• Nenhum resultado encontrado

OBSERVAÇÕES FINAIS E PERSPECTIVAS

6.1 Observações Finais

As condições de energia desempenham um papel fundamental na definição de vínculos físicos para as teorias relativísticas. Em geral, o grau de compatibilidade de fluidos fontes com causalidade e estrutura geodésica é determinada pela consistência de condições energéticas. Considerar teorias de gravidade modificada, significa, em certo sentido, introduzir componentes adicionais (por exemplo, teorias f (R) de gravidade) e campos escalares (por exemplo, gravidade de Brans-Dicke) que podem alterar o signifi- cado das condições de energia.

Nesta tese, demonstramos que as condições de energia, em particular a SEC, de- 52

sempenham um papel importante na seleção de gravidade atrativa/repulsiva no âmbito das teorias f (R) de gravidade. Para uma determinada classe dessas teorias f (R) de gra- vidade, nós mostramos que a equação Raychaudhuri e a SEC podem ser combinadas com parâmetros cosmográficos e, então, confrontados com as observações. De um ponto de vista metodológico, os resultados indicam que tal Abordagem Cosmológica das Condições de Energia pode ser extremamente útil para fixar modelos viáveis. Aqui nós levamos em conta apenas teorias f (R) de gravidade de leis de potência. Nós mostramos que as observações, combinadas com a SEC, estabelecem o alcance das potências viáveis para selecionar modelos atrativos/ repulsivos ou, de acordo com o paradigma energia escura, modelos acelerados/desacelerados.

6.2

Perspectivas

O método aqui apresentado parece promissor tendo em vista as novas aplicações para modelos físicos mais realistas. Como perspectiva imediata de futuro desenvolvi- mento, nós pretendemos usar a equação de Raychaudhuri, as condições de energia de Hawking e Eliis, juntamente com as determinações mais precisas dos parâmetros cosmo- gráficos para impor limites aos parâmetros livres das teorias f(R) de gravidade na formu- lação de Palatini.

O método também pode ser facilmente estendido para outras teorias modificadas de gravidade, tais como teorias f(R) na formulação híbrida métrico-Palatini e teorias com acoplamento não-mínimo.

REFERÊNCIAS

[1] SANTOS, C. S. Condições De Eenergia De Hawking E Ellis E A Equação de Ray-

chaudhuri.2011. 97 f. (Dissertação) - Programa de Pós-Graduação em Física, Univer- sidade Federal do Rio Grande do Norte - UFRN, Natal, Rio Grande do Norte. 2011. [2] RIESS, A. G. et al. Observational Evidence From Supernovae For An Accelerating

Universe And A Cosmological Constant. The Astronomical Journal, 116, p.1009, 1998.

[3] RIESS, A. G. et al. BVRI Light Curves For 22 Type Ia Supernovae. The Astronomical Journal, 117, p.707, 1999.

[4] PELMUTTER, S. et al. Measurements Of Ω And Λ From 42 High-Redshift Superno-

vae. The Astrophysical Journal, 517, p.565, 1999.

[5] SPERGEL, D. N. et al. First-Year Wilkinson Microwave Anisotropy Probe

(WMAP)Obervations: The Angular Power Spectrum. Astrophysical Journal Sup- plement Series, 148, p.175, 2003.

[6] EISENSTEIN, D. J. et al. Detction Of The Baryon Acoustic Peak In The Large-Scale

Correlaton Function Of SDSS Luminous Read Galaxies.Astrophysical Journal, 633, p.560, 2005.

[7] KNOP, R. A. et al. New Contraints On ΩM, ΩΛAnd w From An Independent Set Of

11 High-Redshift Supernovae Observed With The Hubble Space Telescope. The Astrophysical Journal, 598, p.102, 2003.

[8] TONRY, J. L. et al. Cosmological Results From High-z Supernovae. The Astrophysi- cal Journal, 594, p.1, 2003.

[9] Plank Collaboraton. Planck 2013 Results. XXI. Cosmological Parameters. Astro- nomy and Astrophysics, p.571, A16, 2014.

[10] Frieman, J. A.; Turner. M. S.; Huterer, D. Dark Energy And The Accelerating Uni-

verse.Annual Review of Astronomy and Astrophysics, 46, p.385-432, 2008.

[11] Peebles, P. J. E.; Ratra, B. The Cosmological Constant And Dark Energy. Reviews of Modern Physics, 75, p.559, 2003.

[12] Padmanabhan, T. Cosmological Constant-the Weight Of The Vacuum. Physical Re- ports, 380, p.235, 2003.

[13] Caldwell, R. R.; Kamionkowski, M. The Physics of Cosmic Acceleration . Annual Review Of Nuclear And Particle Science, 59, p.397-429, 2009. arXiv:0903.0866.

[14] Durrer, R.; Maartens, R. Dark Energy and Modified Gravity. In: Dark Energy: Ob- serval E Theoretical Approaches. Cambrige UP, Ed. P. Ruiz-Lapuent, p.48-91, 2010. arXiv:0811.4132.

[15] SALUCCI, P. et al. The Universal Rotation Curve Of Spiral Galaxies II. The Dark

Matter Distribuition Out To Virial Radius.Montthly Notices of the Royal Astrono- mical Society, 378, p.41, 2007.

[16] BORRIELLO, A.; SALUCCI, P. The Dark Matter Distribution In Disc Galaxies. Monthly Notices of the Royal Astronomical Society, 323, p.285, 2001.

[17] BINNEY, J.; TREMAINE, S. Galactic Dynamics. Princeton U.S.A.: Princeton Uni- versty Press, 1987.

[18] DE VEGA, H. J.; SALUCCI, P.; SANCHEZ, N. G. The Mass Of The Dark Matter

Particle: Theory and galaxy Observations. New Astronomy, 17, p.653, 2012.

[19] ABRAMOWSKI, A. et al. Serch Fr Photon-Linelike Signatures From Dark Matter

Annihilations With H.E.S.S.Physical Review Letters, 110, p.041301, 2013.

[20] ACKERMANN, M. et al. Dark Matter Constraints From Observations Of 25 Milky

Way Satellite Galaxies With The Fermi Large Area Telescope. Physical Review D,

Referências 56

[21] PICO Collaboration. Dark Matter Searsh Results From PICO-2L C8F8Buble Cham-

ber.Physical Review Letters, 114, p.231302, 2015.

[22] JAROSIK, N. et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Sky Maps, Systematic Erros, And Basic Results.The Astrophysical Journal Supplement Series, 192, 2, 2010. arXiv:1001.4744. [astro-ph.CO].

[23] CORASANTINI, P. S.; LO VERDE, M.; CROTTS, A.; BLAKE, C. Testing Dark Energy

With The Advanced Liquid-Mirror Probe Of Asteroids, Cosmology And Astrophy- sics. Monthly Notices of the Royal Astronomical Society, 369, p.798-804, 2006. [24] LINDER, E. V. Einstein’s Other Gravity And he Acceleration Of The Universe. Phy-

sical Review D, 81, p.127301, 2010.

[25] ALDROVANDI, R.; PEREIRA, J.G. Fundamental Theories Of Physics An Introdu-

tion To Teleparallel Gravity, Springer, 173, 2013.

[26] LANCZOS, C. A Remarkable property Of The Riemann-Christoffel Tensor In Four

Dimensions.Annals of Mathematics, 39, p.842-850, 1938.

[27] WEYL, H. A New Extension Of Relativity Theory (In German: Eine Neue Erweite-

rung Der Relativitatstheorie).Annalen Der Physick, 59, p.101-133, 1919.

[28] BRANS, C. ; DICKE, R. H. Mach’s Principle And A Relativistic Theory Of Gravita-

tion.Physical Review, 124, p.925-935, 1961.

[29] BEKENSTEIN, J. D.; WEYL, H. Relativistic Gravitation Theory For The Modified

Newtonian Dynamics Paradigm.Physical Review D, 70 , p. 083509, 2004.

[30] BAÑADOS, M.; FERREIRA, P.G. Eddington’s Theory of Gravity And And Its Pro-

geny. Physical Review Letters, 105, p.011101 , 2010.

[31] EDDINGTON, A. S. The Mathematical Theory of Relativity. Cambridge University Press, Cambridge, 1923.

[32] BORN, M.; INFELD, L. Fundations Of The Field Theory.Proceedings Royal Society London

[33] SOTIROU, T. P.; Faraoni, V. F(R) Theories of Gravity. Reviews of Modern Physics,

[34] DE FELICE, A.; Tsujikawa, S. F(R) Theories, In Living Reviews in Relativity, 13, p.3, 2010.

[35] OLMO, G. J. Palatini Approach To Modified Gravity: F(R) Theories And Beyond. International Journal of Modern Physics D, 20, p.413-462, 2011.

[36] NOJIRI, S.; ODINTSOV, S. D.Unified Cosmic History In Modified Gravity: From

F(R) Theory To Lorentz Non-Invariant Models.Physics Reports 505, p.59-144, 2011. [37] CAPOZIELLO, S.; LAURENTIS, M. Extended Theories Of Gravity. Physics Reports,

509, p.167-321, 2011.

[38] SOTIRIOU, T. P.; Liberati, S. Metric-Affine F(R) Theories Of Gravity. Annals of Physics, 322, p.935-966, 2007.

[39] KOVISTO, T. The Matter Power Spectrum In F(r) Gravity. Physical Review D, 73, p. 083517, 2006.

[40] BOROWIEC, A.; GODłOWSKI, W.; SZYDLOWSKI, M. Accelerated Cosmological

Models In Modified Gravity Tested By Distant Supernovae SNIa Data. Physical Review D, 74, p.043502, 2006.

[41] LI, B.; CHU, M.-C. CMB and Matter Power Spectra Of Early f(R) Cosmology In

Palatini Formalism. Physical Review D, 74, p.104010, 2006.

[42] MOVAHED, M. S.; BAGHRAM, S.; RAHVAR, S. Consistency Of f (R) =p(R2− R2 0)

Gravity With The Cosmological Observations In Palatini Formalism.Physical Re- view D, 76, p.044008, 2007.

[43] LI, B.; CHAN, K. C.; CHU, M.-C. Constraints On F(R) Cosmology In The Palatini

Formalism.Physical Review D, 76, p.024002, 2007.

[44] CARVALHO, F.C.; SANTOS, E.M.; ALCANIZ, J.S.; SANTOS, J. Cosmological Cons-

traints From The Hubble Parameter on f(R) Cosmologies. Journal of Cosmology and Astroparticle Physics, 09, 008, p. 1-11, 2008. arXiv:0804.2878 [astro-ph].

[45] SANTOS, J.; ALCANIZ, J.S.; CARVALHO, F.C.; PIRES, N. Latest Supernovae Cons-

traints On f(R) Cosmologies. Physics Letters B, 669, p.14, 2008. [arXiv:0808.4152 [astro-ph]].

Referências 58

[46] YANG, X.-J.; CHEN, Da-M. f (R) Gravity Theories In The Palatini Formalism Cons-

trained From Strong Lensing. Monthly Notices of the Royal Astronomical Society,

394, p.1449, 2009.

[47] LI, C.-B.; LIU, Z.-Z.; SHAO, C.-G. Constraints On Some F(R) Gravity Models In The

Palatini Formalism From A Time-Varying Gravitational Constant.Physical Review D, 79, p.083536, 2009.

[48] MASUI, K.W.; SCHMIDT, F.; PEN, U.L.; MCDONALD, P. Projected Constraints on

Modified Gravity Cosmologies From 21 cm Intensity Mapping.Physical Review D,

81, p.062001, 2010).

[49] CAMPISTA, M.; SANTOS, B.; SANTOS, J.; ALCANIZ, J.S. Cosmological Conse-

quences Of Exponential Gravity In Palatini Formalism. Physics Letters B, 699, p.320-324, 2011. arXiv:1012.3943 [astro-ph.CO].

[50] SANTOS, B.; CAMPISTA, M.; SANTOS, J.; ALCANIZ, J.S. Cosmology With Hu-

Sawicki Gravity In Palatini Formalism. Astronomy & Astrophysics 548, A31, 2012. [arXiv:1207.2478 [astro-ph.CO]].

[51] ZHANG, W. S. et al. Testing Modified Gravity Models With Recent Cosmological

Observations. Science China Physics, Mechanics and Astronomy, 55, p.2244-2258, 2012. arXiv:1202.0892 [astro-ph.CO] (2012).

[52] CLIFTON, T.; BARROW, J. D. The Existence Of Godel, Einstein And de Sitter Uni-

verses.Physical Review D, 72, p.123003, 2005.

[53] REBOUÇAS, M.J.; SANTOS, J. Gödel-Type Universes In F(R) Gravity. Physics Re- view D, 80, p.063009, 2009.

[54] SANTOS, J.; REBOUÇAS, M.J.; OLIVEIRA, T.B.R.F. Gödel-Type Universes In Pala-

tini F(R) Gravity.Physics Review D, 81, 123017, 2010. arXiv:1004.2501 [astro-ph.CO]. [55] REBOUÇAS, M.J.; SANTOS, J. Violation Of Causality In F(R) Theory. Marcel Gros- smann Meeting on General Relativity, p.2078-2080, proceedinga of MG12 meeting on General Relativity, Paris. World Sci. Publish. Co. 2012. arXiv:1007.1280 [astro-ph.CO]. [56] SANTOS, J. et al. Lookback Time Bounds From Energy Conditions. Physical Review

[57] SANTOS, J.; ALCANIZ, J. S.; REBOUÇAS, M. J. Energy Conditions Constraints On

A Class Of f(R)-Gravity. International Jornal of Modern Physics D, 19, p.1315-1321, 2010.

[58] ATAZADEH, K.; KHALEGHI, H. R.; SEPANGI e TAVAKOLI, Y. Energy Conditions

In F(R) Gravity And Brans-Dicke Theories. International Journal of Modern Phy- sics D, 18, p.1101-1111, 2009. arXiv:0811.4269[gr-qc].

[59] BERTOLAMI, O.; SERQUEIRA, M.C. Energy Conditions And Stability In F(R) The-

ories Of Gravity With Non-Minimal Coupling To Matter. Physical Review D, 79, p.104010, 2009. arXiv:0910.3876[gr-qc].

[60] WANG, J. at al. Energy Conditions And Stability In Generalized f (R) Gravity With

Arbitrary Coupling Between Matter And Geometry. Physics Letters B, 689, p.133, 2010. arXiv:1212.4921.

[61] WANG, J.; LIAO, K. Energy Conditions In f (R, L(m)) Gravity. Classical and Quan- tum Gravity, 29, p.215016, 2012.

[62] BANIJAMALI, A.; FAZLPOUR, B.; SETARE, M. R. Energy Conditions In f (G) Mo-

dified Gravity with Non-minimal Coupling To Matter.Astrophysics and Space, 338, p.327-332, 2012.

[63] MARTINS, F. C.; SALUCCI, P. Analysis Of Rotation Curves In The Framework Of

R**n Gravity.Monthly Notices of the Royal Astronomical Society, 381, p.1103, 2007. [64] CAPOZIELLO, S.; CARDONE, V. F.; TROISI, A. Low Surface Brightness Galaxies

Rotation Curves In The Low Energy Limit Of r**n Gravity: No Need For Dark Matter? Monthly Notices of the Royal Astronomical Society, 375 , p.1423, 2007. [65] ASGARI, S.; Saffari, R. A Model Of F(R) Gravity As An Alternative For Dark Matter

In Spiral Galaxies.Applied Physics Research, 2 Nº. 1, p.99, 2010.

[66] JIMÉNEZ, et al. Bimetric Variational Principle For General Relativity. Physical Re- view D, 86, p.084024, 2012.

[67] CLIFTON, et al. Modified Gravity And Cosmology. Physics Reports, 513, p.1-189, 2012.

Referências 60

[68] POPLAWSKI, N. J. F(R) Gravity in Purely Affine Formulation. International Journal of Modern Physics A, 23, p.1981, 2008.

[69] OLIVEIRA, T. B. R. F. Um Estudo Sobre a Violação de Causalidae de Teorias F(R) de

Gravidade. 2015. 86 f. (Tese) - Programa de Pós-Graduação em Física, Universidade Federal do Rio Grande do Norte - UFRN, Natal, Rio Grande do Norte. 2015.

[70] LAURENTIS, M.; FATIBENE, L.; FRANCAVIGLIA, M. Dark Energy From Curva-

ture and Ordinary Matter Fitting Ehlers-Pirani-Schild: Foundational Hypotesis. Springer Preoceedings Physics. 145, p.127-140, 2014.

[71] SANTOS, J.; SANTOS, C. S. Palatini Approach to Modified f(R) Gravity and Its

Bi-Metric Structure. AIP Conference Proceedings, 1471, p.111-113, 2012.

[72] DOLGOV, A. D.; KAWASAKI, M. Can Modified Gravity Explain Accelerated Cos-

mic Expansion? Physics Letters B, 573, p.1, 2003.

[73] FARAONI,V. Matter Instability In Modified Gravity. Physical Review D, 74, p.104017, 2006. arXiv:astro-ph/0610734 [gr-qc]

[74] CAPOZZIELLO, S.; LAURENTIS, M.; FRANCAVIGLIA, M.; MECACADANTE, S.

From Dark Energy And Dark Energy to Dark Metric. Foundations of Physics, 39, p.1161-1176, 2009.

[75] ALLEMANDI, G.; CAPONE, M.; CAPOZZIELLO , S; FRANCAVIGLIA; M. Confor-

mal Aspects of Palatini in Extended Theories of Gravity. General Relativity and Gravitation, 38, p.33-60, 2006.

[76] HU, W; SAWICKI, I. Models of F(R) Cosmic Acceleration That Evade Solar System

Test.Physical Review D, 76, p.0604004, 2007.

[77] TSUJIKAWA, S. Observational Signatures of F(R) Dark Energy Model That Satisfy

Cosmological and Local Gravity constraints.Physical Review D, 77, p.023507, 2008. [78] OLMO, G. J. Palatini Approach To Modified Gravity: F(R) Theories and Beyong.

International Journal of Modern Physics D, 20, p.413, 2011.

[79] KOIVISTO, T. the Matter power Spectrum in F(R) Gravity . Physical Review D, 73, p.083517, 2006.

[80] OLMO, G.J. Violation Of The Equivalence Principle In Modified Theories Of Gra-

vity.Physics Review Letters, 98, p.061101, 2007.

[81] OLMO, G. J. Hydrogen Atom in Palatini theories of Gravity. Physical Review D,

77, p.084021, 2008.

[82] BORROW, J. D.; COTSAKIS, S. Inflation And The Conformal Structure Of Higher

Order Gravity Theories.Physics Letters B, 214, p.515-518, 1988.

[83] MAGNANO, G.; SOKOLOWSKI, L. M. On Physical Equivalence Between Non-

linear Gravity Theories And A General Relativistic Selfgravitating Scalar Field.

Physical Review D, 50, p.5039, 1994.

[84] CAPOZZIELLO, S.; CARDONE, V. F.; CARLONI, S.; TROISI, A. Curvature Quintes-

sence Matched With Observational Data.International Journal of Modern Physics D, 12, p.1969-1982, 2003.

[85] OLMO, G.J. Limit To General Gelativity In F(R) Theories Of Gravity. Physical Review D, 75, p.023511, 2007.

[86] KAR, S.; SENGPTA, S. The Raychaudhuri Equation: A Brief Review. PRAMANA- journal of physics, 69, p.49, 2007. arXiv:gr-qc/0611123v1 23 Nov 2006.

[87] RAYCHAUDHURI, A. Relativistic Cosmology I. Physical Review, 98, p.1123-1126, 1955.

[88] HECKMANN, O.; SCHUCKING, E. Bemerkunger Zur Newtonschen Kosmologie.

Documentos relacionados