• Nenhum resultado encontrado

Como apresentado anteriormente, a diferenciação entre os subtipos de receptor de

serotonina, em especial os receptores 5-HT2B, é um passo importante no desenho de novos

fármacos que visem o sistema monoaminérgico, uma vez que vários compostos acabam sendo eliminados em fases clínicas iniciais de avaliação devido a efeitos colaterais severos relacionados ao mal funcionamento do sistema circulatório.

Desde as primeiras estruturas cristalográficas apresentando a conformação dos receptores de serotonina serem publicadas até hoje, seis novas estruturas tridimensionais foram obtidas, excluindo àquela apresentada no capítulo dois deste trabalho. Nestes cinco

anos, foram publicadas as estruturas de 5-HT1Bcom o agonista ergotamina e o antagonista

metiotepina, 5-HT2B em complexo com LSD e ergotamina e, recentemente o receptor

5-HT2C foi co-cristalografado com ergotamina e ritanserina.

Com essas estruturas em mãos, será possível realizar um estudo comparativo visando caracterizar os pontos chave para a ligação desses compostos em cada subtipo de receptor. Não só isso, mas a presença de ergotamina em todos os três cristais provê uma oportunidade impar para compreender o modo de interação desta molécula com os demais membros dos receptores de serotonina.

Não obstante, muito se tem falado sobre a necessidade de dímeros para o fun-

cionamento de GABAB. Contudo, trabalhos tem mostrado que essa necessidade não é

tão aparente em um nível aminoacídico na região extracelular. Portanto, a publicação da estrutura cristalográfica desse dímero com vários agonistas e antagonistas, além da proteína sem ligantes, nos permite avaliar energetica- e estruturalmente as variações no dímero acarretadas pela interação dos ligantes no bolsão de ligação.

Por fim, a avaliação completa da interação entre os fármacos pembrolizumab e nivolumab, assim como do ligante natural de PD-L1, em complexo com a proteína PD-1 é de grande importância para uma melhor compreensão do funcionamento molecular do receptor. Ademais, outros complexos já estão disponíveis com PD-L1/fármacos e CTLA- 4/fármacos. O que nos abre a porta para o desenvolvimento de uma vasta gama de estudos em imunoterapêuticos.

Destarte, percebe-se que além dos resultados obtidos foram propostos novos tra- balhos que permitirão uma completa descrição do mecanismo funcional dos receptores aqui apresentados. Esta tese constitui um passo a mais para o completo entendimento de sistemas serotonérgico e GABAérgico, bem como de imunoterapias através de anticorpos monoclonais.

REFERÊNCIAS

ACEVEDO, O.; JORGENSEN, W. L. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Accounts of Chemical

Research, v. 43, p. 142–151, 2009.

ADAMS, C. P.; BRANTNER, V. V. Estimating the cost of new drug development: is it really $802 million? Health Affairs, v. 25, p. 420–428, 2006.

ALBUQUERQUE, E. L. et al. DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects. Physics Reports, v. 535, p. 139–209, 2014. ALI, A. et al. Circulating PD-L1 (programmed death-ligand 1) and outcomes in a HER2-positive metastatic breast cancer cohort treated with first-line trastuzumab.

Journal of Clinical Oncology, v. 35, p. 1024, 2017.

ALLISON, J. P. Nobel Lecture - Immune Checkpoint Blockade in Cancer Therapy:

New insights, opportunities, and prospects for cures. 2018. Disponível em:

<https://www.nobelprize.org/prizes/medicine/2018/allison/lecture/>. Acesso em: 19 dez.

2018.

ALMAULA, N. et al. Mapping the binding site pocket of the serotonin 5-

hydroxytryptamine2a receptor. Ser3.36 (159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin. Journal

of Biological Chemistry, v. 271, p. 14672–14675, 1996.

AMUNDSEN, S. et al. Pharmacological treatment of migraine during pregnancy and breastfeeding. Nature Reviews Neurology, v. 11, p. 209–219, 2015.

ANTONY, J.; GRIMME, S. Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory. Journal of Computational Chemistry, v. 33, p. 1730–1739, 2012.

ARAGON-SANABRIA, V.; KIM, G. B.; DONG, C. From cancer immunoediting to new strategies in cancer immunotherapy: the roles of immune cells and mechanics in oncology. In: Biomechanics in Oncology. Germany: Springer, 2018. p. 113–138.

ARODOLA, O. A.; SOLIMAN, M. E. Quantum mechanics implementation in drug-design workflows: does it really help? Drug Design, Development and Therapy, v. 11, p. 2551, 2017.

ATKINS, P.; PAULA, J. D. Elements of physical chemistry. 5.ed. UK: Oxford University Press, 2013.

AUGEN, J. The evolving role of information technology in the drug discovery process.

Drug Discovery Today, v. 7, p. 315–323, 2002.

AZUMA, M. et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature, v. 366, p. 76, 1993.

BAO, G.; SURESH, S. Cell and molecular mechanics of biological materials. Nature

Materials, v. 2, p. 715, 2003.

BARBER, R. P. et al. GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Research, v. 141, p. 35–55, 1978. BARNETT, A. H. et al. Angiotensin-receptor blockade versus converting–enzyme inhibition in type 2 diabetes and nephropathy. New England Journal of Medicine, v. 351, p. 1952–1961, 2004.

BARROSO-NETO, I. L. et al. Inactivation of ovine cyclooxygenase-1 by bromoaspirin and aspirin: a quantum chemistry description. The Journal of Physical Chemistry B, v. 116, p. 3270–3279, 2012.

BARTUZI, D. et al. Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules, v. 22, p. 340, 2017.

BEATTY, G. L.; GLADNEY, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clinical Cancer Research, v. 21, p. 687–692, 2015.

BECKE, A. D. Density-functional thermochemistry. III. the role of exact exchange. The

Journal of Chemical Physics, v. 98, p. 5648–5652, 1993.

BECKER, O. M. et al. Computational biochemistry and biophysics. New York: Marcel Dekker, 2001.

BECKSTEIN, O. et al. Ion channel gating: insights via molecular simulations. FEBS

Letters, v. 555, p. 85–90, 2003.

BELLO, F. D. et al. The versatile 2-substituted imidazoline nucleus as a structural motif

of ligands directed to the serotonin 5-HT1A receptor. ChemMedChem, v. 11, p. 2287–2298,

2016.

BENARROCH, E. E. GABAB receptors structure, functions, and clinical implications.

Neurology, v. 78, p. 578–584, 2012.

BERENDSEN, H. J. C.; SPOEL, D. van der; DRUNEN, R. van. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics

Communications, v. 91, p. 43–56, 1995.

BERGER, M.; GRAY, J. A.; ROTH, B. L. The expanded biology of serotonin. Annual

Review of Medicine, v. 60, p. 355–366, 2009.

BERMAN, H. M. et al. The protein data bank. Nucleic Acids Research, v. 28, p. 235–242, 2000.

BERNARD, P.; GUEDIN, D.; HIBERT, M. Molecular modeling of the GABA/GABAB receptor complex. Journal of Medicinal Chemistry, v. 44, p. 27–35, 2001.

BETTLER, B. et al. Molecular structure and physiological functions of GABAB receptors.

Physiological Reviews, v. 84, p. 835–867, 2004.

BEZERRA, K. S. et al. Quantum binding energy features of the T3-785 collagen-like triple-helical peptide. RSC Advances, v. 7, p. 2817–2828, 2017.

BIERMANN, B. et al. The sushi domains of GABAB receptors function as axonal targeting signals. Journal of Neuroscience, v. 30, p. 1385–1394, 2010.

BINET, V. et al. The heptahelical domain of GABAB2 is activated directly by CGP7930,

a positive allosteric modulator of the GABAB receptor. Journal of Biological Chemistry,

v. 279, p. 29085–29091, 2004.

BLUNDELL, T. L. et al. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philosophical

Transactions of the Royal Society of London B: Biological Sciences, v. 361, p. 413–423,

2006.

BOHÓRQUEZ, H. J. et al. Methods in biocomputational chemistry: a lesson from the amino acids. In: Quantum Biochemistry. New York: John Wiley & Sons, 2010. p. 403–421. BOOTH, B.; ZEMMEL, R. Prospects for productivity. Nature Reviews Drug Discovery, v. 3, p. 451, 2004.

BORTOLATO, A. et al. Structure of class B GPCRs: new horizons for drug discovery.

British Journal of Pharmacology, v. 171, p. 3132–3145, 2014.

BOSCH, F.; ROSICH, L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology, v. 82, p. 171–179, 2008.

BOWERY, N. GABAB receptor pharmacology. Annual Review of Pharmacology and

Toxicology, v. 33, p. 109–147, 1993.

BOWERY, N. et al. International union of pharmacology. XXXIII. mammalian

γ-aminobutyric acid B receptors: structure and function. Pharmacological Reviews, v. 54,

p. 247–264, 2002.

BOWERY, N.; HILL, D.; HUDSON, A. Characteristics of GABAB receptor binding

sites on rat whole brain synaptic membranes. British Journal of Pharmacology, v. 78, p. 191–206, 1983.

BOWERY, N. et al. (–) baclofen decreases neurotransmitter release in the mammalian cns by an action at a novel GABA receptor. Nature, v. 283, p. 92, 1980.

BOWERY, N.; SMART, T. GABA and glycine as neurotransmitters: a brief history.

British Journal of Pharmacology, v. 147, 2006.

BRAFF, D. et al. Prestimulus effects on human startle reflex in normals and schizophrenics.

Psychophysiology, v. 15, p. 339–343, 1978.

BRINKMANN, L.; HEIFETS, E.; KANTOROVICH, L. Density functional calculations of extended, periodic systems using coulomb corrected molecular fractionation with conjugated caps method (CC-MFCC). Physical Chemistry Chemical Physics, v. 16, p. 21252–21270, 2014.

BRNDIAR, J.; STICH, I. van der waals interaction energies of small fragments of P, As, Sb, S, Se, and Te: comparison of complete basis set limit CCSD (T) and DFT with approximate dispersion. Journal of Chemical Theory and Computation, v. 8, p. 2301–2309, 2012.

BROOIJMANS, N.; KUNTZ, I. D. Molecular recognition and docking algorithms. Annual

Review of Biophysics and Biomolecular Structure, v. 32, p. 335–373, 2003.

BROWN, K. M. et al. Activation of the γ-aminobutyric acid type B (GABAB) receptor by agonists and positive allosteric modulators: Miniperspective. Journal of Medicinal

Chemistry, v. 58, p. 6336–6347, 2015.

BUCHBINDER, E. I.; DESAI, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology, v. 39, p. 98, 2016.

BURKE, K. Perspective on density functional theory. Journal of Chemical Physics, v. 136, p. 150901, 2012.

BURNET, S. F. M. et al. The clonal selection theory of acquired immunity. Nashville: Vanderbilt University Press, 1959.

BURNS, L. A. et al. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of Chemical Physics, v. 134, p. 084107, 2011.

BUSCH, W. Aus der sitzung der medicinischen section vom 13 November 1867. Berliner

Klinische Wochenschrift, v. 5, p. 137, 1868.

CARVALHO, L. L. de et al. Molecular features related to HIV integrase inhibition obtained from structure-and ligand-based approaches. PloS one, v. 9, p. e81301, 2014. CAVALLI, A.; CARLONI, P.; RECANATINI, M. Target-related applications of first principles quantum chemical methods in drug design. Chemical Reviews, v. 106, p. 3497–3519, 2006.

CELADA, P.; BORTOLOZZI, A.; ARTIGAS, F. Serotonin 5-HT1A receptors as targets

for agents to treat psychiatric disorders: rationale and current status of research. CNS

Drugs, v. 27, p. 703–716, 2013.

CHALIFOUX, J. R.; CARTER, A. G. GABAB receptor modulation of voltage-sensitive

calcium channels in spines and dendrites. Journal of Neuroscience, v. 31, p. 4221–4232, 2011.

CHALLIS, G. B.; STAM, H. J. The spontaneous regression of cancer: a review of cases from 1900 to 1987. Acta Oncologica, v. 29, p. 545–550, 1990.

CHANG, C. et al. The crystal structures of (S) and (R) baclofen and carbamazepine.

Acta Crystallographica Section A, v. 37, 1981.

CHANG, C. et al. Structure and absolute configuration of (R)-baclofen monohydrochloride.

Acta Crystallographica Section B, v. 38, p. 2065–2067, 1982.

CHAPLIN, D. D. Overview of the immune response. Journal of Allergy and Clinical

Immunology, v. 125, p. S3–S23, 2010.

CHEBIB, M.; JOHNSTON, G. A. The ‘ABC’ of GABA receptors: a brief review. Clinical

CHEN, V. B. et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, v. 66, p. 12–21, 2010.

CHERTOK, B. et al. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Molecular Pharmaceutics, v. 10, p. 3531–3543, 2013.

CHO, A. E. et al. Quantum mechanical scoring for protein docking. The Journal of

Chemical Physics, v. 131, p. 134108, 2009.

CHOI, D.-S. et al. The human serotonin 5-HT2B receptor: Pharmacological link between

5-HT2 and 5-HT1D receptors. FEBS Letters, v. 352, p. 393–399, 1994.

CHOUDHARY, M. et al. Differential ergoline and ergopeptine binding to 5-

hydroxytryptamine2a receptors: ergolines require an aromatic residue at position 340 for high affinity binding. Molecular Pharmacology, v. 47, p. 450–457, 1995.

CHUNG, L. W. et al. The ONIOM method and its applications. Chemical Reviews, v. 115, p. 5678–5796, 2015.

COHEN-TANNOUDJI, C.; DIU, B.; LALÖE, F. Quantum mechanics. New York: John Wiley & Sons, 1977.

COLEY, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. 1. The American Journal of the Medical Sciences, v. 105, p. 487, 1893.

COLEY, W. B. The treatment of sarcoma with the mixed toxins of erysipelas and bacillus prodigiosus. The Boston Medical and Surgical Journal, v. 158, p. 175–182, 1908.

CÓRDOVA-SINTJAGO, T. et al. Human serotonin 5-HT2C G protein-coupled receptor

homology model from the β2 adrenoceptor structure: Ligand docking and mutagenesis

studies. International Journal of Quantum Chemistry, v. 112, p. 140–149, 2012.

CORRALES, L. et al. Innate immune signaling and regulation in cancer immunotherapy.

Cell Research, v. 27, p. 96, 2017.

COSSI, M. et al. Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model. Journal of Computational Chemistry, v. 24, p. 669–681, 2003.

COUSIN, S.; SENESCHAL, J.; ITALIANO, A. Toxicity profiles of immunotherapy.

Pharmacology & Therapeutics, v. 181, p. 91–100, 2017.

CRUNELLI, V.; EMRI, Z.; LERESCHE, N. Unravelling the brain targets of

γ-hydroxybutyric acid. Current Opinion in Pharmacology, v. 6, p. 44–52, 2006.

CURTIS, D. et al. GABA, bicuculline and central inhibition. Nature, v. 226, p. 1222, 1970. DA COSTA, R. F. et al. Explaining statin inhibition effectiveness of HMG-CoA reductase by quantum biochemistry computations. Physical Chemistry Chemical Physics, v. 14, p. 1389–1398, 2012.

DAHLKE, E. E.; TRUHLAR, D. G. Electrostatically embedded many-body expansion for large systems, with applications to water clusters. Journal of Chemical Theory and

Computation, v. 3, p. 46–53, 2007.

DANTAS, D. S. et al. Quantum molecular modelling of ibuprofen bound to human serum albumin. RSC Advances, v. 5, p. 49439–49450, 2015.

DAVIS, A. M.; TEAGUE, S. J.; KLEYWEGT, G. J. Application and limitations of x-ray crystallographic data in structure-based ligand and drug design. Angewandte Chemie

International Edition, v. 42, p. 2718–2736, 2003.

DEEV, V.; COLLINS, M. A. Approximate ab initio energies by systematic molecular fragmentation. The Journal of Chemical Physics, v. 122, p. 154102, 2005.

DIMASI, J. A.; HANSEN, R. W.; GRABOWSKI, H. G. The price of innovation: new estimates of drug development costs. Journal of Health Economics, v. 22, p. 151–185, 2003.

DIRAC, P. A. M. The quantum theory of the electron. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, v. 117, p. 610–624, 1928.

DIRAC, P. A. M. The principles of quantum mechanics. Oxford: Oxford University Press, 1986.

DREWS, J. Drug discovery: A historical perspective. Science, v. 287, p. 1960–1964, 2000. DUPUIS, D. S. et al. Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator n, n’-dicyclopentyl-2-methylsulfanyl-5-nitro-

pyrimidine-4, 6-diamine (GS39783) in the absence of the GABAB1 subunit. Molecular

Pharmacology, v. 70, p. 2027–2036, 2006.

DURHAM, P.; PAPAPETROPOULOS, S. Biomarkers associated with migraine and their potential role in migraine management. Headache: The Journal of Head and Face Pain, v. 53, p. 1262–1277, 2013.

EDVINSSON, L.; VILLALÓN, C. M.; MAASSENVANDENBRINK, A. Basic mechanisms of migraine and its acute treatment. Pharmacology & Therapeutics, v. 136, p. 319–333, 2012.

EHRLICH, P. Experimental researches on specific therapeutics. London: H. K. Lewis & Co., 1908.

ELCOCK, A. H. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Computational

Biology, v. 2, p. e98, 2006.

EMENS, L. A. et al. Cancer immunotherapy trials: leading a paradigm shift in drug development. Journal for Immunotherapy of Cancer, v. 4, p. 42, 2016.

ERSPAMER, V.; ASERO, B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature, v. 169, p. 800, 1952. ERSPAMER, V.; BORETTI, G. Identification of enteramine and enteramine-related substances in extracts of posterior salivary glands ofoctopus vulgaris by paper chromatography. Experientia, v. 6, p. 348–349, 1950.

FANG, Y.; KENAKIN, T.; LIU, C. Orphan GPCRs as emerging drug targets. Frontiers

in Pharmacology, v. 6, p. 295, 2015.

FEHLEISEN, F. Ueber die züchtung der erysipelkokken auf künstlichem nährboden und ihre übertragbarkeit auf den menschen. Deutsche Medizinische Wochenschrift, v. 8, p. 553–554, 1882.

FERMI, E. Un metodo statistico per la determinazione di alcune proprieta dell atomo.

Atti della Accademia Nazionale dei Lincei, v. 6, p. 602–607, 1927.

FESSAS, P. et al. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Seminars in Oncology, v. 44, p. 136–140, 2017.

FILHO, J. G. da S. et al. A comparative density functional theory study of electronic structure and optical properties of γ-aminobutyric acid and its cocrystals with oxalic and benzoic acid. Chemical Physics Letters, v. 587, p. 20–24, 2013.

FILIP, M.; FRANKOWSKA, M. GABAB receptors in drug addiction. Pharmacological

Reports, v. 60, p. 755, 2008.

FINK, K. B.; GÖTHERT, M. 5-HT receptor regulation of neurotransmitter release.

Pharmacological Reviews, v. 59, p. 360–417, 2007.

FLOREY, E.; MCLENNAN, H. The effects of factor i and of gamma-aminobutyric acid on smooth muscle preparations. The Journal of Physiology, v. 145, p. 66–76, 1959. FOCK, V. Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems.

Zeitschrift für Physik, v. 61, p. 126–148, 1930.

FOUDA, A.; RYDE, U. Does the DFT self-interaction error affect energies calculated in proteins with large QM systems? Journal of Chemical Theory and Computation, v. 12, p. 5667–5679, 2016.

FRANCISCO, L. M.; SAGE, P. T.; SHARPE, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, v. 236, p. 219–242, 2010.

FRANKLIN, R. E.; GOSLING, R. G. Molecular configuration in sodium thymonucleate.

Nature, v. 171, p. 740–741, 1953.

FRAZÃO, N. F. et al. Four-level levodopa adsorption on C60 fullerene for transdermal and oral administration: a computational study. RSC Advances, v. 2, p. 8306–8322, 2012. FRAZÃO, N. F. et al. Conformational, optoelectronic and vibrational properties of the entacapone molecule: A quantum chemistry study. Journal of Nanoscience and

Nanotechnology, v. 16, p. 4825–4834, 2016.

FRENKEL, D.; SMIT, B. Understanding molecular simulation: from algorithms to

applications. 2.ed. San Diego: Academic Press, v. 1, 2001.

FREYD, T. et al. Ligand-guided homology modelling of the GABAB2 subunit of the

FRIESNER, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. Journal of Medicinal Chemistry, v. 47, p. 1739–1749, 2004.

FRIESNER, R. A.; BEACHY, M. D. Quantum mechanical calculations on biological systems. Current Opinion in Structural Biology, v. 8, p. 257–262, 1998.

FROESTL, W. An historical perspective on GABAergic drugs. Future Medicinal

Chemistry, v. 3, p. 163–175, 2011.

FROESTL, W. et al. SGS742: the first GABAB receptor antagonist in clinical trials.

Biochemical Pharmacology, v. 68, p. 1479–1487, 2004.

FROESTL, W. et al. Phosphinic acid analogs of GABA. 1. new potent and selective

GABAB agonists. Journal of Medicinal Chemistry, v. 38, p. 3297–3312, 1995.

FUKUZAWA, K. et al. Ab initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: an application of fragment molecular orbital method. Journal of Computational Chemistry, v. 26, p. 1–10, 2005.

GÄHWILER, B.; BROWN, D. A. GABAB-receptor-activated K+ current in voltage-

clamped CA3 pyramidal cells in hippocampal cultures. Proceedings of the National

Academy of Sciences, v. 82, p. 1558–1562, 1985.

GALVEZ, T. et al. Allosteric interactions between GB1 and GB2 subunits are required

for optimal GABAB receptor function. The EMBO Journal, v. 20, p. 2152–2159, 2001.

GALVEZ, T. et al. Mutagenesis and modeling of the GABAB receptor extracellular

domain support a venus flytrap mechanism for ligand binding. Journal of Biological

Chemistry, v. 274, p. 13362–13369, 1999.

GALVEZ, T. et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds

light on the activation process of GABAB receptors. Journal of Biological Chemistry,

v. 275, p. 41166–41174, 2000.

GAO, A. M. et al. An efficient linear scaling method for ab initio calculation of electron density of proteins. Chemical Physics Letters, v. 394, p. 293–297, 2004.

GASSMANN, M. et al. Redistribution of GABAB1 protein and atypical GABAB responses

in GABAB2-deficient mice. Journal of Neuroscience, v. 24, p. 6086–6097, 2004.

GEERLINGS, P.; PROFT, F. D.; LANGENAEKER, W. Conceptual density functional theory. Chemical Reviews, v. 103, p. 1793–1874, 2003.

GENG, Q. et al. PD-1/PD-L1 inhibitors for immuno-oncology: from antibodies to small molecules. Current Pharmaceutical Design, v. 23, p. 6033–6041, 2017.

GENG, Y. et al. Structural mechanism of ligand activation in human GABAB receptor.

Nature, v. 504, p. 254, 2013.

GENG, Y. et al. Structure and functional interaction of the extracellular domain of

human GABAB receptor GBR2. Nature Neuroscience, v. 15, p. 970, 2012.

GENHEDEN, S.; RYDE, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, v. 10, p. 449–461, 2015.

GERSHELL, L. J.; ATKINS, J. H. A brief history of novel drug discovery technologies.

Nature Reviews Drug Discovery, v. 2, p. 321, 2003.

GERSHON, M. et al. 5-HT receptor subtypes outside the central nervous system. roles in the physiology of the gut. Neuropsychopharmacology, v. 3, p. 385–395, 1990.

GESTWICKI, J. E. The interface of chemistry and biology is actually a continuum. Washington: ACS Publications, 2008.

GHIOTTO, M. et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. International Immunology, v. 22, p. 651–660, 2010.

GILSON, M. K.; ZHOU, H.-X. Calculation of protein-ligand binding affinities. Annual

Review of Biophysics and Biomolecular Structure, v. 36, p. 21–42, 2007.

GOADSBY, P. J. Can we develop neurally acting drugs for the treatment of migraine?

Nature Reviews Drug Discovery, v. 4, p. 741, 2005.

GOEDECKER, S. Linear scaling electronic structure methods. Reviews of Modern

Physics, v. 71, p. 1085, 1999.

GOODSELL, D. S.; MORRIS, G. M.; OLSON, A. J. Automated docking of flexible ligands: applications of AutoDock. Journal of Molecular Recognition, v. 9, p. 1–5, 1996. GORDON, M. S. et al. Fragmentation methods: a route to accurate calculations on large systems. Chemical Reviews, v. 112, p. 632–672, 2012.

GRÅNÄS, C.; NORDVALL, G.; LARHAMMAR, D. Mutagenesis of the human 5-HT1B

receptor: differences from the closely related 5-HT1A receptor and the role of residue F331

in signal transduction. Journal of Receptors and Signal Transduction, v. 18, p. 225–241, 1998.

GRÅNÄS, C.; NORDVALL, G.; LARHAMMAR, D. Site-directed mutagenesis of the

human 5-HT1B receptor. European Journal of Pharmacology, v. 349, p. 367–375, 1998.

GREEN, J. P.; JOHNSON, C. L.; KANG, S. Application of quantum chemistry to drugs and their interactions. Annual Review of Pharmacology, v. 14, p. 319–342, 1974.

GRIMME, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, v. 27, p. 1787–1799, 2006. GUASTELLA, J. et al. Cloning and expression of a rat brain GABA transporter. Science, v. 249, p. 1303–1306, 1990.

GUETG, N. et al. The GABAB1a isoform mediates heterosynaptic depression at

hippocampal mossy fiber synapses. Journal of Neuroscience, v. 29, p. 1414–1423, 2009. HAEFELY, W. et al. Possible involvement of GABA in the central actions of benzodiazepines. Advances in Biochemical Psychopharmacology, p. 131–151, 1975.

HALL, G. Atomic charges within molecules. Advances in Atomic and Molecular Physics, v. 20, p. 41–63, 1985.

HALL, G. Point charges and the molecular electrostatic potential. International Reviews

HALL, G.; SMITH, C. Fitting electron densities of molecules. International Journal of

Quantum Chemistry, v. 25, p. 881–890, 1984.

HARTIG, P. R.; BRANCHEK, T. A.; WEINSHANK, R. L. A subfamily of 5-HT1D

receptor genes. Trends in Pharmacological Sciences, v. 13, p. 152–159, 1992.

HARTIG, P. R. et al. Alignment of receptor nomenclature with the human genome:

classification of 5-HT1B and 5-HT1D receptor subtypes. Trends in Pharmacological

Sciences, v. 17, p. 103–105, 1996.

HARTREE, D. R. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, v. 24, p. 89–110, 1928a.

HARTREE, D. R. The wave mechanics of an atom with a non-coulomb central field. part ii. some results and discussion. Mathematical Proceedings of the Cambridge Philosophical

Society, v. 24, p. 111–132, 1928b.

HARTREE, D. R. The wave mechanics of an atom with a non-coulomb central field. part iv. further results relating to terms of the optical spectrum. Mathematical Proceedings of

the Cambridge Philosophical Society, v. 25, p. 310–314, 1929.

HARTREE, D. R. The calculation of atomic structures. Reports on Progress in Physic, v. 113, p. 113–143, 1957.

HATFIELD, M. P. et al. Evaluation of methods to cap molecular fragments in calculating energies of interaction in avian pancreatic polypeptide. International Journal of Quantum

Chemistry, v. 108, p. 1017–1021, 2008.

HAUSER, A. S. et al. Trends in GPCR drug discovery: new agents, targets and indications.

Nature Reviews Drug Discovery, v. 16, p. 829, 2017.

HE, X.; ZHANG, J. Z. A new method for direct calculation of total energy of protein.

The Journal of Chemical Physics, v. 122, p. 031103, 2005.

HE, X.; ZHANG, J. Z. H. The generalized molecular fractionation with conjugate