróxido de hidrogênio alcalino para a hidrólise enzimática de bagaço de cana-de-açúcar, Dissertação (Mestrado) –Universidade Estadual de Campinas- faculdade de Engenharia Química- Campinas, SP.

Ramirez, R. Q. 2010. Hidrólise da biomassa lignocelulósica. In: CORTEZ, L. A. B. Bioetanol de cana-de-açúcar. P&D para produtividade sustentabilidade. UNICAMP: Blucker, p. 717-731.

Rezende, C. A., Lima, M. A., Maziero, P., Azevedo, E. R., Garcia, W., Polikarpov, I. 2011, Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility, Biotechnology for Biofuels 4:54

Rocha, G. J. M., Martín, C., Silva, V. F. N., Gómez, E. O., Gonçalves, A. R. 2012. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresource Technology 111: 447–452. Rocha, G. J. M., Nascimento, V. M., da Silva, V. F. N., Chandel, A. K., 2014b. Scale- up pretreatment studies on sugarcane bagasse and straw for second-generation ethanol production. In: Biofuels in Brazil: Fundamental Aspects, Recent Developments, and Future Perspectives. edited by Silva SS and Chandel AK, pp 225-254. Springer Heidelberg, Germany.

Rocha, G. J. M., Nascimento, V. M., Silva, V. F. N., Corso, D. L. S., Gonçalves, A. R. 2014a. Contributing to the environmental sustainability of the second generation ethanol production: Delignification of sugarcane bagasse with sodium hydroxide recycling, Industrial Crops and Products, 59: 63–68.

Saha, B. C., Nichols, N. N., Cotta, M. A., 2011. Ethanol production from wheat straw by recombinant Escherichia coli strain at high solid loading. Bioresour Technol 102:10892–10897

Sannigrahi, P., Kim, D. H., Jun,g S., Ragauskas, A., 2011. Pseudolignin and pretreatment chemistry. Energy Environ. Sci. 4:1306 – 1310.

Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., Rezende, S. T., 2012. Potencial da palha de cana-de-açúcar para produção de etanol. Quim. Nova, Vol. 35, No. 5, 1004-1010, 2012.

Scheller, H. V., Ulvskov, P. 2010, Hemicelluloses, Ann. Rev. Plant. Biol. (61) 1: 263– 289.

Sharifia, M., Karimi, K., Taherzadeh, M. J., 2008. Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses, J Ind Microb Biotechnol 35:1253–1259

52 E ta n o l d e s eg un d a g er aç ão

Silva, A. S., Inoue, H., Endo, T., Yano, S., Bon, E. P. S., 2010. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation, Bioresour Technol 101:7402–7409

Silvério, F. O., Barbosa, L. C. A., Gomide, J. L., Reis, F. P., Veloso, D. P., 2006. Metodologia de extração e determinação do teor de extrativos em madeiras de eucalipto. Revista Árvore, Viçosa, (30) 6: 109-116.

Sjöström, E. 1993, Wood chemistry: Fundamentals and applications (2nd rev. ed). Academic Press, San Diego (CA).

Sjöström, E., Alén, R. 1998.Analytical Methods in wood chemistry, pulping, and papermaking. Springer. Germany, 316p.

Smith, J.E., Anderson, J. G., Senior, E.K., 1987. Bioprocessing of lignocelluloses. Philosophical transitions of the royal society, London, 321: 507-521.

Suihko HL (1983) The fermentation of different carbon sources by Fusarium oxysporum. Biotechnol Lett 5:721–724

Sun, R. C.; Tomkinson, J., 2003. Comparative study of organic solvent and water- soluble lipophilics extractives from whear straw I: yield and chemical composition. Journal of Wood Science, 49: 47-52.

Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol, 83:1–11.

Sunna, A., Antranikian, G., 1997. Xylanolytic Enzymes for Fungi and Bactéria. Critical Review on Biotechnology, 17: 39-67.

Szengyel, Z. Ethanol from wood: Cellulase enzyme production. 2000. 61 f. Tese de Doutorado. Departamento de Engenharia Química, Lund University, Suécia, 2000

Taherzadeh, M. J., Karimi, K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci, 9:1621–1651. Tao, L., Aden, A., Elander, R. T., 2011. Process and techno economic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass,” Bioresource Technology, 102(24) : 11105–11114.

Teeri, T. 1997, Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Tibtech, 15:160-166.

Unrean P, Nguyen NH (2013) Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Appl Biochem Biotechnol 169:1895–1909

Van Dyk, J. S., Pletschke, B. I, 2012, A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30: 1458– 1480.

53 E ta n o l d e s eg un d a g er aç ão

Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Appl Biochem Biotechnol, (57) 8:157 – 170.

Wan, C. X., Zhou, Y. G., Li, Y. B., 2011, Liquid hot water and alcaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol, 102:6254– 6259.

Weil, J. R., Brewer, M., Hendrickson, R., Sarikaya, A., Ladisch, M. R., 1998. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology ,72: 99–111.

Wong, K. K., Deverell, K. F., Mackie, K. L., Clark, T. A., Donaldson, L. A. 1988, The relationship between fiber porosity and cellulose digestibility in steam exploded Pinusradiata. Biotechnology and Bioengineering, 31(5), 447–456.

Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple , M., Ladisch, M. R., Lee, Y. Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol, 96:1959–1966.

Wyman, C. E., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E., Viikari, L. 2004. Chapter 43 hydrolysis of cellulose and hemicelulose In: Polysaccharides - Structural diversity and functional versatility, 2nd edition. DOI: 10.1201/9781420030822. ch43

Xiea, T., Linb, L., Panga, C., Zhuang, J., Shi, J., Yang, Q., 2013. Efficient enzymatic hydrolysis of the bagasse pulp prepared with active oxygen and MgO-based solid alkali. Carbohydr Polym 94(2):807–813

Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., Burns, J. C., 2010. Lime pretreatment of switchgrass at mild temperatures for ethanol production Bioresource Technology, 101(8), 2900–2903.

Xu, J., Zhang, X., Cheng, J. J., 2012. Pretreatment of corn stover for sugar production with switchgrass-derived black liquor, Bioresource Technology, 111: 255–260. Xu, Z., Huang, F., 2014. Pretreatment methods for bioethanol production. App. Biochem. Biotechnol. Online version

Yokoi, H., Nakase, T., Goto, K., Ishida, Y., Ohtani, H., Tsuge, S., Sonoda, T.; Ona, T.. 2003. Rapid characterization of wood extractives in wood by thermal desorption- gas chromatography in the presence of tetramethylammonium acetate. Journal of Analytical and Applied Pyrolysis, 67: 191-200.

Zhang, D., Ong, Y. L., Li, Z., Wu, J. C. 2012. Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose,” Chemical Engineering Journal, 182: 636–642.

Zhao, L., Zhang, X., Tan, T., 2008. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenergy 32:1156– 1161.

Zhao, K., Cheng, D., Liu, X., 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Applied Microbiology and Biotechnology, vol. 82 (5): 815–827.

54 E ta n o l d e s eg un d a g er aç ão

Zhao, X,. Liu, D., 2012. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process,” Bioresource Technology, 117: 25–32.

Zhao, X., Zhang, L., Liu, D., 2010, Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility, Biotechnology Journal, 5(5): 493–504.

Zheng, Y., Pan, Z., Zhang, R., 2009. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng ,2:51–68.

Zhu, L., O’Dwyer , J. P., Chang, V. S., Granda, C. B., Holtzapple, M. T., 2008. Structural features affecting biomass enzymatic digestibility. Bioresource Technol 99:3817– 3828.

2019

GEORGE JACKSON DE MORAES ROCHA

VIVIANE MARCOS NASCIMENTO

CARLOS EDUARDO VAZ ROSSELL

Graduado em Engenharia Industrial Química pela Faculdade de Engenharia Química de Lorena (1989). Possui mestrado em Tecnologia Bioquímico- Farmacêutica pela Universidade de São Paulo (1995) e doutorado em Físico- Química Orgânica pela Universidade de São Paulo (2000). Atualmente é Pesquisador Sênior do Laboratório Nacional de Ciência e Tecnologia do Bioetanol- CTBE do Centro Nacional de Pesquisa em Energia e Materiais. Orientador de mestrado e doutorado nos programas de Pós-Graduação em Biotecnologia Industrial da Escola de Engenharia de Lorena Universidade de São Paulo e no Departamento de Antibióticos da Universidade Federal de Pernambuco. Tem experiência na área de e Engenharia Química, Engenharia Bioquímica com ênfase em Conversão de Biomassas Vegetais. Atua principalmente nos seguintes

No documento ETANOL DE SEGUNDA GERAÇÃO (páginas 42-54)

Documentos relacionados