• Nenhum resultado encontrado

A autofagia pode ser induzida por nanopartículas em diversas linhagens celulares (EIDI et al., 2012; STERN; ADISESHAIAH; CRIST, 2012), partindo desse princípio resolvemos investigar se a autofagia é desencadeada em macrófagos quando submetidos ao tratamento com as AgNP biossintéticas. Para este estudo utilizamos a Cloroquina (CLQ), agente lisotrópico que evita a acidificação endossomal (SMIT et al., 1987). O acúmulo da CLQ no interior de compartimentos ácidos da célula, incluindo os endossomos tardios e lisossomos, resulta na alteração do pH intraluminal e leva a uma inibição de enzimas lisossomais que necessitam de um pH ácido para o seu funcionamento. Como consequência, a fusão de endossomos e lisossomos fica impossibilitada. Sendo assim, a CLQ funciona como um inibidor do processo autofágico, pois a inibição da acidificação dos lisossomos e o impedimento da sua fusão com o autofagossomo são passos indispensáveis para a degradação de substratos autofágicos (EGGER et al., 2013; POOLE; OHKUMA, 1981; YOON et al., 2010).

Com base nessas informações, avaliamos a citotoxicidade das AgNP na presença de CLQ, na qual as concentrações testadas foram 12,5 μM, 25 μM e 50 μM. Nenhuma das concentrações de CLQ apresentou efeitos citotóxicos significativos em macrófagos peritoneais (fig. 23). Contudo, o tratamento com AgNP em presença de CLQ apresentou um perfil mais citotóxico, sendo significativamente potencializado quando associados à maior concentração de CLQ (*p<0,05 - 50 μM, 15,6% ±7,8%).

Esse resultado indica que as AgNP levam os macrófagos a uma situação de estresse celular, na qual teria estimulado o processo de autofagia. Além disso, o aumento na citotoxicidade observado no pré-tratamento com CLQ sugere que o fluxo autofágico estaria sendo utilizado pelas

51

células para a metabolização e possivelmente a neutralização do efeito citotóxico das AgNP biossintéticas.

Figura 23 – Estudo da autofagia na avaliação da citotoxicidade das AgNP em macrófagos peritoneais. As células

foram tratadas com o inibidor de autofagia Cloroquina e AgNP durante um período de 6h e um grupo foi incubado a 37 °C. A viabilidade celular foi avaliada pelo ensaio de MTT. Foi considerado como 100% as células que foram isentas de tratamento com as AgNP e inibidor de endocitose. Cada valor representa a média ± S.D. de três experiências independentes (n = 4). *p < 0,05 AgNP vs AgNP + CLQ. Análise estatística por ANOVA seguida por teste de Tukey.

Os resultados obtidos através da utilização do inibidor CLQ deixa claro que o ambiente ácido de vesículas intracelulares (endossomos tardios e lisossomos) tem papel fundamental na metabolização das AgNP, possivelmente essa análise se estenda para o processo autofágico. Entretanto, essa conclusão ainda precisa ser confirmada através de mais dados moleculares, como a quantificação da proteína p62 e a conversão da proteína LC3-I em LC3-II presentes no processo autofágico. Além disso, para a complementaridade de dados, utilizamos a técnica de MET para observar estruturas relacionadas à autofagia, entretanto os dados estão apresentados na forma de ANEXO 1, pois ainda não são conclusivos.

52

5 CONCLUSÃO

A partir dos dados apresentados neste trabalho, concluímos que:

 Macrófagos intraperitoneais tratados com AgNP biossintéticas apresentam uma citotoxicidade concentração- e tempo-dependentes.

 As AgNP biossintéticas são capazes de promover alterações na integridade da membrana de macrófagos a partir de 3 h de tratamento.

 A citotoxicidade das AgNP biossintéticas está diretamente relacionada com o estresse oxidativo, fato este evidenciado através da quantificação dos níveis de ROS e do ensaio de citotoxicidade frente ao pré-tratamento com N-Acetilcisteina, onde observou-se a reversão total da morte celular causada pelas AgNP.

 O efeito citotóxico desencadeado pelas AgNP biossintéticas é dependente da via pela qual as partículas são endocitadas pelas células. A inibição da fagocitose e endocitose mediada por caveolina levou a uma redução do efeito citotóxico das nanopartículas em macrófagos peritoneais.

 Possivelmente o tratamento de macrófagos intraperitoneais com AgNP biossintéticas estimula o fluxo autofágico, além disso, esse processo parece estar envolvido na metabolização das nanopartículas.

Desta forma concluímos que as AgNP biossintéticas apresentam um perfil citotóxico similar aos descritos em literatura com nanopartículas obtidas por métodos de síntese convencionais (químicas). Entretanto, ainda é necessária cautela e mais estudos para a aplicação dessas nanopartículas em seres vivos.

53

Figura 24 –Citotoxicidade e processamento celular de nanopartículas biossintéticas de prata em macrófagos peritoneais. Citotoxicidade: 1- Internalização das AgNP por endocitose mediada por caveolina, na qual a inibição

desta via de endocitose proporcionou o aumento da viabilidade celular; 2- Internalização das AgNP por fagocitose, na qual a inibição desta via de endocitose proporcionou o aumento da viabilidade celular; 3- Danos à membrana celular através da produção e ROS. Processamento das AgNP: 4-Possível estímulo do fluxo autofágico pela indução das AgNP ou pela decorrência de eventos citotóxicos causados pelas nanopartículas.

54 6 PERPECTIVAS

Com os resultados iniciais dos mecanismos moleculares envolvidos na citotoxicidade das AgNP biossintéticas em macrófagos peritoneais, propomos dar continuidade nos seguintes assuntos para o encerramento deste trabalho:

i. Estresse Oxidativo: Avaliar a atividade mitocondrial para determinar se a produção de ROS está envolvida com danos mitocondriais em macrófagos induzidos pelas AgNP biossintéticas. Além disso, avaliar a peroxidação de lipídios para determinar se os danos em membrana são decorrentes do estresse oxidativo.

ii. Endocitose: Avaliar a toxicidade das AgNP utilizando outros inibidores de endocitose mediada por clatrina e macropinocitose, para confirmar se estas vias não influenciam na citotoxicidade das AgNP. Utilizar combinações entre inibidores de endocitose para determinar reduções ainda maiores da citotoxicidade, como por exemplo inibidores de fagocitose e caveolina juntos.

iii. Autofagia: Quantificar as proteínas envolvidas no processo autofágico, como por exemplo a p62 e a conversão da LC3-I em LC3-II, através de técnicas como Western Blotting e Microscopia Confocal;

iv. Avaliação da resposta imune inata dos níveis de expressão de RNAm de citocinas pró ou anti-inflamatórias, e depois fazer a confirmação através da quantificação dessas proteínas já expressas por ELISA.

55 7 REFERÊNCIAS

AHAMED, M.; ALSALHI, M. S.; SIDDIQUI, M. K. J. Silver nanoparticle applications and human health. Clinica Chimica Acta, v. 411, n. 23–24, p. 1841–1848, 14 dez. 2010.

ALBRECHT, M. A.; EVANS, C. W.; RASTON, C. L. Green chemistry and the health implications of nanoparticles. Green Chemistry, v. 8, n. 5, p. 417–432, 5 maio 2006.

ALMOFTI, M. R. et al. Silver Ion Induces a Cyclosporine A-Insensitive Permeability Transition in Rat Liver Mitochondria and Release of Apoptogenic Cytochrome c. Journal of Biochemistry, v. 134, n. 1, p. 43–49, 1 jul. 2003.

ARORA, S. et al. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, v. 179, n. 2, p. 93–100, 30 jun. 2008.

ASHARANI, P. V. et al. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, v. 3, n. 2, p. 279–290, 24 fev. 2009.

AURIAC, A.; WILLEMETZ, A.; CANONNE-HERGAUX, F. Lipid raft-dependent endocytosis: a new route for hepcidin-mediated regulation of ferroportin in macrophages. Haematologica, v. 95, n. 8, p. 1269–1277, 1 ago. 2010.

AUSTYN, J. M.; GORDON, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. European Journal of Immunology, v. 11, n. 10, p. 805–815, 1 jan. 1981. BARBER, A. A.; BERNHEIM, F. Lipid peroxidation: its measurement, occurrence, and significance in animal tissues. Advances in Gerontological Research, v. 2, p. 355–403, 1967. BENZIE, I. F. F. Lipid peroxidation: A review of causes, consequences, measurement and dietary influences. International Journal of Food Sciences and Nutrition, v. 47, n. 3, p. 233–261, 1 jan. 1996.

BERTRAND, N.; LEROUX, J.-C. The journey of a drug-carrier in the body: An anatomo- physiological perspective. Journal of Controlled Release, Drug Delivery Research in Europe. v. 161, n. 2, p. 152–163, 20 jul. 2012.

BRANDENBERGER, C. et al. Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles. Small, v. 6, n. 15, p. 1669–1678, 2 jul. 2010. BUZEA, C.; PACHECO, I. I.; ROBBIE, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, v. 2, n. 4, p. MR17–MR71, 1 dez. 2007.

CANNON, G. J.; SWANSON, J. A. The macrophage capacity for phagocytosis. Journal of Cell Science, v. 101, n. 4, p. 907–913, 1 abr. 1992.

CANTON, I.; BATTAGLIA, G. Endocytosis at the nanoscale. Chemical Society Reviews, v. 41, n. 7, p. 2718, 2012.

56

CHAZOTTE, B. Labeling Nuclear DNA with Hoechst 33342. Cold Spring Harbor Protocols, v. 2011, n. 1, p. pdb.prot5557, 1 jan. 2011.

CHENG, X. et al. Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage. RSC Advances, v. 3, n. 7, p. 2296–2305, 21 jan. 2013.

CHEN, X.; SCHLUESENER, H. J. Nanosilver: A nanoproduct in medical application. Toxicology Letters, v. 176, n. 1, p. 1–12, 4 jan. 2008.

CHOI, O. et al. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, v. 43, n. 7, p. 1879–1886, abr. 2009.

CHOU, L. Y. T.; MING, K.; CHAN, W. C. W. Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, v. 40, n. 1, p. 233–245, 15 dez. 2010.

CLARK, J. et al. 15 years of Green Chemistry. Green Chemistry, v. 16, n. 1, p. 18–23, 17 dez. 2013.

DE JESUS, M. B.; KAPILA, Y. L. Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. In: DURÁN, N.; GUTERRES, S. S.; ALVES, O. L. (Eds.). . Nanotoxicology. Nanomedicine and Nanotoxicology. [s.l.] Springer New York, 2014. p. 201– 227.

DE LIMA, R.; SEABRA, A. B.; DURÁN, N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, v. 32, n. 11, p. 867–879, 1 nov. 2012.

DELOID, G. M. et al. Heterogeneity in Macrophage Phagocytosis of Staphylococcus aureus Strains: High-Throughput Scanning Cytometry-Based Analysis. PLoS ONE, v. 4, n. 7, 10 jul. 2009.

DHILLON, G. S. et al. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical Reviews in Biotechnology, v. 32, n. 1, p. 49–73, 22 jun. 2011.

DJAVAHERI-MERGNY, M.; BOTTI, J.; CODOGNO, P. Autophagy and Autophagic Cell Death. In: GEWIRTZ, D. A.; HOLT, S. E.; GRANT, S. (Eds.). . Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. [s.l.] Humana Press, 2007. p. 93–107.

DOHERTY, G. J.; MCMAHON, H. T. Mechanisms of Endocytosis. Annual Review of Biochemistry, v. 78, n. 1, p. 857–902, 2009.

DOS SANTOS, T. et al. Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines. PLoS ONE, v. 6, n. 9, p. e24438, 19 set. 2011. DURÁN, N. et al. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, v. 3, n. 1, p. 8, 13 jul. 2005.

57

DURÁN, N. et al. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. Journal of Biomedical Nanotechnology, v. 3, n. 2, p. 203–208, 1 jun. 2007.

DURÁN, N. et al. Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Progress in Mycology. [s.l.] Springer, 2010. p. 425–449.

DURÁN, N. et al. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, v. 90, n. 5, p. 1609–1624, 1 jun. 2011.

EGGER, M. E. et al. Inhibition of autophagy with chloroquine is effective in melanoma. Journal of Surgical Research, v. 184, n. 1, p. 274–281, set. 2013.

EIDI, H. et al. Drug delivery by polymeric nanoparticles induces autophagy in macrophages. International Journal of Pharmaceutics, v. 422, n. 1–2, p. 495–503, 17 jan. 2012.

ELLIOTT, J. A.; WINN, W. C. Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infection and Immunity, v. 51, n. 1, p. 31–36, 1 jan. 1986.

EOM, H.-J.; CHOI, J. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environmental Science & Technology, v. 44, n. 21, p. 8337–8342, 1 nov. 2010.

ERENO, D.; MARCATO, P. D.; RODRIGUES, A. G. Biological silver. Revista Pesquisa Fapesp, n. 206, p. 66–69, 2013.

ESKELINEN, E.-L.; SAFTIG, P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Lysosomes. v. 1793, n. 4, p. 664–673, abr. 2009.

FERNANDEZ-FERNANDEZ, A.; MANCHANDA, R.; MCGORON, A. J. Theranostic Applications of Nanomaterials in Cancer: Drug Delivery, Image-Guided Therapy, and Multifunctional Platforms. Applied Biochemistry and Biotechnology, v. 165, n. 7-8, p. 1628– 1651, 1 dez. 2011.

FERREIRA, L. A. B. et al. Endocitose e tráfego intracelular de nanomateriais. Acta Farmacêutica Portuguesa, v. 3, n. 2, p. 149–166, 2014.

FILOMENI, G.; DE ZIO, D.; CECCONI, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death & Differentiation, 26 set. 2014.

FOLDBJERG, R. et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology Letters, v. 190, n. 2, p. 156–162, 28 out. 2009.

58

FORTINA, P. et al. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends in Biotechnology, v. 23, n. 4, p. 168–173, abr. 2005.

GALIANO, K. et al. Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurological Research, v. 30, n. 3, p. 285–287, 1 abr. 2008.

GARNETT, M. C. Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine, v. 56, n. 5, p. 307–311, 1 ago. 2006.

GE, L. et al. Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine, v. 9, p. 2399–2407, 16 maio 2014.

GOMES, A.; FERNANDES, E.; LIMA, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, v. 65, n. 2–3, p. 45– 80, 31 dez. 2005.

GORDON, S. Pattern Recognition Receptors: Doubling Up for the Innate Immune Response. Cell, v. 111, n. 7, p. 927–930, 27 dez. 2002.

GRECCO, A. C. P. et al. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology, v. 22, n. 26, p. 265103, 1 jul. 2011.

GUTTERIDGE, J. M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, v. 41, n. 12, p. 1819–1828, 1 dez. 1995.

HASHIMOTO, M. et al. Macropinocytosis and TAK1 mediate anti-inflammatory to pro- inflammatory macrophage differentiation by HIV-1 Nef. Cell Death & Disease, v. 5, n. 5, p. e1267, 29 maio 2014.

HEBEISH, A. et al. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver. Journal of Nanotechnology, v. 2013, p. e201057, 8 set. 2013.

HE, C.; KLIONSKY, D. J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annual review of genetics, v. 43, p. 67–93, 2009.

HSIN, Y.-H. et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, v. 179, n. 3, p. 130–139, 10 jul. 2008.

IACOPETTA, B. J.; MORGAN, E. H. The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. Journal of Biological Chemistry, v. 258, n. 15, p. 9108–9115, 10 ago. 1983.

59

ITAKURA, E.; MIZUSHIMA, N. p62 targeting to the autophagosome formation site requires self- oligomerization but not LC3 binding. The Journal of Cell Biology, v. 192, n. 1, p. 17–27, 10 jan. 2011.

JEYARAJ, M. et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces, v. 102, p. 708–717, 1 fev. 2013. JIN, Z.; EL-DEIRY, W. S. Review overview of cell death signaling pathways. Cancer biology & Therapy, v. 4, n. 2, p. 139–163, 2005.

JONES, R. A. L. What has nanotechnology taught us about contemporary technoscience? In: ZÜLSDORF, T. et al. (Eds.). Quantum Engagements: Social Reflections of Nanoscience and Emerging Technologies. Amsterdam: IOS Press, 2011.

KALYANARAMAN, B. et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free radical biology & medicine, v. 52, n. 1, p. 1–6, 1 jan. 2012.

KIM, S.; CHOI, I.-H. Phagocytosis and Endocytosis of Silver Nanoparticles Induce Interleukin-8 Production in Human Macrophages. Yonsei Medical Journal, v. 53, n. 3, p. 654–657, 1 maio 2012.

KOWSHIK, M. et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, v. 14, n. 1, p. 95, 1 jan. 2003.

KRISHNARAJ, C. et al. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, v. 76, n. 1, p. 50–56, 1 mar. 2010.

LEHMANN, A. D. et al. Fluorescent-Magnetic Hybrid Nanoparticles Induce a Dose-Dependent Increase in Proinflammatory Response in Lung Cells in vitro Correlated with Intracellular Localization. Small, v. 6, n. 6, p. 753–762, 22 mar. 2010.

LEVARD, C. et al. Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity. Environmental Science & Technology, v. 47, n. 23, p. 13440–13448, 2013.

LIMA, E. S.; ABDALLA, D. S. P. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Brazilian Journal of Pharmaceutical Sciences, v. 37, n. 3, p. 293–303, 2001. LIMA, R. et al. Cytotoxicity and genotoxicity of biogenic silver nanoparticles. Journal of Physics: Conference Series, v. 429, p. 012020, 10 abr. 2013.

LIU, J.; PENNELL, K. G.; HURT, R. H. Kinetics and Mechanisms of Nanosilver Oxysulfidation. Environmental Science & Technology, v. 45, n. 17, p. 7345–7353, 2011.

60

LOCHT, L. J. et al. Uptake of silver from metallic silver surfaces induces cell death and a pro- inflammatory response in cultured J774 macrophages. Histology and Histopathology, v. 26, n. 6, p. 689–697, jun. 2011.

MACIA, E. et al. Dynasore, a Cell-Permeable Inhibitor of Dynamin. Developmental Cell, v. 10, n. 6, p. 839–850, jun. 2006.

MANEEWATTANAPINYO, P. et al. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci, v. 73, n. 11, p. 1417–23, 2011.

MANKE, A.; WANG, L.; ROJANASAKUL, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International, v. 2013, p. e942916, 20 ago. 2013.

MARCATO, P. D.; DURÁN, N. New Aspects of Nanopharmaceutical Delivery Systems. Journal of Nanoscience and Nanotechnology, v. 8, n. 5, p. 2216–2229, 1 maio 2008.

MARCHESAN, S.; PRATO, M. Nanomaterials for (Nano)medicine. ACS Medicinal Chemistry Letters, v. 4, n. 2, p. 147–149, 2012.

MARINA-GARCÍA, N. et al. Clathrin- and Dynamin-Dependent Endocytic Pathway Regulates Muramyl Dipeptide Internalization and NOD2 Activation. The Journal of Immunology, v. 182, n. 7, p. 4321–4327, 1 abr. 2009.

MCKNIGHT, A. J. et al. Molecular Cloning of F4/80, a Murine Macrophage-restricted Cell Surface Glycoprotein with Homology to the G-protein-linked Transmembrane 7 Hormone Receptor Family. Journal of Biological Chemistry, v. 271, n. 1, p. 486–489, 5 jan. 1996.

MCKNIGHT, A. J.; GORDON, S. The EGF-TM7 family: unusual structures at the leukocyte surface. Journal of Leukocyte Biology, v. 63, n. 3, p. 271–280, 1 mar. 1998.

MCNEIL, S. E. Nanotechnology for the biologist. Journal of Leukocyte Biology, v. 78, n. 3, p. 585–594, 1 set. 2005.

MOHANPURIA, P.; RANA, N. K.; YADAV, S. K. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, v. 10, n. 3, p. 507–517, 1 mar. 2008.

MOORE, K. A new silver dressing for wounds with delayed healing. WOUNDS UK, v. 2, n. 2, p. 70, 2006.

MORAES, A. S. et al. The Suppressive Effect of IL-27 on Encephalitogenic Th17 Cells Induced by Multiwalled Carbon Nanotubes Reduces the Severity of Experimental Autoimmune Encephalomyelitis. CNS Neuroscience & Therapeutics, v. 19, n. 9, p. 682–687, 1 set. 2013. NIKI, E. et al. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications, Celebrating 50 Years of Oxygenases. v. 338, n. 1, p. 668–676, 9 dez. 2005.

61

OBERDÖRSTER, G.; OBERDÖRSTER, E.; OBERDÖRSTER, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives, v. 113, n. 7, p. 823–839, 22 mar. 2005.

PETROS, R. A.; DESIMONE, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, v. 9, n. 8, p. 615–627, ago. 2010.

PIAO, M. J. et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, v. 201, n. 1, p. 92–100, 25 fev. 2011.

POOLE, B.; OHKUMA, S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. The Journal of Cell Biology, v. 90, n. 3, p. 665–669, 1 set. 1981.

PRATSINIS, A. et al. Toxicity of Silver Nanoparticles in Macrophages. Small, v. 9, n. 15, p. 2576– 2584, 12 ago. 2013.

RAI, M. K. et al. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, v. 112, n. 5, p. 841–852, 1 maio 2012.

RAJENDRAN, L.; KNÖLKER, H.-J.; SIMONS, K. Subcellular targeting strategies for drug design and delivery. Nature Reviews Drug Discovery, v. 9, n. 1, p. 29–42, jan. 2010.

RODAL, S. K. et al. Extraction of Cholesterol with Methyl-?-Cyclodextrin Perturbs Formation of Clathrin-coated Endocytic Vesicles. Molecular Biology of the Cell, v. 10, n. 4, p. 961–974, abr. 1999.

ROSCHANGAR, F.; SHELDON, R. A.; SENANAYAKE, C. H. Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration LevelTM concept. Green Chem., 19 nov. 2014.

RUSTEN, T. E.; STENMARK, H. p62, an autophagy hero or culprit? Nature Cell Biology, v. 12, n. 3, p. 207–209, mar. 2010.

SAHAY, G.; ALAKHOVA, D. Y.; KABANOV, A. V. Endocytosis of nanomedicines. Journal of Controlled Release, v. 145, n. 3, p. 182–195, 3 ago. 2010.

SCHNITZER, J. E. et al. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. The Journal of Cell Biology, v. 127, n. 5, p. 1217–1232, 1 dez. 1994.

SELVI, R. B. et al. ATP driven clathrin dependent entry of carbon nanospheres prefer cells with glucose receptors. Journal of nanobiotechnology, v. 10, n. 1, p. 1–9, 2012.

SHAVANDI, Z.; GHAZANFARI, T.; MOGHADDAM, KIUMARZ N. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacology and Immunotoxicology, v. 33, n. 1, p. 135–140, mar. 2011.

62

SHINDE, S. et al. Toxicity induced by nanoparticles. Asian Pacific Journal of Tropical Disease, v. 2, n. 4, p. 331–334, ago. 2012.

SINGH, R. P.; RAMARAO, P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicology Letters, v. 213, n. 2, p. 249–259, 3 set. 2012.

SINTUBIN, L. et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied microbiology and biotechnology, v. 84, n. 4, p. 741– 749, set. 2009.

SMIT, M. J. et al. Receptor-mediated endocytosis of lactate dehydrogenase M4 by liver macrophages: a mechanism for elimination of enzymes from plasma. Evidence for competition by creatine kinase MM, adenylate kinase, malate, and alcohol dehydrogenase. Journal of Biological Chemistry, v. 262, n. 27, p. 13020–13026, 25 set. 1987.

SOENEN, S. J. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano, v. 6, n. 7, p. 5767–5783, 24 jul. 2012.

SOENEN, S. J. H. et al. Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small, v. 6, n. 19, p. 2136–2145, 4 out. 2010. STEINMAN, R. M. et al. Endocytosis and the recycling of plasma membrane. The Journal of cell biology, v. 96, n. 1, p. 1–27, 1983.

STERN, S. T.; ADISESHAIAH, P. P.; CRIST, R. M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and Fibre Toxicology, v. 9, p. 20, 14 jun. 2012.

SUZUKI, T. et al. DNA Staining for Fluorescence and Laser Confocal Microscopy. Journal of Histochemistry & Cytochemistry, v. 45, n. 1, p. 49–53, 1 jan. 1997.

SWANSON, J.; BUSHNELL, A.; SILVERSTEIN, S. C. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules. Proceedings of the National Academy of Sciences, v. 84, n. 7, p. 1921–1925, 1 abr. 1987.

TASDEMIR, E. et al. Methods for assessing autophagy and autophagic cell death. In: Autophagosome and Phagosome. [s.l.] Springer, 2008. p. 29–76.

TAYABALI, A. F.; SELIGY, V. L. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores. Environmental Health Perspectives, v. 108, n. 10, p. 919–930, out. 2000.

THOMPSON, H. M.; MCNIVEN, M. A. Discovery of a new “dynasore”. Nature Chemical Biology, v. 2, n. 7, p. 355–356, jul. 2006.

TORCHILIN, V. P. Multifunctional nanocarriers. Advanced Drug Delivery Reviews, Particulate Nanomedicines. v. 58, n. 14, p. 1532–1555, 1 dez. 2006.

63

VACA, C. E.; WILHELM, J.; HARMS-RINGDAHL, M. Interaction of lipid peroxidation products with DNA. A review. Mutation Research/Reviews in Genetic Toxicology, v. 195, n. 2, p. 137– 149, mar. 1988.

VAN FURTH, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bulletin of the World Health Organization, v. 46, n. 6, p. 845–852, 1972.

VON GOETZ; BACHLER, G.; HUNGERBÜHLER, K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. International Journal of Nanomedicine, p. 3365, set. 2013.

WANG, H.; WU, L.; REINHARD, B. M. Scavenger Receptor Mediated Endocytosis of Silver Nanoparticles into J774A.1 Macrophages Is Heterogeneous. ACS Nano, v. 6, n. 8, p. 7122–7132, 28 ago. 2012.

WEISSLEDER, R.; NAHRENDORF, M.; PITTET, M. J. Imaging macrophages with nanoparticles. Nature Materials, v. 13, n. 2, p. 125–138, fev. 2014.

WEST, M. A.; BRETSCHER, M. S.; WATTS, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. The Journal of cell biology, v. 109, n. 6 Pt 1, p. 2731–2739, dez. 1989.

WILEMAN, T. et al. Monensin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes. Biochemical Journal, v. 220, n. 3, p. 665–675, 15 jun. 1984. WYNN, T. A.; CHAWLA, A.; POLLARD, J. W. Macrophage biology in development, homeostasis and disease. Nature, v. 496, n. 7446, p. 445–455, 24 abr. 2013.

YANG, E.-J. et al. Inflammasome formation and IL-1β release by human blood monocytes in

Documentos relacionados