• Nenhum resultado encontrado

EU – estimativa do erro de truncatura floor – parâmetro de limite mínimo n – nível de refinamento

Nmax – nível de refinamento máximo

NP – número de nodos da malha base

NPDE – número de equações diferenciais parciais do modelo t – variável temporal

Tcpu – tempo de computação TOL – tolerância do método

tol INT – tolerância referente ao integrador u – variáveis dependentes

uz – primeira derivada espacial das variáveis dependentes

uzz – segunda derivada espacial das variáveis dependentes

ut – primeira derivada temporal das variáveis dependentes

w – parâmetro de peso

Wh – aproximação da solução na malha fina W2h – aproximação da solução na malha larga z – variável espacial

zL – posição da fronteira esquerda zR – posição da fronteira direita

Letras do Alfabeto Grego

α – factor de mobilidade nodal

∆t – passo temporal

∆z – espaçamento internodal

∆zMIN – espaçamento internodal mínimo

∆zMAX – espaçamento internodal máximo

λ – coeficiente de viscosidade nodal

Convenções Gerais

yɺ – derivada temporal de y y – vector y

A – matriz A

• – produto interno entre dois vectores

Bibliografia

[[[[1]]]] - Abbott, M. B. e D. R. Basco; Computational Fluid Dynamics, Longman

Scientific & Technical, Singapore (1989).

[[[[2]]]] - Ablow, C. M. e S. Schechter; “Campylotropic Coordinates”, J. Comput. Phys., 27 (1978), p. 351.

[[[[3]]]] - Acharya, S. e F. H. Moukalled; “An Adaptive Grid Solution Procedure for

Convection-Diffusion Problems”, J. Comput. Phys., 91 (1990), p. 32.

[[[[4]]]] - Adjerid, S. e J. E. Flaherty; “A Moving Finite Element Method with Error

Estimation and Refinement for One-Dimensional Time Dependent Partial Differential Equations”, SIAM J. Numer. Anal., 23 (1986), p. 778.

[[[[5]]]] - Altas, I. e J. W. Stephenson; “A Two-Dimensional Adaptive Mesh Generation

Method”, J. Comput. Phys., 94 (1991), p. 201.

[[[[6]]]] - Anderson, D. A.; ”Adaptive Grid Methods for Partial Differential Equations”, em

Advances in Grid Generation, ed. K. N. Ghia e U. Ghia, ASME, New York

(1983), p. 1.

[[[[7]]]] - Anderson, D. A.; ”Application of Adaptive Grids to Transient Problems”, em

Adaptive Computational Methods for Partial Differential Equations, ed. I.

Babuska, J. Chandra e J. E. Flaherty, SIAM, Philadelphia (1983), p. 208.

[[[[8]]]] - Anderson, D. A. e M. M. Rai; ”The Use of Solution Adaptive Grids in Solving

Partial Differential Equations”, em Numerical Grid Generation, ed. J. F. Thompson, North-Holland, Amsterdam (1982), p. 317.

[[[[9]]]] - Anyiwo, J. C.; ”Idealized Dynamic Grid Computational for Physical Systems”,

em Numerical Grid Generation, ed. J. F. Thompson, North-Holland, Amsterdam (1982), p. 837.

[[[[10]]]] - Arney, D. C. e J. E. Flaherty; “An Adaptive Local Mesh Refinement Method for

Time-Dependent Partial Differential Equations”, Appl. Numer. Math., 5 (1989), p. 257.

[[[[11]]]] - Arney, D. C. e J. E. Flaherty; “A Two-Dimensional Mesh Moving Technique for

Time-Dependent Partial Differential Equations”, J. Comput. Phys., 67 (1986), p. 124.

[[[[12]]]] - Bell, J., M. Berger, J. Saltzman e M. Welcome; “Three-Dimensional Adaptive

Mesh Refinement for Hyperbolic Conservation Laws”, SIAM J. Sci. Comput., 15 (1994), p. 127.

Conservation Laws”, J. Comput. Phys., 52 (1983), p. 569.

[[[[14]]]] - Berger, M. J. e P. Colella; “Local Adaptive Mesh Refinement for Shock

Hydrodynamics”, J. Comput. Phys., 82 (1989), p. 64.

[[[[15]]]] - Berger, M. J. e J. Oliger; “Adaptive Mesh Refinement for Hyperbolic Partial

Differential Equations”, J. Comput. Phys., 53 (1984), p. 484.

[[[[16]]]] - Blom, J. G., J. M. Sanz-Serna e J. G. Verwer; “On Simple Moving Grid Methods

for One-Dimensional Evolutionary Partial Differential Equations”, J. Comput.

Phys., 74 (1988), p. 191.

[[[[17]]]] - Brackbill, J. U.; ”Coordinate System Control: Adaptive Meshes”, em Numerical

Grid Generation, ed. J. F. Thompson, North-Holland, Amsterdam (1982), p. 277.

[[[[18]]]] - Brackbill, J. U. e J. Saltzman; ”An Adaptive Computational Mesh for the

Solution of Singular Perturbation Problems”, em Numerical Grid Generation

Techniques, Proceedings of the Numerical Grid Generation Workshop at Langley Research Center, ed. R. E. Smith, NASA CP-2166, Washington DC

(1980), p. 193.

[[[[19]]]] - Brackbill, J. U. e J. Saltzman; “Adaptive Zoning for Singular Problems in Two

Dimensions”, J. Comput. Phys., 46 (1982), p. 342.

[[[[20]]]] - Brennan, K. E., S. L. Campbell e L. R. Petzold; Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, North-Holland, New York

(1989).

[[[[21]]]] - Budd, C. J., W. Huang e R. D. Russell; “Moving Mesh Methods for Problems

with Blow-up”, SIAM J. Sci. Comput., 17 (1996), p. 305.

[[[[22]]]] - Carcaillet, R., G. S. Dulikravich e S. R. Kennon; “Generation of Solution-

Adaptive Computational Grids Using Optimization”, Comput. Meth. Appl. Mech.

Eng., 57 (1986), p. 279.

[[[[23]]]] - Carey, G. F. e H. T. Dinh; “Grading Functions and Mesh Redistribution”, SIAM

J. Numer. Anal., 22 (1985), p. 1028.

[[[[24]]]] - Chen, K.; “Error Equidistribution and Mesh Adaptation”, SIAM J. Sci. Comput., 15 (1994), p. 798.

[[[[25]]]] - Daripa, P.; “A New Theory for One-Dimensional Adaptive Grid Generation and

its Applications”, SIAM J. Numer. Anal., 28 (1991), p. 1635.

[[[[26]]]] - DeBoor, C.; ”Good Approximation by Splines with Variable Knots. II”,

Conference on the Numerical Solution of Differential Equations. Lectures Notes in Mathematics, Vol. 363, Springer, Berlin-Heidelberg-New York (1973), p. 12.

[[[[27]]]] - Denny, V. E. e R. B. Landis; “A New Method for Solving Two-Point Boundary

Value Problems Using Optimal Node Distribution”, J. Comput. Phys., 9 (1972), p. 120.

[[[[28]]]] - Dorfi, E. A. e L. O´C. Drury; “Simple Adaptive Grids for 1-D Initial Value

Problems”, J. Comput. Phys., 69 (1987), p. 175.

[[[[29]]]] - Duarte, B. P. M.; “Método dos Elementos Finitos Móveis Aplicado à Resolução

de Modelos de Frente de Reacção”, Tese de Doutoramento, Univ. de Coimbra, F.C.T, Coimbra (1994).

[[[[30]]]] - Dwyer, H. A.; ”A Discussion of Some Criteria for the Use of Adaptive

Gridding”, em Adaptive Computational Methods for Partial Differential

Equations, ed. I. Babuska, J. Chandra e J. E. Flaherty, SIAM, Philadelphia

(1983), p. 111.

[[[[31]]]] - Dwyer, H. A.; “Grid Adaptation for Problems in Fluid Dynamics”, AIAA J., 22

(1984), p. 1705.

[[[[32]]]] - Dwyer, H. A., R. J. Kee, P. K. Barr e B. R. Sanders; “Transient Droplet Heating

at High Peclet Number”, J. Fluids Eng., 105 (1983), p. 83.

[[[[33]]]] - Dwyer, H. A., R. J. Kee e B. R. Sanders; “An Adaptive Grid Method for

Problems in Fluid Mechanics and Heat Transfer”, AIAA J., 18 (1980), p. 1205.

[[[[34]]]] - Dwyer, H. A., F. Raiszadeh e G. Otey; “A Study of Reactive Diffusion Problems

with Stiff Integrators and Adaptive Grids”, Lectures Notes in Physics, Vol. 141, Springer-Verlag, New York/Berlin (1981), p. 170.

[[[[35]]]] - Dwyer, H. A., B. R. Sanders e F. Raiszadeh; “Ignition and Flow Propagation

Studies with Adaptive Numerical Grids”, Combust. Flame, 52 (1983), p. 11.

[[[[36]]]] - Dwyer, H. A., M. D. Smooke e R. J. Kee; ”Adaptive Gridding for Finite

Difference Solutions to Heat and Mass Transfer Problems”, em Numerical Grid

Generation, ed. J. F. Thompson, North-Holland, Amsterdam (1982), p. 339.

[[[[37]]]] - Eiseman, P. R.; “Alternating Direction Adaptive Grid Generation”, AIAA J., 23

(1985), p. 551.

[[[[38]]]] - Eiseman, P. R.; “Adaptive Grid Generation”, Comput. Meth. Appl. Mech. Eng., 64 (1987), p. 321.

[[[[39]]]] - Eiseman, P. R.; “Adaptive Grid Generation by Mean-Value Relaxation”, J.

Fluids Eng., 107 (1985), p. 477.

[[[[40]]]] - Eiseman, P. R.; “Solution Adaptivity Using a Triangular Mesh”, Lectures Notes

[[[[41]]]] - Eiseman, P. R.; “Alternating Direction Adaptive Grid Generation for Three-

Dimensional Regions”, Lectures Notes in Physics, Vol. 264, Springer-Verlag, New York/Berlin (1986), p. 258.

[[[[42]]]] - Ewing, R. E., R. D. Lazarov e A. T. Vassilev; “Finite Difference Scheme for

Parabolic Problems on Composite Grids with Refinement in Time and Space”,

SIAM J. Numer. Anal., 31 (1994), p. 1605.

[[[[43]]]] - Ewing, R. E., R. D. Lazarov e P. S. Vassilevski; “Finite Difference Schemes on

Grids with Local Refinement in Time and Space for Parabolic Problems: I. Derivation, Stability and Error Analysis”, Computing, 45 (1990), p. 193.

[[[[44]]]] - Finlayson, B. A.; Numerical Methods for Problems with Moving Fronts, Ravenna

Park Publishing, Inc., Seattle (1992).

[[[[45]]]] - Fornberg, B.; “Generation of Finite Difference Formulas on Arbitrarily Spaced

Grids”, Math. of Comput., 51 (1988), p. 699.

[[[[46]]]] - Fornberg, B.; ”Fast Generation of Weights in Finite Difference Formulas”, em

Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, ed. G. D. Byrne e W. E. Schiesser, World Scientific,

Singapore (1992), p. 97.

[[[[47]]]] - Fraga, E. S. e J. Ll. Morris; “An Adaptive Mesh Refinement Method for

Nonlinear Dispersive Wave Equations”, J. Comput. Phys., 101 (1992), p. 94.

[[[[48]]]] - Fung, K.-Y., J. Tripp e B. Goble; “Adaptive Refinement with Truncation Error

Injection”, Comput. Meth. Appl. Mech. Eng., 66 (1987), p. 1.

[[[[49]]]] - Gear, C. W.; Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).

[[[[50]]]] - Gear, C. W.; “Simultaneous Numerical Solution of Differential-Algebraic

Equations”, IEEE Trans. Circuit Theory CT-18 (1971), p. 89.

[[[[51]]]] - Ghia, K. N., U. Ghia e C. T. Shin; ”Adaptive Grid Generation for Flows with

Local High Gradient Regions”, em Advances in Grid Generation, ed. K. N. Ghia e U. Ghia, ASME, New York (1983), p. 35.

[[[[52]]]] - Gnoffo, P. A.; ”A Vectorized, Finite Volume, Adaptive-Grid Algorithm for

Navier-Stokes Calculations”, em Numerical Grid Generation, ed. J. F. Thompson, North-Holland, Amsterdam (1982), p. 819.

[[[[53]]]] - Gnoffo, P. A.; “Finite Volume Adaptive Grid Algorithm Applied to Planetary

Entry Flow Fields”, AIAA J., 21 (1983), p. 1249.

[[[[54]]]] - Gough, D. O., E. A. Spiegel e J. Toomre; “Highly Stretched Meshes as

New York/Berlin (1975), p. 191.

[[[[55]]]] - Greenberg, J. B.; “A New Self-Adaptive Grid Method”, AIAA J., 23 (1985), p.

317.

[[[[56]]]] - Gropp, W. D.; “A Test of Mesh Refinement for 2-D Scalar Hyperbolic

Problems”, SIAM J. Sci. Stat. Comput., 1 (1980), p. 191.

[[[[57]]]] - Gropp, W. D.; “Local Uniform Mesh Refinement with Moving Grids”, SIAM J.

Sci. Stat. Comput., 8 (1987), p. 292.

[[[[58]]]] - Guiné, R. P. F.; ”Resolução de Sistemas de Equações Diferenciais de Derivadas

Parciais – Algoritmos de Refinamento Espacial”, Tese de Mestrado, Univ. de Coimbra, F. C. T., Coimbra (1996).

[[[[59]]]] - Hawken, D. F., J. J. Gottlieb e J. S. Hansen; “Review of Some Adaptive Node-

Movement Techniques in Finite-Element and Finite-Difference Solutions of Partial Differential Equations”, J. Comput. Phys., 95 (1991), p. 254.

[[[[60]]]] - Hayes, L. J., S. R. Kennon e G. S. Dulikravich; “Grid Orthogonalization for

Curvilinear Alternating-Direction Techniques”, Comput. Meth. Appl. Mech. Eng.,

59 (1986), p. 141.

[[[[61]]]] - Herbst, B. M.; “Moving Finite Element Methods for the Solution of Evolution

Equations”, PhD Thesis, University of the Orange Free State (1982).

[[[[62]]]] - Hindman, R. G., P. Kutler e D. Anderson; “Two-Dimensional Unsteady Euler-

Equation Solver for Arbitrarily Sharped Flow Regions”, AIAA J., 19 (1981), p. 424.

[[[[63]]]] - Hindman, R. G. e J. Spencer; ”A New Approach to Truly Adaptive Grid

Generation”, AIAA Paper 83-0450 (1983), p. 1.

[[[[64]]]] - Huang, W., Y. Ren e R. D. Russell; “Moving Mesh Methods Based on Moving

Mesh Partial Differential Equations”, J. Comput. Phys., 113 (1994), p. 279.

[[[[65]]]] - Huang, W., Y. Ren e R. D. Russell; “Moving Mesh Partial Differential Equations

(MMPDEs) Based on the Equidistribution Principle”, SIAM J. Numer. Anal., 31 (1994), p. 709.

[[[[66]]]] - Huang, W. e R. D. Russell; “Analysis of Moving Mesh Partial Differential

Equations with Spatial Smoothing”, SIAM J. Numer. Anal., 34 (1997), p. 1106.

[[[[67]]]] - Huang, W. e D. M. Sloan; “A Simple Adaptive Grid Method in Two

Dimensions”, SIAM J. Sci. Comput., 15 (1994), p. 776.

[[[[68]]]] - Hyman, J. M.; “Adaptive Moving Mesh Methods for Partial Differential

Equations”, Los Alamos National Laboratory Report LA-UR-82-3690, Los Alamos, New Mexico (1982) (não publicado).

[[[[69]]]] - Hyman, J. M. e B. Larrouturou; “Dynamic Rezone Methods for Partial

Differential Equations in One Space Dimension”, Appl. Numer. Math., 5 (1989), p. 435.

[[[[70]]]] - Hyman, J. M. e M. Naughton; ”Static Rezone Methods for Tensor Product Grids,

Large Scale Computations in Fluid Mechanics”, Lectures in Applied

Mathematics, Amer. Math. Soc., Providence (1985), p. 321.

[[[[71]]]] - Jarvis, R. B. e C. C. Pantelides; “DASOLV – A Differential-Algebraic Equation

Solver – Version 1.2”, Center for Process System Engineering, Imperial College of Sciences - Technology and Medicine, London (1992).

[[[[72]]]] - Johnson, I. W.; “Moving Finite Elements for Diffusion Problems”, PhD Thesis,

University of Reading (1986).

[[[[73]]]] - Kansa, E. J., D. L. Morgan e L. K. Morris; “A Simplified Moving Finite

Difference Scheme: Application to Gas Dispersion”, SIAM J. Sci. Stat. Comput.,

5 (1984), p. 667.

[[[[74]]]] - Kennon, S. R. e G. S. Dulikravich; “Generation of Computational Grids Using

Optimization”, AIAA J., 24 (1986), p. 1069.

[[[[75]]]] - Klopfer, G. H. e D. S. McRae; ”The Nonlinear Modified Equation Approach to

Analyzing Finite Difference Schemes”, AIAA Paper 81-1029 (1981), p. 317.

[[[[76]]]] - Kreis, R. I., F. C. Thames e H. A. Hassan; “Application of a Variational Method

for Generating Adaptive Grids”, AIAA J., 24 (1986), p. 404.

[[[[77]]]] - Kulkarni, M. S. e M. P. Dudukovic; “A Robust Algorithm for Fixed-Bed

Reactors with Steep Moving Temperature and Reaction Fronts”, Chem. Eng. Sci.,

51 (1996), p. 571.

[[[[78]]]] - Larrouturou, B.; “A Conservative Adaptive Method for Flame Propagation”,

SIAM J. Sci. Stat. Comput., 10 (1989), p. 742.

[[[[79]]]] - Lee, D. e Y. M. Tsuei; “A Hybrid Adaptive Gridding Procedure for Recirculating

Fluid Flow Problems”, J. Comput. Phys., 108 (1993), p. 122.

[[[[80]]]] - MacCormack, R. W.; ”The Effect of Viscosity in Hypervelocity Impact

Cratering”, AIAA Paper 69-354 (1969), p. 1.

[[[[81]]]] - Madsen, N. K.; ”Molag: A Method of Lines Adaptive Grid Interface for

Nonlinear Partial Differential Equations”, em PDE Software: Modules, Interfaces

and Systems, ed. B. Engquist e T. Smedsaas, North-Holland, Amsterdam (1984),

p. 207.

[[[[82]]]] - Matsuno, K. e H. A. Dwyer; “Adaptive Methods for Elliptic Grid Generation”, J.

Documentos relacionados