• Nenhum resultado encontrado

8. PRODUÇÃO CIENTÍFICA

Os resultados da pesquisa realizada, até o presente momento, geraram trabalhos na forma de artigos e publicações em congressos nacionais e internacionais. Além disso, algumas contribuições foram feitas gerando artigos com co-autoria. A seguir estão descriminados os títulos dos artigos, revista para qual foram submetidas bem como o status.

Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: A mini-review. Environmental Science and Pollution Research International, v. 21, p. 8432-8441, 2014.

Elisama Vieira dos Santos, Jessica Horacina Bezerra Rocha, Danyelle Medeiros de Araújo, Dayanne Chianca de Moura, Carlos Alberto Martínez-Huitle.

Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: Electrochemical behavior, concentration determination and their application. Journal Electroanalytical Chemistry, v. 731, p. 145-152, 2014.

Dayanne Chianca de Moura, Cynthia Kérzia Costa de Araújo, Carmem L.P.S. Zanta, Ricardo Salazar, Carlos Alberto Martínez-Huitle.

Applicability of Electrochemical Oxidation Process to the Treatment of Petrochemical Effluents. Chemical Engineering Transactions, ISSN 2283-9216

Carlos Alberto Martínez-Huitle, Dayanne Chianca de Moura, Djalma Ribeiro da Silva Cl- mediated electrochemical oxidation for treating an effluent using platinum and

diamond anodes. Journal of Water Process Engineering.

DOI:10.1016/j.jwpe.2014.11.005

Dayanne Chianca de Moura, Chrystiane do Nascimento Brito, Marco Antonio Quiroz, Sibele B. C. Pergher, Carlos Alberto Martínez-Huitle

Large disk electrodes of TiO2/Nanotubes/PbO2 for environmental applications. RSC Advances. DOI: 10.1039/C4RA16723F

Dayanne Chianca de Moura, Mónica Cerro-López, Marco Antonio Quiroz, Djalma Ribeiro da Silva, Carlos Alberto Martínez-Huitle.

Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolyte. Journal of Electroanalytical Chemistry, v. 738, p. 84-91, 2015.

Aldo Uranga-Flores, Catalina de la Rosa-Júarez, Silvia Gutierrez-Granados, Dayanne Chianca de Moura, Carlos. A. Martínez-Huitle, Juan M. Peralta Hernández.

Electrochemical degradation of Acid Blue 113 by using different electrode materials. Environmental Nanotechnology, Monitoring and Management. SUBMETER)

Dayanne Chianca de Moura, Marco Antonio Quiroz, Djalma Ribeiro da Silva, Ricardo Salazar, Carlos Alberto Martínez-Huitle

Além disso, seguem trabalhos completos, expandidos e resumos apresentados em forma de pôster:

65th Anual ISE Meeting

Decontamination of Effluent Generated by Federal University of Rio Grande do Norte by Electrogenerated Active Chlorine Species on Ti/Ru0.3Ti0.7O2 Electrode.

6º Simpósio do PPGQ IQ/UFRN

Espécies de Cloro Ativo Eletrogeradas em Ti/Ru0.3Ti0.7O2: Comportamento Eletroquímico, Quantificação das Espécies e Aplicação à um Efluente Real.

XXI Congreso de la Sociedad Iberoamericana de Electroquímica (SIBAE) 1) Comparação entre Tecnologias Eletroquímicas: Oxidação e Eletrocoagulação na Remoção do Corante Negro Ácido M5R

2) Produção de Espécies de Cloro Ativo Eletrogeradas In Situ Usando Ti/Ru0.3Ti0.7O2 para o Tratamento de Efluentes Produzidos pela Universidade Federal do Rio Grande Do Norte.

1ª Semana de Eletroquímica Ambiental.

Determinação de Espécies Oxicloradas Geradas in situ com Aplicação ao Tratamento de Efluentes produzidos pela UFRN.

Application of electrochemical technology for treating effluents generated by Federal University of Rio Grande do Norte: Direct and Mediated Electrochemical Oxidation 5º Simpósio do PPGQ IQ/UFRN

Aplicação da tecnologia eletroquímica para o tratamento de efluentes gerados pela UFRN: Oxidação eletroquímica direta e mediada.

1º Simpósio de Físico-Química IQ/UFRN

Eletrocatálise na conversao/ combustao eletroquímica dos poluentes organicos para o tratamento de águas residuais.

4º Simpósio do PPGQ IQ/UFRN

Review of the theoretical basis of electrochemical oxidation with application to wastewater treatment domestic.

APÊNDICE

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) Supporting Information

Dayanne Chianca de Mouraa, Monica Cerro-Lopezb, Marco Antonio Quirozb, Djalma Ribeiro da Silvaa and Carlos Alberto Martínez-Huitle*a

a

Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova - CEP 59.072-970, RN, Brazil.

b

Universidad de las Américas Puebla. Grupo de Investigación en Energía y Ambiente. ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, México.

Electrochemical cell set-up using Ti disk for anodization process for preparing TiO2 nanotubes:

Figure S1. Scheme representation of TiO2 nanotubes growth at disk by applying 30 V during 2 h of anodization. A) Ti serving as anode (65 cm2 of geometrical area) ; C) Steel serving as the cathode.

Electrodeposition of PbO2 onto a Ti/TiO2-nanotubes disk array:

a b c

Figure S2. Scheme representation of PbO2 growth at different deposit times. SEM images: (left) synthetized nanotubes without PbO2 deposit, and (right) TiO2 nanotubes completely filled after PbO2 growth, as showed in the SEM image of lateral section.

Electrochemical flow cell with Ti/TiO2-nanotubes/PbO2 electrode for treating synthetic dye solution:

Figure S3. A: 1) Anodic part; 2) electric support to anode; 3) anode (Ti/TiO2- nanotubes/PbO2); 4) reaction compartment, 5) cathode (steel disk); 6) Metallic support to electrical contact with cathode and 7) cathodic part. B) Electrochemical system: 1) Reservoir, 2) thermometer, 3) electrochemical cell e 4) peristaltic pump. C: Image of electrochemical cell and with the each one of the compartments.

References

Atomic force microscopy (AFM) surface analysis

Figure S4. AFM image referent to the study of TiO2-nanotubes synthetized. A-B and C- D segments have been used to study the shape of TiO2 nanotube (see Fig. S2).

Gas Chromatographic – Mass Spectroscopy conditions:

Samples of anolyte were extracted into non-aqueous medium (2 mL of acetonitrile HPLC grade with 20 µL of electrolysis sample) and were subjected to GC-MS analysis using GC-FOCUS and MS-ISQ Thermo Scientific to identify the intermediates following the conditions: GC: Varian column VF5 ms with a composition of 5% de fenil-arylene and 95% de dimetilpolisiloxane. Temperature program: 40ºC – 5 min; 12°C/min – 100ºC; 10ºC/min – 200 ºC and 10ºC/min - 270 ºC – 5 min. Injector: 220ºC. Mode: Splitless. Gas flow: 0.8 mL/min. MS: Transfer line: 270ºC; ions source temperature: 220ºC, Mass range: 40-500 m/z. Injection: 1µL.

Tetragonal PbO2 crystals

Figure S5. Tetragonal crystals organized in tree form when the electrodeposition time is significantly increased.

Grown of PbO2 crystals onto TiO2-nanotubes

Figure S6. The grown of PbO2 crystals onto TiO2 nanotubes after 30 min of electrodeposition time. Relevant amount of PbO2 crystals was formed.

Crystalline phases determined by X-ray diffractometer (XRD Bruker model

D8Discover) using Cu Kα (λ= 1.54 Å) radiation.

Figure S7. XRD spectrum from PbO2 deposit over TiO2 nanotubes showing that - PbO2 is its predominant crystalline structure.

Large TiO2-nanotubes/PbO2 anode

Figure S8. Large Ti/TiO2-nanotubes/PbO2 anode in disk format before its use to treat a synthetic dye effluent by electrochemical oxidation.

Deposition mechanisms:

The chemical equations involved for PbO2 formation during electrochemical deposition can be described as follows:

H2O→OHad +H+ + e- (1)

Pb2+ + OHad→Pb(OH)2+ (2)

Pb(OH)2+ + H2O → PbO2 + 3H+ + e- (3) References

(1) J. Lee, H. Varela, S. Uhm and Y. Tak, Electrochem. Commun., 2000, 2, 646-652. (2) A. B. Velichenko, D. U. Girenko and F. I. Danilov, Electrochim. Acta, 1995, 40, 2803-2807.

(3) A. B. Velichenko, D. U. Girenko and F. I. Danilov, J.Electroanal. Chem., 1996, 405, 127-132.

(4) D. Devilliers, T. Baudin, M.T. Dinh Thi and E. Mahé, Electrochimica Acta, 2004, 49, 2369-2377.

(5) X. Li, D. Pletcher and F. C. Walsh. Chem. Soc. Rev., 2011, 40, 3879–3894. (6) D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Chapman and Hall, London, 2nd ed., 1990.

Decolorization, mineralization and energetic parameters

The decay in color of dyes wastewaters during electrochemical treatment is usually monitored from the decolorization efficiency or percentage of color removal by:

Color removal (%) = ([ABSM– ABStM]/ABS0M)  100

where ABS0M and ABStM are the average absorbances before electrolysis and after an electrolysis time t, respectively, at the maximum visible wavelength (max) of the wastewater determined from UV-Vis spectrophotometry Varian, model Cary 50 Com. We also monitored the COD decay, as a function of time through a multiparameter HANNA photometer COD-HI 83099, after digestion procedure. From this data, the percentages of COD were calculated:

0

0

%COD decay COD CODt 100

COD            (4)

The energy consumption per volume of treated effluent was estimated and expressed in kWh.m-3. The cell voltage during the electrolysis was taken for calculation of the energy consumption, as follows: s V A t Energy consumption V          (1)

where t is the time of electrolysis (h); V (volts) and A (amperes) are the cell voltage and the electrolysis current, respectively; and Vs is the sample volume (m3).

References

(1) C. A. Martínez-Huitle, E. Brillas, Appl. Catal., B Environ. 2009, 87, 105.

Electrochemical stability of the Ti/TiO2-nanotubes/PbO2 electrode

Figure S9. Variation of Eappl, as a function of time, during fixed current density measurements for prolonged electrolysis times at Ti/TiO2-nanotubes/PbO2 anode.

Documentos relacionados