• Nenhum resultado encontrado

As nanopartículas preparadas nesse trabalho, bem como as estruturas core/shell

3 RESULTADOS E DISCUSSÕES

6. As nanopartículas preparadas nesse trabalho, bem como as estruturas core/shell

propostas podem ser testadas, por exemplo, para aplicações biomédicas (como hipertermia magnética). Mas, será preciso adequar o tamanho desses componentes em torno de 10 nm ou menos, fazendo as caracterizações adequadas e verificando a viabilidade para as aplicações.

REFERÊNCIAS

[1] JONKER, G. H.; VAN SANTEN, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica, v. 16, n. 3, p. 337-349, 1950.

[2] VAN SANTEN, J. H.; JONKER, G. H. Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure. Physica, v. 16, n. 3, p. 599-600, 1950.

[3] LATIF, I. A. A. Rare Earth Manganites and their Applications. Journal of Physics. v. 1, n. 3 p. 15-31, oct 2012

[4] FRITSCHA, S.et al. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ionics, v.109, p. 229–237, June 1998.

[5] YUAN-CHANG, L; YUANG-CHING, L. Correlation between lattice modulation and physical properties of La0.72Ca0.28MnO3 films grown on LaAlO3 substrates. Journal of

crystal growth, v. 303, n. 2, p. 638-644, 2007.

[6] GROSSIN, D; NOUDEM, J. G. Synthesis of fine La0.8Sr0.2MnO3 powder by different

ways. Solid State Sciences, v. 6, p. 939–944,2004.

[7] CHERIF, W et al. Synthesis and characterization of fine particles of La0.7Ca0.3MnO3

prepared by the mechanical ball milling method. European Physical Journal Plus. 127: 73,2012

[8] LIU, Y. et al. Preparation of high surface area La1-xAxMnO3(A = Ba, Sr or Ca) ultra-

fine particles used for CH4 oxidation. Chemical Engineering Journal, v. 89, p.213–221,

2002.

[9] NAGDE, K.R.; Bhoga, S.S. Effect of preparative methods on electrical and electrochemical performance of lanthanum strontium manganite. Journal Solid State

Electrochem, v. 16, p. 1605–1613, 2012.

[10] MACDONALD, J. R. Impedance Spectroscopy - Emphasizing Solid Materials and

Systems. New York: Wiley-Interscience, 1987.

[11] SHAH, M et al. Change of conduction mechanism in the impedance of grain boundaries in Pr0.4Ca0.6MnO3 . Journal of Magnetism and Magnetic Materials 332, p.

61–66, 2013.

[12 ] IQBAL, M. J.; NADEEM, M;. HASAN, M.M. Low temperature impedance spectroscopy evidence of phase coexistence within bulk Pr0,5Ca0,5MnO3 manganites.

Chemical Physics Letters 585, p. 74–79, 2013

[13] WENK, H.-R.; BULAKH, A. Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press, p. 413, 2004

[14] TONIOLO, F. S. Óxidos Mistos do Tipo Perovskita para a Geração de Gás de

Síntese. 2010. Tese doutorado– Universidade Federal do Rio de Janeiro (UFRJ/COPPE),

[15] COEY, J. M. D; VIRET, M.; VON MOLNAR, S. Mixed-valence manganites.

Advances in Physics, v. 48, n. 2, p. 167-293, 1999.

[16] GLAZER, A. M. Classification of tilted octahedra in perovskites. Acta

Crystallographica B, v. 28, p. 3384-3392, 1972.

[17] ISHIHARA,T.; MATSUDA,H. and TAKITA, Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid

State Ionics 79, p. 147-151, 1995

[18] GOLDSCHMIDT, V. Geochemistry. Oxford University Press, 1958.

[19] SUN, J.R.; RAO, G.H. and LIANG, J.K.. Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor. Applied. Physics

Letters, v. 70 (14), 1997.

[20] RADAELLI, P.G. et al.Charge localization by static and dynamic distortions of the MnO6 octahedrain perovskite manganites. Physical Review B, v.544, n.13, 1996.

[21] GUPTA, H.C. and TRIPATHI, U.. .Zone center phonons of the orthorhombic RMnO3 (R = Pr, Eu, Tb, Dy, Ho) perovskites. PMC Physics B, 2008.

[22] ALONSO, J. A.; MARTÍNEZ-LOPE, M. J. and CASAIS, M. T.. Evolution of the Jahn-Teller Distortion of MnO6 Octahedra in RMnO3 Perovskites (R = Pr, Nd, Dy, Tb,

Ho, Er, Y): A Neutron Diffraction Study. Inorganic Chemistry,v. 39, p.917-923, 2000 [23] GOODENOUGH, J. B. Magnetism and the Chemical Bond. New York: Wiley- Interscience, 1996.

[24] CARVAJAL, J. R. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Physical Review B, v. 57, n. 6, 1998.

[25] GORKOVA, L. P. and KRESIN, V. Z. Mixed-valence manganites: fundamentals and main properties. Physics Reports, v.400, p. 149–208, 2004.

[26] COEY, J.M. D.; VIRET,M. and RANNO, L. Electron Localization in Mixed- Valence Manganites. Physical Review Letters, v.75, n. 21, 1995.

[27] ALADINE, A. D. Zener Polaron Ordering in Half-Doped Manganites. Physical

Review Letters, v.89, n.9, 2002.

[28] RENNER, C. Atomic-scale images of charge ordering in a mixed-valence manganite. Nature, v. 416, p. 518-521, 2002.

[29] PRODI, A. Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+3)(Mn3+2 Mn4+2)O12. Nature Materials, v.3, p. 48 - 52 ,2004.

[30] CHMAISSEM, O. Structural and magnetic phase diagrams of La1-xSrx

MnO3 and Pr1-y SryMnO3. Physical Review B, v. 67, 094431, March 2003.

[31] TAKURA, Y. Critical features of colossal magnetoresistive Manganites. Reports on

[32] GAUR, A. and VARMA, G. D. Sintering temperature effect on electrical transport and magnetoresistance of nanophasic La0.7Sr0.3MnO3. Jounal of Physics: Condens.

Matter, v. 18, p.8837–8846, 2006

[33] URUSHIBARA, A. Insulator-metal transition and giant magnetoresistance in La1- xSrxMnO3. Physical Review B, v. 51, n. 20, 1995.

[34] CULLITY, B. D. Introduction to Magnetic Materials. Massachusetts: Addison- Wesley Publishing Company, INC., 1972.

[35] JONKER, G. H., Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds. Physica, v. 22, p.707 -722, 1956.

[36] WOLLAN, E.O. and. Kehler, W.C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3. Physics

Review 100, 545, 1955.

[37] SCHIFFER, P et al. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3. Physical Review Letters, v. 75, n. 18, 1995

[38] HEMBERGER, J. et al; Structural, magnetic, and electrical properties of single- crystalline La1-xSrxMnO3 (0.4<x<0.85). Physical Review B, v. 66, 2002.

[39] FUJISHIRO, H. et al. Phase transition to antiferromagnetic state in La1-xSrxMnO3 (x 0,5). Jounal of the Physical Society of Japan., v. 67, n. 5, p. 1799-1800, 1998.

[40] ZENER, C. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physics. Review. 82, p. 403–405, 1951.

[41] DONG, S. et al. Magnetism, conductivity, and orbital order in (LaMnO3)2n/(SrMnO3)n superlattices. Physical Review B, v. 78, 2008.

[42] JONKER, G. H., Semiconducting properties of mixed crystals with perovskite structure. Physica, v. 20, p. 1118–1122, 1954.

[43] LIU, S. T. Magnetic-properties of lanthanum manganite and valence equilibrium of manganese. Jounal of Alloy and Compounds., v. 197, n. 1, p. 91-96, 1993.

[44] JIN, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science, v. 264, p. 413-415, 1994.

[45] GHATAK, S. K.; KAVIRAJ, B. and DEY, T. K. Giant magnetoimpedance in Ag- doped La0.7Sr0.3Mn O3 . Journal of Applied Physics v. 101, n. 023910, 2007.

[46] DUTTA, P; DEY, P. and NATH, T. K. Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance, and magnetic properties of La0.7

[47] PANINA, LV and MOHRI, K. Magneto-impedance effect in amorphous wires.

Applied Physics Letters, v. 65, p.1189–1191, 1994

[48] PANINA, LV et al. Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Transactions on Magnetics, v. 31, p. 1249–1260, 1995.

[49] LANDAU, L. D. and LIFSCHITZ, E. F. Electrodynamics of Continuous Media. Pergamon, 2nd ed, v.8, pp. 201–214, New York, 1994.

[50] KURLYANDSKAYA, G.V. et al. The magnetoresistance contribution to the total magnetoimpedance of thin films: a simple model and experimental basis. Journal of

Magnetism and Magnetic Materials, v. 215–216, p. 516–518, 2000.

[51] VENKATAIAHA,G.; PRASADB, V. and READDY, P. V.. Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. Journal of Alloys and Compounds, v. 429, iss. 1-2, p. 1–9, 2007.

[52] FIEBIG, M. Magnetoelectric effects in multiferroic manganites. Journal of

Magnetism and Magnetic Materials v. 290–291, p. 883–890, 2005.

[53] PARASKEVOPOULOS, M. et al .The phase diagram and optical properties of La1- xSrxMnO3 for x ≤0.2. Journal of Magnetism and Magnetic Materials v. 211, issues 1-

3, p. 118-127, 2000.

[54] PHAN, M.-H. and Yu, S.C.. Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, v. 308, issue 2) p.325–340 , 2007

[55] BALCELLS, L. et al. Manganese perovskites: Thick-film based position sensors fabrication. Applied Physics Letters, v. 69, n. 10, p. 1486-1488, 1996.

[56] BASONA, Y et al. Planar Hall-effect magnetic random access memory. Journal of

Applied Physics v. 99, n. 08R701, 2006

[57] YANG, S. et al. Magnetoresistive La0.83Sr0.17 MnO3 ceramics by DAAS technique.

Chemistry of Materials., v. 10, n. 5, p. 1374-1381, 1998.

[58] STEGE, W. P.; CADÚS, L.E. and BARBERO, B. P. La1-xCaxMnO3 perovskites as

catalysts for total oxidation of volatile organic compounds. Catalysis Today, v. 172, p. 53–57, 2011

[59] VOORHOEVE, R. J. H. et al. Perovskite-like La1-x KxMnO3 and related compounds

- solid-state chemistry and catalysis of reduction of NO by CO and H2. Journal of Solid

State Chemistry, v. 14, n. 4, p. 395-406, 1975.

[60] LEE, Y. N. et al. Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln = La or

Nd and A = K or Sr) perovskites. Applied Catalysis A: General, v.215, p. 245–256, 2001.

[61] LIU,Y. et al. Preparation of high surface area La1-xAxMnO3(A = Ba, Sr or Ca) ultra-

fine particles used for CH4 oxidation. Chemical Engineering Journal, v. 89, p. 213–

221, 2002.

[62] DANILENKO, I. et al. La0.7Sr0.3MnO3 nanopowders: Synthesis of different powders

structures and real magnetic properties of nanomanganites. Materials Characterization v. 82, p.140-145, 2013.

[63] QI, S. et al. The growth process of rod-shaped La0.7Sr0.3MnO3 in solid state method.

Journal of Alloys and Compounds v. 478, p. 317–320, 2009.

[64 ] KANG, S. L. Sintering, Densification, grain growth, and microstructure. 1ºed., Oxford: Elsevier Butterworth-Heinemann, 2005.

[65] GROSSIN, D. and NOUDEM, J.G. Synthesis of fine La0.8Sr0.2MnO3 powder by

different ways .Solid State Sciences v.6, p.939–944, 2004.

[66] GAUR, A. and VARMA, G.D. Sintering temperature effect on electrical transport and magnetoresistance of nanophasic La0.7Sr0.3MnO3. Journal of Physics.: Condensed

Matter, v.18 p. 8837–8846, 2006

[67] PECHARSKY, V. K. and ZAVALIJ, P. Y. Fundamentals of Powder Difraction

and Structural Characterization of Materials. Springer Science+Business Media, Inc

,2005.

[68] PANalytical B. V. X-ray diffraction software. Panalytical. Disponivel em: <http://www.panalytical.com> Acesso em: 10 jan. 2014.

[69] PAIVA, C. O.-S. Aplicações do Método de Rietveld e potencialidades do método

de Scarlet-Madsen. Instituto de Química, Universidade Estadual Paulista (UNESP),

2009.

[70] MANNHEIMER, W. Microscopia dos Materiais: Uma Introdução. 1ª ed. E-papers, 2002.

[71] Quantum Design. VersaLabTM magnetometer. Qdusa. Disponivel em:

<http://www.qdusa.com>. Acesso em: 10 jan. 2014.

[72] BARBOSA, G. F. Sínteses e caracterizações estruturais, magnéticas e

estabilidade térmica das ligas Fe64Co7Nd3Zr6B20 e Fe56Co7Ni7Zr10B20. 2011. Tese

(Doutorado em Ciência de Materiais) - Universidade Federal de Pernambuco, Recife, 2011.

[73] Agilent Technologies Ltd (Japan). Agilent 4396B Network/Spectrum/Impedance Analyzer - User's Guide. Agilent Part No. 04396-90051. May 2003 Fifth Editionc. [74] Agilent Technologies Ltd (Japan). Agilent 4396B Network/Spectrum/Impedance Analyzer Analyzer Option 010. Operating Handbook. Agilent Part n° 04396-90046 .May 2003 Fifth Editionc.

[75] PETROV, A.N. et al. Crystal Structure of the Mixed Oxides La0.7Sr0.3Co1- zMnzO3±y(0≤z≤1). Journal of Solid State Chemistry, v. 143, issue 1, p. 52-57, febr

[76] KIM, M.S. et al. Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3. Physical Review B, v.71, n 014433, jan 2005.

[77] DYAKONOV, V. et al. Magnetic, resonance and transport properties of nanopowder of La0.7Sr0.3MnO3 manganites. Journal of Magnetism and Magnetic Materials v. 322,

p. 3072–3079, 2010.

[78] BESNUS, M.J.; Bauer, P. and Genin, J.M.. Magnetic and 57Fe Mossbauer study of Y(Fe1-cAlc )2 alloys: Local environment effects. Journal of Physics F: Metal Physics, v.

8, n. 1, 1978.

[79] WAUTELET, M.; Dauchot, J.P and Hecq, M. Size effects on the phase diagrams of nanoparticles of various shapes. Materials Science and Engineering C, v. 23, p. 187– 190, 2003.

[80] GIRI, S.K.; Poddar, A. and Nath, T.K. .Evidence of exchange bias effect and surface spin glass ordering in electron doped Sm0.09Ca0.91MnO3 nanomanganites. Journal

Applied Physics, v.112, n.113903, 2012.

[81] ARROTT, A. Criterion for Ferromagnetism from Observations of Magnetic Isotherias. Physical Review, v. 108, n. 6, decenber 1957.

[82] WAGNER, D.;WOHLFARTH, E. P..Arrott plots of magnetic systems with strong spin fluctuations. Physics Letters A, v. 118, Issue 1, p. 29-31, sepet 1986.

[83] CHAUDHARY, S.; ROY, S. B. and CHADDAH, P. DC–magnetisation studies in the La1-xSrxCoO3 (x ≤ 0.4) system. Journal of Alloys and Compounds, v. 326, p. 112-

116, 2001.

[84] MAITY, S.; RAY, S.K. and BHATTACHARYA, D. Phase, morphology and core- level electron spectroscopy of nano-sized La0,65Sr0,35MnO3 powders prepared by solution

combustion synthesis. Journal of Physics and Chemistry of Solids, v. 74, p. 315–321, 2013.

[85] KITTEL, C. Introduction to Solid State Physics. 7th ed. New York: Wiley, 1996. [86] GANGOPADHYAY, S. et al. Magnetic properties of ultrafine iron particles.

Physical Review B, v.45, n 9778, May 1992

[87] ROY, S. et al. Size induced variations in structural and magnetic properties of Double exchange La0.8Sr0.2MnO3-ᵟ nano-ferromagnet. Journal of Applied Physics, v.96,

n.2, July 2004.

[88] ARAÚJO, A. E. P. Propriedades Magnéticas de Manganitas, Fitas Amorfas e

Filmes Finos com Anisotropia Unidirecional. 2002. Tese (Doutorado em Física).

Universidade Federal de Pernambuco - Recife, 2002.p

[89] HU, J. et al. Giant magnetoimpedance and colossal ac magnetoresistance of a Cu coil wound on La0.67 Sr0.33 MnO3. Solid State Communications, v. 151, p 47–50, 2011.

[90] MOREIRA, M. L. et al. Structural and magnetic properties of nanoparticles of La2/3Sr1/3MnO3. Physica B: Condensed Matter, v. 384, p. 51-53, 2006.

APÊNDICE A – Gráficos R, X e ∣Z∣ para as amostras LSM25-LSM210

Figura A1– Resistência em função da frequência para amostras LSM25- LSM210.

Tabela A1 – Valores de D, fp e Rp para resistência das amostras LSM25- LSM210.

Parâmetros LSM25 LSM27 LSM28 LSM29 LSM210 Bobina D (nm) 30 41 57 65 98 fp (MHz) 177,04 175,54 176,54 174,04 163,54 190,54 Rp=(Ohms) 4,10 3,52 3,65 3.64 1,60 7,10 100 120 140 160 180 200 220 240 -1 0 1 2 3 4 5 6 7 8 160 180 1 2 3 4 Bobina LSM25 LSM27 LSM28 LSM29 LSM210 R (  ) f (MHz) f (MHz) Rp

Figura A2 – Reatância em função da frequência para amostras LSM25- LSM210.

Tabela A2 – Valores de D, fp e Xp para reatância das amostras LSM25- LSM210.

Parâmetros LSM25 LSM27 LSM28 LSM29 LSM210 Bobina D (nm) 30 41 57 65 98 fp (MHz) 174,02 174,04 172,54 171,04 159,05 190,54 Xp=(Ohms) 1,86 1,81 1,79 1,72 0,81 4,87 100 120 140 160 180 200 220 240 -4 -2 0 2 4 160 180 2 Xp Bobina LSM25 LSM27 LSM28 LSM29 LSM210 X (  ) f (MHz) f (mhz) Xp

Figura A3 – Impedância em função da frequência para amostras LSM25 - LSM210.

Tabela A3 – Valores de D, fp e Z∣p para impedância das amostras LSM25 - LSM210.

Parâmetros LSM25 LSM27 LSM28 LSM29 LSM210 Bobina D (nm) 30 41 57 65 98 fp (MHz) 177,04 176,03 175,01 174,04 165,05 190,54 Zp=(Ohms) 3,97 3,64 3,58 3,72 1,64 8,9 100 120 140 160 180 200 220 240 0 1 2 3 4 5 6 7 8 9 150 155 160 165 170 175 180 2 3 4 f (MHz) Bobina LSM25 LSM27 LSM28 LSM29 LSM210 ô Z ô (  ) f (MHz)  ZR

APÊNDICE B – Influência do fator de empacotamento sobre os parâmetros Rp, Xp e ∣Z∣p.

Figura B1 - Comportamento dos parâmetros Rp, Xp e ∣Z∣p com o aumento do tamanho dos cristalitos D no

Documentos relacionados