• Nenhum resultado encontrado

HIPÓTESE

Mudas de cajueiro na presença de alta pressão de CO2 e salinidade apresentam maior

fotossíntese, menores danos no sistema fotoquímico e, como consequência maior proteção oxidativa.

OBJETIVOS

OBJETIVO GERAL

Investigar o sistema fotossintético e o metabolismo oxidativo em folhas de plantas de cajueiro submetidas aos efeitos do estresse salino quando cultivadas em elevado CO2, a fim de

compreender respostas desencadeadas pela maior disponibilidade de CO2 as plantas e,

estabelecer relações entre a assimilação fotossintética e alterações oxidativas.

OBJETIVOS ESPECÍFICOS:

1) Avaliar os efeitos isolados e combinados do CO2 elevado e da salinidade sobre

variáveis fisiológicas relacionadas à condutância estomática, taxa fotossintética e, variáveis de fluorescência da clorofila a em folhas de mudas de cajueiro.

2) Analisar alterações oxidativas causadas pelos efeitos isolados e combinados do CO2

elevado e salinidade sobre a peroxidação lipídica (TBARS), acúmulo de peróxido de hidrogênio, e alterações na relação Na+/K+.

3) Avaliar conteúdo de pigmentos fotossintéticos (Clorofila total), pigmentos relacionados a proteção oxidativa (Flavonóides e Antocianinas) , o teor de aminoácidos e de prolina como indicativos de estresse frente aos efeitos isolados e combinados do CO2 elevado e salinidade em folhas de cajueiro.

4) Estimar o papel exercido pelo acumulo de carboidratos solúveis, sacarose e amido induzidos pelos efeitos isolados, e combinados, do alto CO2 e da salinidade na

atividade fotossintética.

5) Avaliar o metabolismo fotorrespiratório, estimando-o pela atividade e produtos de enzimas relacionadas com esta via: Oxidase do Glicolato, Glioxilato, Sintetase da Glutamina e Amônio;

REFERÊNCIAS

ALEXIEVA, V.; IVANOV, S.; SERGIEV, I.; KARANOV, E. Interaction between stresses.Bulgarian Journal of Plant Physiology, Varna, p.1-17, 2003.

ALSCHER R.G., DONAHUE J.L., CRAMER C.L.; Reactive oxygen species and antioxidants: Relationships in green cells. Physiologia Plantarum 100, 224-233, 1997. AINSWORTH, E.A. e ROGERS, A. The response of photosynthesis and stomacal conductance to rising (CO2): mechanisms and environmental interactions. Plant, Cell & Environment v. 30, p. 258-270, 2007.

APEL, K; HIRT,H. Reative oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review Plant Biotechnology, v. 55, p. 373-399, 2004.

ARANJUELO, I.; ERICE, G.; NOGUÉS, S; MORALES , F.; IRIGOYEN, J. J.; SÁNCHEZ- DIAZ, M. The mechanism involted in the photoprotection of PSII at elevates CO2 in

nodulated alfafa plants. Envirom. and Experimental Botany, 64:295-306, 2008.

ARAUJO, S. A. C.; DEMINICIS B. B., Fotoinibição da fotossíntese. Revista Brasileira de

Biociências. V. 7, p. 673-472, 2009.

ASHRAF, M. Breeding for salinity tolerance in plants. Crit. Rev. Plant Science. v. 13, p. 17– 42, 1994.

ASHRAF, M.; HARRIS, P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Science, v.166, p.3-16, 2004.

ASSMANN S.M. Signal transduction in guard cells. Annual Review of Cell Biology v.9, p. 345–375, 1993.

AZEVEDO NETO, AD, TABOSA, J.N. Estresse salino em plântulas de milho Parte II. Distribuição dos macronutrientes catiônicos e suas relações com sódio. Revista Brasileira de

Engenharia Agrícola e Ambiental v. 4, p. 165-171, 2000.

BALL, M.C.; MUNNS, R. Plant responses to salinity under elevated atmospheric concentrations of CO2. Australian Journal Botany, v. 40, p. 515- 525, 1992.

BALL, M. C. BUTTERWORTH, J.A., RODEN, J.S., CHRISTIAN, R. & EGERTON, J.J.G.. Applications of chlorophyll fluorescence to forest ecology. Australian Journal of Plant

Physiology, v. 22, p. 311-319, 1994.

BETHKE, P.C., DREW, M.C. Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity.

Plant Physiology. v. 99, p.219–226, 1992.

BONNEFOY, M., DRAI, J., KOSTKA, T. Antioxidants to slow aging, facts and perspectives.

BOYER J. S., Plant productivity and environment. Science, vol. 218, p. 443-448, 1982 BRAY, E.A.; BAILEY-SERRES, J.; WERETILNYK, E. Responses to abiotic stress. In: BUCHANAN, B., GRUISSEM, W., JONES, R. Biochemistry & Molecular Biology of

Plants. 3◦ Impressão. American Society of Plant Physiologists, Rockville, Maryland, USA.

Cap.22, p.1167-1168, 2000.

BREARLEY, J.; VENIS, M,A.; BLATT, M.R. The effect of elevated CO2 concentrations on

K+ and anion channels of Vicia faba L. guard cells. Planta v.203, p.145–54, 1997.

CHENG S-H; MOORE, B.D.; SEEMANN, J.R. Effects of short- and long-term elevated CO2

on the expression of Ribulose-1,5-bisphosphate carboxylase/ oxygenase genes and

carbohydrate accumulation in leaves of Arabidopsisthaliana. Plant Physiology, v. 116, p. 715–723, 1998

CHUNG, J.S.; ZHU, J.K.; BRESSAN, R.A.; HASEGAWA, P.M.; SHI, H. H. Reactive oxygen species mediate Na+ induced SOS1 mRNA stability in Arabidopsis. Plant Journal, v.53, p. 554-565, 2008.

CRAMER, G.R., NOWAK, R.S. Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Plant. Physiology. V. 84, p. 600–605, 1992.

COSTA, P. M. F. Efeitos da alta concentração de CO2 sobre o crescimento e o

estabelecimento de plântulas do jatobá de mata Hymenaea courbaril L. VAR. stilbocarpa (HEYNE) Lee & Langenheim (LEGUMINOSAE, CAESALPINIOIDEAE, DETARIEAE), 2004, 84p. Dissertação (Mestrado em Biologia Celular e Estrutural na área de Biologia Celular. Universidade Estadual de Campinas, 2004.

COTUFO, F.M., INESON, P E SCOTT, A. Elevated CO2 reduces the nitrogen of plant

tissues. Global Change Biology, v. 4, p. 43-54, 1998. CO2 SCIENCE. 2012. Disponivel

em<http://www.co2science.org/subject/b/summaries/biodivc3vsc4.php>, acesso 20/05/2012. CRISÓSTOMO, J.R.; CAVALCANTI, J.J.V.; BARROS, L.M.; ALVES, R.E.; FREITAS, J.G.; OLIVEIRA, J.N. Melhoramento do cajueiro-anão-precoce: avaliação da qualidade do pedúnculo e a heterose dos seus híbridos. Rev. Brasileira de Fruticultura, v. 24, n. 2, p. 477-480, 2002.

DARBAH, J.N.T.; KUBISKE, M.E.; NELSON, N.; KETS, K.; RIIKONEN, J.; SOBER, A.; ROUSE, L.; KARNOSKY, D.F. Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3? Environ Pollut, v. 158, p. 983–991, 2010.

DEL RIO, L.A.; SANDALIO, L.M.; CORPAS, F.J.; PALMA, J.M.; BARROSO, J.B. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology. p. 141, v.330-335, 2006.

DJILIANOV, D.; GEORGIEVA,T.; MOYANKOVA, D.; ATANASSOV1, A.; SHINOZAKI, K.; SMEEKEN, S.C.M.; VERMA, D.P.S.; MURATA, N. Improved abiotic stress tolerance in

plants by accumulation of osmoprotectants – gene transfer approach. Biotechnol. &

Biotechnol.v. 19, p. 63- 71, 2005.

DRAKE, B.G.; AZCON-BIETO, J., BERRY, J.; BUNCE, J.; DIJKSTRA, P. et al. Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant, Cell & Environment 22 :649-57, 1997.

EAUX, B; TOLEDANO, M.B. Ros as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, v.8, p.813- 824, 2007.

EHLERINGER, J.R.; SAGE, R.F.; FLANAGAN, L.B.; PEARCY, R.W. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution, v.6, p.95-99, 1991. FAO. 2007. FAO Land and Plant Nutrition Management Service.disponivel em<

http://www.fao.org/ag/agl/agll/spush>, acesso 30/05/2011

FEARNSIDE, P. M. Amazon forest maintenance as a source of environmental services.

Anais da Academia Brasileira de Ciências, v.80, p. 101-104, 2008.

FERREIRA-SILVA S. L.; VOIGTB, E. L.; SILVA, E. N.; MAIA, J. M.; FONTENELE, A. V.; SILVEIRA, J. A. G. High temperature positively modulates oxidative protection in salt- stressed cashew plants. Environmental and Experimental Botany, v. 74, p.162– 170, 2011. FERREIRA-SILVA, S. L. ; VOIGT, E. L. ; SILVA, E. N. ; MAIA, J. M. ; ARAGÃO, T. C. R. ; SILVEIRA, J. A. G. . Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. Biologia Plantarum v. 56, p. 172-176, 2012.

FLOWERS, T.J., TROKE, P.F. & YEO, A.R. The mechanism of salt tolerance in halophytes.

Annual Review of Plant Physiology. v. 28, p. 89-121, 1977.

FLOWERS, T.J.; FLOWERS, S.A. Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, v.78, n.1, p.15-24, 2005.

FOYER , C.H.; NOCTOR, G. REDOX. Homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell v.17, p. 1866– 1875, 2005.

FUJITA, M.; FUJITA, Y.; NOUTOSHI, Y.; TAKAHASHI, F.; NARUSAKA, Y.; YAMAGUCHI-SHINOZAKI, K. SHINOZAKI, K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current opinion in Plant Biology, v. 9, p. 436-442, 2006.

FUNG, L.E.; WANG, S.S.; ALTMAN, A.; HUTTERMAN, A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecology and

FREIRE, J.L. O. Crescimento e desenvolvimento de maracujazeiro amarelo sob salinidade e uso de biofertilizante e cobertura, 2011, 212p. Tese (Doutorado em Agronomia).

Universidade Federal da Paraíba, Areia, 2011.

GEISSLER, N.; HUSSIN S.; KOYRO, H.W. Elevated atmospheric CO2 concentration

enchances salinity tolerance in Aster tripolium L. Planta, v. 231, p. 583- 594, 2010. GIFFORD, R.M., BARRETT, D.J.; LUTZE, J.I.L. The effects of elevates CO2 on the C:N

and C:P mass ratios of plant tissues. Plant & Soil v. 224, p. 1-14, 2000.

GRIFFIN K.L.; SEEMANN , J.R. Plants, CO2 and photosynthesis in the 21st

century. Chemistry and Biology v. 3, p. 245–254, 1996.

HALLIWELL, B., GUTTERIDGE, J.C. Free Radicals in Biology and Medicine. 3.ed.Oxford, New York, 1989.

HARE, P. AND CRESS, W. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul. v.21, p.79-102. 1997. HARO R.; BANUELOS, M.A.; SENN M.E.; BERRERO- GIL, .; RODRIGUEZ-

NAVARRO, A. HKT1 mediates sodium niport in roots: Pitfalls in the expression of HKT1 in yeast. Plant Physiology. v.139, p.1495- 1596.

HASHIMOTO, M.; NEGI, J.; YOUNG, J.; ISRAELSSON, M.; SCHROEDER, J.I.; IBA, K. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. v.8, p. 391–97, 2006.

HOQUE, M.D.A; BANU, N.A.; NAKAMURA, Y.; SHIMOISHI,Y.; MURATA, Y.. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology v. 165, p. 813—824, 2008.

HU, H.; BOISSON-DERNIER, A.; ISRAELSSON-NORDSTROM, M.; BOOHMER, M.; XUE, S. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements

in guard cells. Nat. Cell Biol. v. 12, p. 87–93, 2010.

IYENGAR, E.R.R. e REDDY, M.P. Photosyntheses in highly salt tolerant plants. In: M. Pesserkali (ed). Handbook of photosynthesis. Marshal Dekar, Baten Rose, USA, 952p, 1996.

JAMIL, M. et al. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola. v. 64, n. 2, p. 111-118, 2007.

KADER, M. A.; LINDBERG, S. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling & Behavior v. 5, n. 3, p. 233-238, 2010.

KANG, H. M. e SALTVEIT, M. E. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiologia Plantarum, v. 113, p. 548- 556, 2001.

KASTING, J.F.:, ‘The carbon cycle, climate, and the long-term effects of fossil fuel burning’, Consequences 4(1), disponível em:< http://www.gcrio.org/consequences/>, acesso

20/08/2011

KAVI KISHOR, P.B.; SANGAM, S.; AMRUTHA, R.N.; SRI LAXMI, P; NAIDU, K. R.; RAO, K.R.S.S.; RAO SREENATH; REDDY, K.J.; THERIAPPAN, P.;

SREENIVASULU, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current

Science, v. 88 n. 3, p. 424-438, 2005.

KIM,T.H.; BOHMER, M.; HU H.; NISHIMURA, N.; SCHROEDER, J. I. Guard Cell Signal Transduction Network:Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. Annu. Rev. Plant Biol. v. 61, p. 561–91, 2010.

LAMMERTSMA, E.I., DE BOER, H.J., DEKKER, S.C., DILCHER, D.L., LOTTER, A.F. AND WAGNER-CREMER, F. Global CO2 rise leads to reduced maximum stomatal

conductance in Florida vegetation. Proceedings of the National Academy of Sciences

USAv. 108, p. 4035-4040, 2011

LIMA, L. A. Efeito de sais no solo e na planta. In: GHEYI. H. R.; QUEIROZ, J. E.; MEDEIROS, J. F. Manejo e controle da salinidade na agricultura irrigada. In: congresso

brasileiro de engenharia agrícola, 26., 1997, Campina Grande. Anais... Campina Grande: UFPB-SBEA, p. 113-136, 1997.

LIU, K.; SUN, J.; SONG, Y.G.; LIU, B. XU, Y.K.; ZHANG, S.X.; TIAN, Q. LIU, Y. Superoxide hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559

Photosystem II reaction center complex. Photosynthesis Research v. 81, p. 41-47, 2004. LUDWIG, J.; CANVIN, D.T. The rate of photorespiration during photosynthesis and the relationship of the substrate of light respiration to the products of photosynthesis in sunflower leaves. Plant Physiol. v. 48, p.712–719.

MAATHUIS, F. J. M.; AMTMANN, A. K+ Nutrition and Na+ toxicity: the basis of cellular

K+/Na+ratios. Annals of Botany, v.84, p.123133, ,1999.

MACPHERSON, A.N.; TELFER, A.; BARBER, J.; TRUSCOTT, T.G. Direct detection of singlet oxygen from isolated Photosystem II reaction centres. Biochim Biophys Acta v.1143, p.301–309, 1993.

MAHAJAN, S. & TUTEJA, N. Cold, salinity and drought stresses: An overview. Archives of

Biochemistry and Biophysics, v. 444, p. 139-158, 2005.

MATEOS-NARANJO, E.; REDONDO-GÓMEZ, S.; ÁLVAREZ, R.; CAMBROLLÉ, J.; GANDULLO, J.; FIGUEROA, M. E. Synergic effect of salinity and CO2 enrichment on

growth and photosynthetic responses of the invasive cord grass Spartina densiflora. Journal

of Experimental Botany, v. 61, N. 6, p. 1643–1654, 2010.

MAXWELL, D.P.; WANG, Y.; MCINTOSH, L. The alternative oxidase lowers mito- chondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci.

MEEHL G.A.; STOCKER, T.F.; COLLINS W.D.; FRIEDLINGSTEIN P.; GAYE, A.T.; GREGORY, J.M.; KITOH, A.; KNUTTI, R.; MURPHY, J.M.; NODA, A. RAPER, S.C.B.; WATTERSON, I.G.; WEAVER, A.J.; ZHAO, Z.C. 2007. Global climate projections. In: SOLOMON S.; QIN D.; MANNING, M.; CHEN, Z.; MARQUIS, M.; AVERYT, K.B,; TIGNOR, M.; MILLER, H.L. (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf (acesso em 18/06/2011).

MENDES, B .S.S. Efeitos fisiológicos e bioquímicos do Estresse salino em anana s porteanus

hort veitch ex c. Koch, 2009 Dissertação (Mestrado em química), Universidade federal Rural de Pernambuco, Recife-PE

MITTLER. R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,v. 7, p. 405-410, 2002.

MORAIS, D.L; VIÉGAS, R.A.; SILVA, L. M. M.; LIMA JR., A. R.; COSTA, R. C. L.; ROCHA, I. M. A.; SILVEIRA, J. A. G. Acumulação de íons e metabolismo de N em cajueiro anão em meio salino. Rev. bras. eng. agríc. ambient., v.11, n.2, p. 125-133, 2007.

MOURA, G.E.D.; BENTO, D.M.; MARTINS, K.; MACEDO, C.E.C.; ALOUFA, M.A.I. Efeito do NaCl sobre a multiplicação in vitro de bananeiras da variedade Grand naine. In: V

Encontro Nacional de Biólogos; Natal, Brasil. p74-74, 2003.

MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and Environment, Oxford, v. 25, p. 239-250, 2002.

MUNNS,R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Enviroronment v. 16, p. 15-24, 1993.

MUNNS, R.; JAMES, R. A.; LAUCHLI, A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, v. 57, N. 5, p. 1025–1043, 2006. MUNNS, R.; TESTER, M. Mechanism of salinity tolerance. Annual Review of Plant

Biology, v.59, p.651-681, 2008.

NEILL, S. J. R.; DESIKAN, A.; CLARKE, R.D.; HURST, J.T.; HANCOCK. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal Experimental Botany. v. 53, p. 1237-1247, 2002.

NIU, X., BRESSAN, R.A., HASEGAWA, P.M. & PARDO, J.M. Ion homeostasis in NaCl stress environments. Plant Physiology. v. 109, p.735-742, 1995.

NOCTOR, G.; FOYER, C.H. Ascorbate and glutathione: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology., v. 49, p. 249-79. 1998.

PANG, C. A.; WANG, B. Oxidative Stress and Salt Tolerance in Plants. Progress in Botany. v. 69, p. 231-246, 2008.

PARDO J. M., QUINTERO F. J. Plants and sodium ions: keeping company with the enemy. Genome Biology, v. 3, p. 10171–10174, 2002.

PARIDA, A. K.; DAS, A. B. Salt tolerance and salinity effects on plants: a review

Ecotoxicology and Environmental Safety, v. 60, n. 3, p. 324-349, 2005.

PÉREZ-LÓPEZ, U., ROBREDO, A., LACUESTA,M., SGHERRI, C., MU˜NOZ-RUEDA, A., NAVARI-IZZO, F., MENA-PETITE, A. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Plant Physiology. v.135, p. 29–42, 2009.

PÉREZ-LÓPEZ, U., ROBREDO, A., LACUESTA, M., MENA-PETITE, A. MUÑOZ- RUEDA, A. Elevated CO2 reduces stomatal and metabolic limitations in photosynthesis

caused by salinity in Hordeum vulgare. Photosynth Res. v. 111, p. 269–283, 2012. POLLE, A. Protection from oxidative stress in trees as affected by elevated CO2 and

environmental stress. In: Koch G, Mooney H (eds) Terrestrial Ecosystem Response to Elevated CO2. Academic Press, v.50 p 299–315, 1996.

POOTER, H.; PÉREZ-SOBA, M., Plant Growth at Elevated CO2. In: Encyclopaedia of Global. Environmental Change. v. 2, p. 489–496. 2002.

PONTE, L. F. A. ; FERREIRA, O. S. ; ALVES, FRANCISCO A. L. ; FERREIRA-SILVA, S. L. ; PEREIRA, V. L. A. ; SILVEIRA, J. A. G. Variabilidade de indicadores fisiológicos de resistência à salinidade entre genótipos de cajueiro-anão e gigante. Pesquisa Agropecuária

Brasileira , v. 46, p. 1-8, 2011.

PRADO, R. de M., Nutrição da cultura de algodão. Jaboticabal: FCAV/Unesp. 2008. RAE, A.M.; TRICKER, P.J.; BUNN SM, TAYLOR, G. Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus. New Phytol, v. 175, p. 59–69, 2007.

RIBEIRO, J.S.; LIMA, A.B.; CUNHA, P.C.; WILLADINO, L.; CAMARA, T.R.

Estresse Abiotico em Regioes Semi-Aridas: Respostas Metabolicas das Plantas. In: MOURA, A.N.; ARAUJO, E.L.; ALBUQUERQUE, U.P. (orgs.) Biodiversidade, potencial economico

e processos eco-fisiologicos em ecossistemas nordestinos, Recife: Comunigraf, 361p. 2007.

ROXO, M. J.; CASIMIRO, P. C. Exemplos de práticas inadequadas de agricultura de sequeiro em áreas Mediterrâneas. IN: GÓMEZ, J.G.; ROXO, M.J.; CASIMIRO, P. C.; QUARANTA, G.; SALVA, R.; KOSMAS, C. Práticas inadequadas de agricultura de

sequeiro em terras marginalmente produtivas, 2004. Disponível em:

<www.unibast.it/desertnet/dis4me/issues/issue_agricultural_pratices_pt.htm#description>. Acesso em:06/10/2011

SAGE, R. How terrestrial organisms sense, signal and respond to carbon dioxide.

SAKAI, H.; HASEGAWA, T.; KOBAYASHI, K. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytol, v.

170, p. 321–332, 2006.

SALAMA, S.; TRIVEDI, S.; BUSHEVA, M.; ARAFA, A.A.; GARAB, G.; ERDEI, L. Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and

function in wheat cultivars differing in salt tolerance. Journal of Plant Physiology, v.144, p.241-247, 1994.

SANTANA, M. J.; CARVALHO, J.A.; SILVA, E.L.; MIGUEL, D. S. Efeito da irrigação com água salina em um solo cultivado com o feijoeiro (phaseolus vulgaris l.) Ciênc.

agrotecnica., Lavras. v.27, n.2, p.443-450, , 2003.

SANTOS, R.V.; MURAOKA, T. Interações salinidade e fertilidade do solo. In: GHEYI, H.R.; QUEIROZ, J.E.; MEDEIROS, J.F. Manejo e controle da salinidade na agricultura

irrigada. Campina Grande: UFPB/SBEA.cap. 9, p.289-317, 1997.

SANTOS, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, v. 103, p. 93–99, 2004.

SCHWANZ, P.; POLLE, A. Growth under elevated CO2 ameliorates defences against photo-

oxidative stress in poplar (Populus alba x tremula). Environ Exp Bot v. 45, p. 43–53, 2001. SERRES, J. B., MITTLER R. The Roles of Reactive Oxygen Species in Plant Cells. Plant

Physiology, v.2 , p. 141:311, 2006.

SHANNON, M. Adaptation of plants to salinity. Adv. Agron., v. 60, p. 75-120, 1997

SHARMA, P.K.; HALL, D.O. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghun. Journal of Plant Physiology, v.138, n.5, p.614-619, 1991.

SOARES, S.E. Acidos fenolicos como antioxidantes, REVIEW: Nutrition

Reviews,Campinas, v. 15, p. 71-81, n. 1, 2002.

SOUZA, B. B. Influência dos cloretos de sódio e de potássio nas propriedades plásticas e no comportamento mecânico de pastas para cimentação de poços de petróleo. Projeto de

graduação (Monografia). UFRJ/ Escola politécnica, 2011.

TAGAKI, M.; El-SHEMY, H.; SASAKI, S.; TOYAMA, S.; KANAI, S.; SANEOKA, H.; FUJITA, H. Elevated CO2 concentration alleviates salinity stress in tomato plant. Acta Agriculturae Scandinavica, Section B Soil and Plant Science

v., 59, n. 1, P: 87-96, 2009.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2008. p.819.

TESTER, M.; DAVENPORT, R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, v. 91, p. 503-527, 2003.

TÜRKAN, I; DEMIRAL, T. Recent developments in understanding salinity tolerance

WAHOME, P.K.; JESCH, H.H.; GRITTNER, I. Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’ and R. rubiginosa. Scientia Horticulturae, v.87,

p.207-216, 2001.

WANG, S.Y.; BUNCE, J.A.; MAAS, J.L. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry. v.51, p.4315-4320, 2003.

WILLADINO, L.G.; CAMARA, T.R. Origen y naturaleza de los ambientes salinos. In: Reigosa, M.J.; Pedrol, N.; Sanches, A. (ed). La Ecofisologia Vegetal, p.303-330. Thomson, Madrid, España. 2004.

VINOCUR BASIA, e ALTMAN, Arie. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology , vol. 16, n º. 2, p. 2, p. 123-132, 2005.

XIONG L.; SCHUMAKER K. S.; ZHU, J.K. Cell Signalins during Cold, drought and salt stress. The Plant Cell v.3, p. 165-183, 2002.

ZHU J., TALBOTT L.D., Jin X.; Zeiger E. The stomatal response to CO2 is linked to changes

in guard cell zeaxanthin. Plant, Cell & Environment, v.21, p. 813–820, 1998. ZHU, J.K. Plant salt tolerance. Trends Plant Sci., v. 6, p. 66–71, 2001.

ZHU, J.K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant

Documentos relacionados