• Nenhum resultado encontrado

Procedimento geral para a síntese multicomponente de derivados de (E)-3-

Esquema 6.4 Síntese MCR do núcleo (SQXO )

5. CONCLUSÕES

6.1 MATERIAIS E REAGENTES

6.1.5 Procedimento geral para a síntese multicomponente de derivados de (E)-3-

Esquema 6.4- Síntese MCR do núcleo (SQXO)

Fonte: Autoria própria, 2019

Inicialmente, em um balão de fundo redondo de 250 ml contendo uma solução aquosa com 25 ml de AcOH (20%), foram adicionados O-Phenilenodiamina 0,2g (1,85 mmol), piruvato de sódio 0,21g(1,90 mmol), a solução ficou sob agitação durante 5 minutos, logo em seguida foi adicionado 1,2 equivalentes do aldeído aromático apropriado (2,22 mmol) juntamente com 5 equivalentes de acetato de sódio 0,75g (9,25 mmol). O meio reacional ficou sob agitação em refluxo a 120°C durante 8-14h. Após o término da reação o meio reacional foi resfriado a temperatura ambiente e foi adicionado 20 ml de água gelada, o produto precipitado foi filtrado por gravidade. Gerando os derivados de estirilquinoxalina com rendimento de 65-92%.

57 (E)-3-estiril-1H-quinoxalin-2-ona (SQXO) 50

Figura 6.1- Estrutura química de SQXO

Fonte: Autoria própria, 2019

(E)-3-estiril-1H-quinoxalin-2-ona: pf 256-258°C. IV (ATR, υmax/cm-1): 3300, 2990, 1660, 1600, 1565. 1H NMR (400 MHz, DMSO-d6): δ(ppm) 7,31 (t, 2H, CH-Ar), 7,39

(d,1H, Ar-H); 7,44 (t, 2H, Ar-H), 7,50 (t,1H, Ar-H), 7,62 (d,1H, =CH, J = 16 Hz); 7,73 (d, 2H, Ar-H); 7,78 (d,1H, Ar-H), 8,06 (d, 1H, =CH, J = 16 Hz), 12.53 (s,1H, NH). 13C NMR (400 MHz, DMSO-d6): δ(ppm) 115.7, 122.5, 123.9, 128.1, 128.8, 129.5, 129.8,

130.3, 132.2, 132.8, 136.5, 137.6, 153.5, 155.3. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H12N2O2 = 249.1022, encontrado= 249.1021.

(E)-3-(2-hidroxistiril)quinoxalin-2(1H)-ona. ( 2-HSQX) 70

Figura 6.2- Estrutura química de 2-HSQX

Fonte:Autoria própria, 2019

3-[2-(2-Hydroxi-fenil)-vinil]-1H-quinoxalin-2-ona: pf 230-232 °C (column chromatography: silica gel, hexane-ethyl acetate 10:1 v/v). IV (ATR, υmax/cm-1): 3300, 2925, 1655, 1620, 1598, 1460, 1242. 1H NMR (400 MHz, DMSO d6): δ(ppm) 6.86 (t, 1H,

J = 8Hz, Ar-H), 6.92 (d, 1H, J = 8Hz, Ar-H), 7.20 (t, 1H, J = 8Hz, Ar-H), 7.30 (t, 2H, J = 8Hz, Ar-H), 7.47 (t, 1H, J = 8Hz, Ar-H), 7.64 (d, 1H, J = 8Hz, Ar-H); 7.67 (d, 1H, J

= 16Hz, =CH), 7.77 (d, 1H, J = 8Hz, Ar-H), 8.29 (d, 1H, J = 16Hz, =CH), 10.16 (s, 1H, OH), 12.46 (s, 1H, NH). 13C NMR (400 MHz, DMSO-d6): δ(ppm) 115.6, 116.6, 120.0,

121.3, 123.3, 123.9, 128.3, 128.6, 129.9, 130.9, 132.0, 132.9, 133.2, 154.1, 155.3, 156.8. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H12N2O2 = 265.0972, encontrado= 265.0974.

58 (E)-3-(3-hidroxiestiril)quinoxalin-2(1H)-ona (3- HSQX) 71.

Figura 6.3- Estrutura química de 3-HSQX

Fonte: Autoria própria, 2019

3-[2-(3-Hidroxi-fenil)-vinil]-1H-quinoxalin-2-ona: pf 248-250 °C. IR (ATR, υmax/cm-1): 3400, 2950, 1660, 1620, 1580. 1H NMR (500 MHz, DMSO-d

6): δ(ppm) 6.79 (d, 1H, j =

5Hz, Ar-H), 7.08 (s,1H,Ar-H), 7.13 (d,1H, J = 5Hz, Ar-H), 7.23 (t, 1H, J = 5Hz, Ar-H), 7.30 (t, 2H, J = 5Hz, Ar-H), 7.48 (d, 1H, J = 10Hz, Ar-H), 7.52 (d, 1H, J = 16Hz, =CH), 7.77 (d, 1H, j =10Hz, Ar-H), 7.95 (d, 1H, J = 16Hz, =CH), 9,66 (s, 1H, OH), 12,49 (s, 1H, NH) . 13C NMR (125 MHz, DMSO-d6): δ(ppm) 114.1, 115.7, 117.2, 119.4, 122.1,

123.9, 128.8, 130.2, 130.5, 132.1, 132.8, 137.6, 137.7, 153.4, 155.3, 158.2. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H12N2O2 = 265.0972, encontrado= 265.0970.

(E)-3-(4-hidroxiestirilquinoxalin)-2(1H)-ona (4- HSQX) 72

Figura 6.4- Estrutura química de 4-HSQXO

onte: Autoria própria, 2019

3-[2-(4-Hidroxi-fenil)-vinil]-1H-quinoxalin-2-ona: pf 240-242°C (coluna cromatográfica: silica gel, hexano- acetato de etila 10:1 v/v). IV (ATR, υmax/cm-1): 3420, 2925, 1660, 1600, 1515, 1250, 755. 1H NMR (400 MHz DMSO-d6): δppm = 6.83 (d, 2H,

J = 8Hz, Ar-H), 7.28 (m, 2H, Ar-H), 7.43 (d, 1H, J = 16Hz, =CH), 7.44 (d, 1H, J = 8Hz,

Ar-H), 7.57 (d ,2H, J = 8Hz, Ar-H), 7.74 (d, 1H, J = 8Hz, Ar-H), 7.74 (d, 1H, J = 8Hz, Ar-H), 7.98 (d, 1H, J = 16Hz, =CH), 9.95 (s, 1H, OH), 12.45 (s, 1H, NH), 13C NMR (500

MHz, DMSO-d6): δ(ppm) 115.6, 116.4, 118.8, 123.9, 127.6, 128.5, 129.7, 129.9, 131.9,

132.9, 137.8, 153.8, 155.3, 159.5. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H12N2O2 = 265.0972, encontrado= 265.0973.4.2.4.4

59

(E)-3-(3-nitroestirilquinoxalin)-2(1H)-ona (3- NSQX) 73

Figura 6.5- Estrutura química de 3-NSQX

Fonte: Autoria própria, 2019

3-[2-(3-Nitro-fenil)-vinil]-1H-quinoxalin-2-ona: pf 285-286°C. IV (ATR, υmax/cm-1): 3300, 2920, 1660, 1620, 1518, 1348. 1H NMR (400 MHz, DMSO-d6): δ(ppm) 7.32 (t, 2H,

J = 8Hz, Ar-H), 7.52 (t, 1H, J = 8Hz, Ar-H), 7.70 (d, 1H, J = 8Hz, Ar-H), 7.75 (d, 1H, J

= 16Hz, =CH), 7.78 (d, 1H, Ar-H), 8.15 (d, 1H, J = 16Hz, =CH), 8.20 (m, 2H, Ar-H), 8.51 (s, 1H, Ar-H), 12.59 (s, 1H,NH). 13C NMR (400 MHz, DMSO-d

6) δ(ppm): 115.8,

122.4, 123.9, 124.1, 125.3, 128.9, 130.8, 130.9, 132.4, 132.7, 134.1, 135.0, 138.3, 148.9, 152.9, 155.2. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H11N3O3 = 294.0873, encontrado= 294.0871.

(E)-3-(4-nitroestiril)quinoxalin-2(1H)-ona ( 4-NSQX)74

Figura 6.6- Estrutura química de 4-NSQX

Fonte: Autoria própria, 2019

3-[2-(4-Nitro-fenil)-vinil]-1H-quinoxalin-2-ona: pf 288-290 °C. IV (ATR, υmax/cm-1): 3300, 2990, 1690, 1590, 1545, 1360. 1H NMR (400 MHz, DMSO-d6): δ(ppm) 7.32 (m,

2H, Ar-H), 7.53 (t, 1H, J = 8Hz, Ar-H), 7.78 (d, 1H, J = 16Hz, =CH), 7.79 (d, 1H, Ar- H), 8.01 (d, 2H, J = 8Hz, Ar-H), 8.14 (d, 1H, J = 16Hz, =CH), 8.24 (d, 2H, J = 8Hz, Ar- H), 12.6 (S, 1H, NH). 13C NMR (500 MHz, DMSO-d6): δ(ppm) 115.8, 124.1, 124.5,

126.9, 129.1, 129.1, 130.9, 132.4, 132.8, 134.9, 143.0, 147.6, 152.9, 155.2. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H11N3O3 = 294.0873, encontrado = 294.0875.

60 (E)-3-(2,4-dinitroestiril)quinoxalin-2(1H)-ona (DNSQX) 80

Figura 6.7- Estrutura química de DNSQX

Fonte: Autoria própria, 2019

3-[2-(2,4-Dinitro-fenil)-vinil]-1H-quinoxalin-2-ona: pf 288-290°C IV (ATR, υmax/cm-1): 3300, 2920, 1660, 1620, 1590, 1514, 1348. 1H NMR (200 MHz, DMSO-d6): δppm = 7.77

(m, 2H, j= 6Hz,Ar-H), 8.17 (d, 1H, jtrans = 15Hz, =CH), 8.20 (d, 1H, Ar-H), 8.75 (d, 2H, Ar-H), 8.88 (d, 1H, jtrans = 15Hz, =CH), 9.21 (s, 1H,Ar-H), 13.08. (s, 1H,NH). Falta RMN de 13C.

(E)-3-(4-fluoroestiril)quinoxalin-2(1H)-ona ( FSQX)76

Figura 6.8- Estrutura química de FSQX

Fonte: Autoria própria, 2019

3-[2-(4-Fluoro-fenil)-vinil]-1H-quinoxalin-2-ona: pf 168-170°C (recrystallized from

chloroform/hexane 1:1 v/v). IV (ATR, υmax/cm-1): 3300, 2925, 1658, 1620, 1590, 1510, 1228. 1H NMR (400 MHz, CDCl3-d6): δ(ppm) 7,03 (t, 2H, J = 8Hz, Ar-H), 7.25 (m, 2H, J = 8Hz, Ar-H), 7.37 (d, 1H, J = 8Hz, Ar-H), 7.60 (d, 1H, J = 16Hz, =CH), 7.62 (m, 2H, J = 8Hz, Ar-H), 7.83 (d, 1H, J = 8Hz, Ar-H), 8.17 (d, 1H, J = 16Hz, =CH), 12.06 (s, 1H,

NH). 13C NMR (400 MHz, DMSO- d6): δ(ppm) 115.6; 115.8; 115.9; 120.9, 124.1, 127.9,

129.8, 129.9, 130.0, 131.4, 132.6, 152.7, 155.7, 162.3. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H11FN2O = 267.0928, encontrado= 267.0926.

61 (E)-3-(bromoestiril)quinoxalin-2(1H)-ona ( BSQX) 77

Figura 6.9- Estrutura química de BSQX

Fonte:Autoria própria, 2019

3-[2-(4-Bromo-fenil)-vinil]-1H-quinoxalin-2-ona (2e): pf 235-237 °C (recrystallized

from chloroform/hexane 1:1 v/v). IV (ATR, υmax/cm-1): 3300, 2925, 1658, 1620, 1590, 1510, 1228. 1H NMR (300 MHz, DMSO-d6): δ(ppm) 7,31 (d, 2H, J = 6Hz, Ar-H), 7.51 (t, 1H, J = 6Hz, Ar-H), 7.64 (m, 4H, Ar-H), 7.66 (d, 1H, J = 15Hz, =CH), 7.78 (d, 1H, J = 6Hz, Ar-H), 8.02 (d, 1H, J = 15Hz, =CH), 12,5 (s, 1H, NH). 13C NMR (300 MHz, DMSO- d6): δ(ppm) 115.8; 123.0; 123.2; 124.1, 128.8, 130.1, 130.5, 132.1, 132.4, 135.7, 136.2,

137.3, 153.2.2; 155.2. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C16H11BrN2O = 327.0128, encontrado= 279.0131.

(E)-3-(2,4-dicloroestiril)quinoxalin-2(1H)-ona ( DCSQX) 78

Figura 6.10- Estrutura química de DCSQX

Fonte: Autoria própria, 2019

3-[2-(2,4-Dicloro-fenil)-vinil]-1H-quinoxalin-2-ona: pf 300°C IV (ATR, υmax/cm-1): 3300, 2900, 1655, 1620, 1577, 1100. 1H NMR (200 MHz, DMSO-d6): δppm = 6.70 (m,

3H, Ar-H), 6.84 (s, 1H, Ar-H), 6.99 (d, 1H, jtrans = 15Hz, =CH), 7.15 (d, 2H, Ar-H), 7.75 (d, 1H, jtrans = 15Hz, =CH), 11.80. (s, 1H,NH). Falta RMN de 13C.

62 (E)-3-(3-metoxiestirilquinoxalin)-2(1H)-ona (3- NSQX)79

Figura 6.11- Estrutura química de 3-NSQX

Fonte: Autoria própria, 2019

3-[2-(2-Metoxi-fenil)-vinil]-1H-quinoxalin-2-ona: pf 232-234 °C. IR (ATR, υmax/cm-1): 3300, 2925, 1615, 1590, 1460, 1242. 1H NMR (300 MHz, DMSO-d6): δ(ppm) 3.9 (s, 3H,

OCH3) 7.05 (m, 2H, Ar-H), 7.32 (m, 3H, Ar-H), 7.47 (d, 1H, j = 8Hz, Ar-H), 7.64 (d, 1H, J = 16Hz, =CH), 7.76 (t, 2H, J = 8Hz, Ar-H), 8.32 (d, 1H, J = 16Hz, =CH); 12.46 (s, 1H, NH). 13C NMR (400 MHz, DMSO-d6): δ(ppm) = 56.06, 112.1, 115.6, 121.3, 122.4,

123.9, 124.9, 127.8, 128.7, 130.1, 131.2, 132.1, 132.3, 132.8, 153.8, 155.2, 158.2. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C17H14N2O2 = 229.1128, encontrado=

279.1130.

(E)-3-(4-metoxiestiril)quinoxalin-2(1H)-ona ( 4-MTSQX) 80

Figura 6.12- Estrutura química de 4-MTSQX

Fonte:Autoria própria, 2019

63 (E)-3-(4-hidroxi-3-methoxiestiril)quinoxalin-2(1H)-ona ( HMSQX) 81

Figura 6.13- Estrutura química de HMSQX

Fonte: Autoria própria, 2019

3-[2-(4-Hidroxi-3-metoxi-fenil)-vinil]-1H-quinoxalin-2-ona: mp: 243-245 °C. IR (ATR,

υmax/cm-1): 3400, 2990, 1660, 1590, 1515, 1265. 1H NMR (500 MHz, DMSO-d

6): δ(ppm)

3.86 (s, 3H, OCH3), 6.83 (d, 1H, J = 5Hz, Ar-H),7.15 (d, 1H, J = 10Hz, Ar-H), 7.30(m, 3H, Ar-H),7.45 (d, 1H, J = 15Hz, =CH), 7.44 (d, 1H, j = 5Hz, Ar-H), 7.73 (d, 1H, J = 10Hz, Ar-H); 8.0 (d, 1H, J =15Hz, =CH); 9.51(s, 1H,OH), 12.43(s, 1H, NH). 13C NMR

(125 MHz, DMSO-d6): δ(ppm) 56.1, 111.2, 115.4, 116.4, 119.1, 122.5, 124.0, 128.1,

129.7, 131.7, 133.1, 138.2, 148.4, 149.1, 153.6, 155.4. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C17H14N2O3 = 295.1077, encontrado= 295.1078.

(E)-3-(3-methoxy-4-(octiloxi)estiril)quinoxalin-2(1H)-ona (OCMSQX)82 Figura 6.14- Estrutura química de OCMSQX

Fonte: Autoria própria, 2019

3-[2-(3-Metoxi-4-octiloxi-fenil)-vinil]-1H-quinoxalin-2-ona: mp 175-177 °C. IR (ATR,

υmax/cm-1): 3400, 2990, 1660, 1590, 1515, 1265, 1140. 1H NMR (500 MHz, DMSO- d

6):

δ(ppm) 0.85 (t, 3H, CH3), 1.26 (m, 8H, CH2), 1.29 (m, 2H, CH2,), 1.72 (m, 2H, CH2), 3.85(s, 3H, OCH3), 3.98 (t, 2H,OCH2), 6.99 (d, 1H, J = 10Hz, Ar-H), 7.23 (d, 1H, J = 10Hz, Ar-H), 7.28 (s, 1H, Ar-H), 7.30 (t, 2H, J = 10Hz, Ar-H); 7.46 (d, 1H, j = 10Hz, ArH); 7.50 (d,1H, J = 15Hz, =CH), 7.74 (d, 1H, J = 10Hz, Ar-H); 8.02 (d, 1H, J = 15Hz, =CH), 12.45 (s, 1H,NH). 13C NMR (125 MHz, DMSO-d6): δ(ppm) 14.4, 22.5, 25.9, 29.1,

29.2, 31.7, 56.1, 68.7, 110.7, 113.4, 115.6, 120.1, 122.2, 123.9, 128.5, 129.3, 129.8, 131.9,132.9, 137.9, 149.7, 150.2, 153.7, 155.3. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calculado para C25H30N2O3 = 407.2329, encontrado= 407.2333.

64

7 REFERÊNCIAS

Abbas, Hebat-allah S. et al. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase.

Bioorganic & Medicinal Chemistry, [s.l.], v. 23, n. 20, p.6560-6572, out. 2015. Elsevier

BV. http://dx.doi.org/10.1016/j.bmc.2015.09.023.

Achelle, Sylvain et al. Synthesis and Photophysical Investigation of a Series of Push–Pull Arylvinyldiazine Chromophores. The Journal Of Organic Chemistry, [s.l.], v. 77, n. 8,

p.4087-4096, 10 abr. 2012. American Chemical Society (ACS).

http://dx.doi.org/10.1021/jo3004919.

Achelle, Sylvain; BAUDEQUIN, Christine; PLÉ, Nelly. Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes And Pigments, [s.l.], v. 98, n. 3, p.575-600, set. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.dyepig.2013.03.030. Ahn, S. Y., et. al., Synthesis and Photophysical Studies of Iridium Complexes of New 2 , 3-Diphenylquinoxaline Derivatives for Organic Light-Emitting Diodes, (2009). 9(12), 7039–7043. https://doi.org/10.1166/jnn.2009.1651

Ajani, Olayinka Oyewale. Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. European Journal Of Medicinal Chemistry, [s.l.], v. 85, p.688- 715, out. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.ejmech.2014.08.034.

Azuaje, J., et. al., Ugi-based approaches to quinoxaline libraries. ACS Combinatorial

Science, (2014).16(8), 403–411. https://doi.org/10.1021/co500036n

Bachhav, H. M., Bhagat, S. B., & Telvekar, V. N. Efficient protocol for the synthesis of quinoxaline , benzoxazole and benzimidazole derivatives using glycerol as green solvent.

Tetrahedron Letters, (2011). 52(43), 5697–5701. https://doi.org/10.1016/j.tetlet.2011.08.105

Benzeid, H. et al. A thienoquinoxaline and a styryl-quinoxaline as new fluorescent probes for amyloid-β fibrils. Comptes Rendus Chimie, [s.l.], v. 15, n. 1, p.79-85, jan. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.crci.2011.10.009.

65 Brauch, Sebastian., et. al., Higher-order multicomponent reactions: beyond four reactants.

Chemical Society Reviews, [s.l.], v. 42, n. 12, p.4948-4962, 2013. Royal Society of

Chemistry (RSC). http://dx.doi.org /10.1039/c3cs35505e.

Brown, D. J., Taylor, E. C., & Wipf, P. (2004). Quinoxalines: Supplement II. v. 61. Cazaux, L. (1993). Styrylbenzodiazinones 1. Synthese, structure et proprietes photophysiques.

Shivam Bajpai., et. al., Development of greener approach: microwave assisted synthesis of quinoxaline derivatives in water (2017), 61, 173–177.

Dolzhenko, A. V., & Dolzhenko, A. V. (2014). Green Solvents for Eco-friendly Synthesis of Bioactive Heterocyclic Compounds. Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800070- 0.00005-0

Douaron, Gael Le et al. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models.

Journal Of Medicinal Chemistry, [s.l.], v. 59, n. 13, p.6169-6186, 5 jul. 2016. American

Chemical Society (ACS). http://dx.doi.org/10.1021/acs.jmedchem.6b00297.

Dua, R., et. al., Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review. Advances in Biological Research, (2011), 5(3), 120–144.

Fujiwara, Shin-ichi et al. Stereoselective Synthesis of New Selenium-Containing Heterocycles by Cyclocarbonylation of Aminoalkynes with Carbon Monoxide and Selenium. The Journal Of Organic Chemistry, [s.l.], v. 67, n. 17, p.6275-6278, ago. 2002. American Chemical Society (ACS). http://dx.doi.org/10.1021/jo025707d.

Guchhait, S. K., Priyadarshani, G., & Gulghane, N. M. A reaction of 1,2-diamines and aldehydes with silyl cyanide as cyanide pronucleophile to access 2-aminopyrazines and

2-aminoquinoxalines. RSC Adv., (2016) 6(61), 56056–56063.

https://doi.org/10.1039/C6RA12028H

Heravi, M. M., Baghernejad, B., & Oskooie, H. A. A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines. Tetrahedron Letters, (2009), 50(7), 767–769. https://doi.org/10.1016/j.tetlet.2008.11.123

66 Hayashi, Yujiro. Pot economy and one-pot synthesis. Chemical Science, [s.l.], v. 7, n. 2,

p.866-880, 2016. Royal Society of Chemistry (RSC).

http://dx.doi.org/10.1039/c5sc02913a.

Husain, Asif et al. Synthesis and in vivo diuretic activity of some new benzothiazole sulfonamides containing quinoxaline ring system. Journal Of Enzyme Inhibition And

Medicinal Chemistry, [s.l.], v. 31, n. 6, p.1682-1689, 7 jan. 2016. Informa UK Limited.

http://dx.doi.org/10.3109/14756366.2015.1128425.

Ibrahim, Mohammed K. et al. Design, synthesis, molecular modeling and anti- hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorganic & Medicinal Chemistry, [s.l.], v. 25, n. 4, p.1496-1513, fev. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.bmc.2017.01.015.

Junnotula, V. et al., (2010). DNA strand cleaving properties and hypoxia-selective cytotoxicity of 7-chloro-2-thienylcarbonyl-3-trifluoromethylquinoxaline 1,4-dioxide.

Bioorganic and Medicinal Chemistry,18(9),3125–3132.

https://doi.org/10.1016/j.bmc.2010.03.042

Kiyani, H., & Ghiasi, M. Solvent-free efficient one-pot synthesis of Biginelli and Hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst. Research on Chemical Intermediates, (2015), 41(8), 5177–5203. https://doi.org/10.1007/s11164-014-1621-x

Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. Electron Transport Materials for Organic Light-Emitting Diodes, (2004). 4556–4573.

Kumar, K., et al., A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides.

Tetrahedron Letters, 56(10), 1266–1271, (2015). https://doi.org/10.1016/j.tetlet.2015.01.138

Kuo, Hsiu-ming et al. Mesogenic heterocycles derived from quinoxaline Schiff Bases.

Tetrahedron, [s.l.], v. 72, n. 41, p.6321-6333, out. 2016. Elsevier BV.

http://dx.doi.org/10.1016/j.tet.2016.07.076.

Krishnan, et. al., Studies on the synthesis of 2-phenylsulphonyl-3-styrylquinoxalines Since the discovery of the anti leprotic drug 4 , 4 • diaminodiphenylsulphone ( DDS ), the sulphonyl moiety has received much attention as a potential pharmacophore in medicinal

67 chemistre, (2001). 408(99), 565–573.

Leclerc, M., Najari, A., & Leclerc, M. Development of quinoxaline based polymers for photovoltaic applications, (2017). 1858–1879. https://doi.org/10.1039/C6TC05381E Lindström, U. M. Stereoselective organic reactions in water. Chemical Reviews, (2002).

102(8), 2751–2772. https://doi.org/10.1021/cr010122p

Liu, L., Zhang, L., Wang, T., & Liu, M. Interfacial assembly of amphiphilic styrylquinoxalines: alkyl chain length tunable topochemical reactions and supramolecular chirality. Physical Chemistry Chemical Physics, (2013). 15(17), 6243. https://doi.org/10.1039/c3cp50384d

Matsumoto, Shoji et al. Novel formation of diimidazo[1,2-a: 2′,1′-c]quinoxaline derivatives and their optical properties. Organic & Biomolecular Chemistry, [s.l.], v. 9,

n. 17, p.5941-5944, 2011. Royal Society of Chemistry (RSC).

http://dx.doi.org/10.1039/c1ob06002c.

Noolvi, Malleshappa N. et al. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. European Journal

Of Medicinal Chemistry, [s.l.], v. 46, n. 6, p.2327-2346, jun. 2011. Elsevier BV.

http://dx.doi.org/10.1016/j.ejmech.2011.03.015.

On, A. R., Therapeutic, T. H. E., & Of, P. A review on the therapeutic potential of quinoxaline, (2017). 6(13), 47–68. https://doi.org/10.20959/wjpr201713-9878

Pandey, Sushma; Singh, Dileep K.. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil.

Chemosphere, [s.l.], v. 55, n. 2, p.197-205, abr. 2004. Elsevier BV.

http://dx.doi.org/10.1016/j.chemosphere.2003.10.014

Pillai, M. Synthesis and Reactions of Quinoxalines. Science, December, (1990).

Rangel, R. C., et al., controle do ácaro da falsa ferrugem (phyllocoptruta oleivora ashm., 1879) por um juvenóide e outros defensivos agrícolas. SCI. Agric. v.50(1), 58-62, maio, 1993.

Sain, D. K., et al., Note Synthesis , characterization and biological evaluation of some heterocyclic compounds containing ethoxyphthalimide moiety via key, (2010). 49(June),

68 818–825.

Sakai, Hayato et al. Highly Fluorescent [7]Carbohelicene Fused by Asymmetric 1,2- Dialkyl-Substituted Quinoxaline for Circularly Polarized Luminescence and Electroluminescence. The Journal Of Physical Chemistry C, [s.l.], v. 119, n. 24,

p.13937-13947, 4 jun. 2015. American Chemical Society (ACS).

http://dx.doi.org/10.1021/acs.jpcc.5b03386

Settanni, G., et al., Protein corona composition of PEGylated nanoparticles correlates

strongly with amino acid composition of protein surface. (2016).

https://doi.org/10.1039/x0xx00000x

Sharipova, Sirina M. et al. Synthesis of isomeric (E)-[4-(dimethylamino)phenyl]- vinylquinoxalines – precursors for a new class of nonlinear optical chromophores.

Chemistry Of Heterocyclic Compounds, [s.l.], v. 53, n. 5, p.504-510, maio 2017.

Springer Nature. http://dx.doi.org/10.1007/s10593-017-2084-y.

Shintre, Suhas A. et al. Synthesis, in vitro antimicrobial, antioxidant, and antidiabetic activities of thiazolidine–quinoxaline derivatives with amino acid side chains. Medicinal

Chemistry Research, [s.l.], v. 26, n. 9, p.2141-2151, 22 maio 2017. Springer Nature.

http://dx.doi.org/10.1007/s00044-017-1922-x.

Silva, Lilian C. da et al. Ascorbic acid-based quinoxaline derivative as a chromogenic chemosensor for Cu 2+. Inorganic Chemistry Communications, [s.l.], v. 70, p.71-74, ago. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.inoche.2016.05.019.

Tseng, Chih-hua et al. Discovery of indeno[1,2- b ]quinoxaline derivatives as potential anticancer agents. European Journal Of Medicinal Chemistry, [s.l.], v. 108, p.258- 273, jan. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.ejmech.2015.11.031.

Üngören, Şevket Hakan. Synthesis of New Naphtho[2,3-f]quinoxaline-2,7,12(1H)-trione and Anthra-9,10-quinone Dyes from Furan-2,3-diones. Molecules, [s.l.], v. 14, n. 4, p.1429-1437, 2 abr. 2009. MDPI AG. http://dx.doi.org/10.3390/molecules14041429. Wagle, Shivananda., et al., Synthesis of some new 4-styryltetrazolo[1,5-a]quinoxaline and 1-substituted-4-styryl[1,2,4]triazolo[4,3-a]quinoxaline derivatives as potent anticonvulsants. European Journal Of Medicinal Chemistry, [s.l.], v. 44, n. 3, p.1135- 1143, mar. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.ejmech.2008.06.006.

69 Wang, Lei et al. Novel organic dyes with anchoring group of quinoxaline-2, 3-diol and the application in dye-sensitized solar cells. Dyes And Pigments, [s.l.], v. 113, p.581- 587, fev. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.dyepig.2014.09.019.

Xu, Bailing et al. Synthesis and biological evaluation of N4-

(hetero)arylsulfonylquinoxalinones as HIV-1 reverse transcriptase inhibitors. Bioorganic

& Medicinal Chemistry, [s.l.], v. 17, n. 7, p.2767-2774, abr. 2009. Elsevier BV.

http://dx.doi.org/10.1016/j.bmc.2009.02.039.

Yin, M., Gong, H., Zhang, B., & Liu, M. (2004). Photochemical reaction, acidichromism, and supramolecular nanoarchitectures in the langmuir-blodgett films of an amphiphilic

styrylquinoxaline derivative. Langmuir, 20(19), 8042–8048.

70

8 ANEXO

Documentos relacionados