• Nenhum resultado encontrado

6.4 Prova dos Resultados Principais

6.4.2 Prova do Teorema 6.4

Introduzindo o espa¸co de Banach W , com

W := {(f, z, p1, p2) : f ∈ C12,14(Q), z, p1, p2 ∈ C1+12,1+14(Q)}.

Definamos a fun¸c˜ao Λ : Z 7→ 2Z, com

Λ(w) = {y ∈ Z : (f, y, p1, p2) ´e o controle-estado em W, (6.42) e (6.43) ´e satisfeito},

e fixando R0 > 0. Ent˜ao, se ky0kC2+ 12(Ω) ´e suficientemente pequeno, a fun¸c˜ao multi-

valuada Λ satisfaz as hip´oteses do Teorema do Ponto Fixo de Kakutani.

• Λ est´a bem definida; tamb´em para cada w ∈ Z, Λ(w) ´e n˜ao vazio e convexo (´e consequˆencia da Proposi¸c˜ao 6.3).

• Existe  > 0 (dependendo somente de Ω, O, T, a0, a1e R0) tal que, se ||y0||C2+ 1 2(Ω) ≤

, tem-se Λ(w) ⊂ BZ[0; R0] para todo w ∈ BZ[0; R0]. Isto ´e consequˆencia da

Proposi¸c˜ao 6.3.

• Existe um conjunto compacto K ⊂ BZ[0; R0] tal que, se ||y0||C2+ 12

(Ω) ≤  e

w ∈ BZ[0; R0], implica que Λ(w) ⊂ K. Isto ´e uma consequˆencia do fato de que

C2+12,1+14(Q) ,→ Z compacta.

• Λ tem o gr´afico fechado em Z. Isto n˜ao ´e dif´ıcil de verificar. Obviamente, dado wn

com wn→ w forte em Z, e assumindo que zn ∈ Λ(wn) e zn → z forte em Z. Ent˜ao,

existem controles fn tais que (fn, yn, p1n, p2n) pertencem a W e satisfazem

(6.59)                  yn,t− ∇ · (a(zn)∇yn) = fn˜1O− 1 µ1 p1nβ121O1 − 1 µ2 p2nβ221O2 em Q, − pi n,t− a(zn)∆pin= αi(yn− yid)1Oid em Q, yn(x, t) = pin(x, t) = 0 sobre Σ, yn(x, 0) = z0(x), pin(x, T ) = 0 em Ω.

Consequentemente, fazendo-se limite em (6.59) tem-se                  yt− ∇ · (a(z)∇y) = f ˜1O− 1 µ1 p1β121O1 − 1 µ2 p2β221O2 em Q, − pi t− a(z)∆φi = αi(y − yid)1Oid em Q, y(x, t) = pi(x, t) = 0 sobre Σ, y(x, 0) = z0(x), φi(x, T ) = 0 em Ω.

Assim, Λ possui pelo menos um ponto fixo y. Obviamente, y ´e o estado associado ao controle f tal que (6.42) e (6.43) s˜ao satisfeitos. Portanto a prova do Teorema 6.4 est´a conclu´ıda.

Quest˜oes Abertas

• A controlabilidade por trajet´orias do sistema            yt− a( Z Ω

y(x0, t) dx0)∆y + b(x, t)y = v1ω em Q,

y(x, t) = 0 sobre Σ,

y(x, 0) = y0(x) em Ω,

´e um problema aberto.

Se tentamos usar as mesmas t´ecnicas do cap´ıtulo 2 para este problema, a dificuldade ´e encontrada na necessidade de ter uma desigualdade de Observabilidade. Porem, ´e poss´ıvel conseguir resultados similares `a Proposi¸c˜ao 2.1 quando b = b(x) ou b = b(t). • A controlabilidade local por trajet´orias do sistema (3.1) ´e um problema aberto. A principal dificuldade ´e encontrar uma desigualdade de Carleman para o seguinte sistema:            −ϕt− (ν0+ ν1||∇y||2)∆ϕ + 2ν1 R Ω∆yϕdx 0+ (Dϕ)y + ∇π = g em Q, ∇ · ϕ = 0 em Q, ϕ = 0 sobre Σ, ϕ(T ) = ϕT em Ω,

os argumentos tradicionalmente usados n˜ao funcionam.

• Sera poss´ıvel a controlabilidade nula de (4.1) em dimens˜ao trˆes com um controle escalar ? No caso do sistema de Navier-Stokes foi resolvido por J. M. Coron e Pierre Lissy em [36].

• A controlabilidade seguindo a estrat´egia de Stackelberg-Nash para o sistema N - dimensional        yt− ∇ · (a(∇y)∇y) = f 1O+ v1β11O1+ v 2β 21O2 em Q, y(x, t) = 0 sobre Σ, y(x, 0) = y0(x) em Ω.

A t´ecnica desenvolvida no cap´ıtulo 6 n˜ao ´e suficiente. De fato, para estabelecer a estimativa de Carleman de equa¸c˜oes parab´olicas lineares, exigimos que os coefi- cientes das partes principais perten¸cam ao espa¸co de Sobolev W1,∞(Q). Portanto,

para resolver o problema quase linear, temos que procurar por um ponto fixo em um espa¸co contendo as fun¸c˜oes y tal que ∇yt perten¸ca ao espa¸co L∞(Q)N. Pela

abordagem desenvolvida no cap´ıtulo 6, precisamos escolher o espa¸co de controles para ser C12,

1

4(Q). Ent˜ao, pelas estimativas de Schauder para equa¸c˜oes parab´olicas

lineares de segunda ordem, a solu¸c˜ao y da equa¸c˜ao linearizada para (6.13) satisfaz ∇yt ∈ (L2(Q))N. Isso n˜ao parece suficiente para estabelecer a estimativa de Carle-

man desejada para equa¸c˜oes parab´olicas lineares.

• A controlabilidade seguindo a estrat´egia de Stackelberg-Nash para os seguintes sistemas (p1)        yt− ∇ · (a(y)∇y) = v1β11O1 + v 2β 21O2 em Q, y = f 1S sobre Σ, y(x, 0) = y0(x) em Ω, e (p2)        yt− ∇ · (a(y)∇y) = f 1O em Q, y = v1β11S1 + v 2β 21S2 sobre Σ, y(x, 0) = y0(x) em Ω.

Conclus˜ao

Nesta pesquisa, conclui-se que problemas associados `as equa¸c˜oes do tipo Parab´olico, s˜ao extremadamente desafiadores. O desenvolvimento da Tese proporcionou uma completa compreens˜ao da “aplicabilidade” da Teoria de Controle e mostrou que algumas quest˜oes abertas, podem ser respondidas!

Como resultado de esta Tese tem-se conseguido publicar em revistas cientificas os seguintes trabalhos titulados:

– On the Theoretical and Numerical Control of a One-Dimensional Nonlinear Parabolic Partial Differential Equations (ver [7])

– Local Null Controllability of the N-Dimensional Ladyzhenskaya-Smagorinsky with N-1 Scalar Controls (ver [5])

– Exact Controllability to the Trajectories for Parabolic PDEs with Nonlocal Nonlinearities (ver [10])

– On the approximate null controllability of the “true” Boussinesq system in dimension 3 (Em prepara¸c˜ao)

Al´em disso, espera-se que os resultados de controlabilidade obtidos no cap´ıtulo 4 e cap´ıtulo 6 junto com seu desenvolvimento seja sometido para sua respectiva publica¸c˜ao em revistas cient´ıficas.

Bibliografia

[1] A. Fursikov, O. Yu. Imanuvilov, Controllability of Evolution Equations, lecture Notes 34, Seoul National University, Korea, 1996.

[2] A. V. Fursikov, O Yu. Imanuvilov, Exact controllability of the Navier-Stokes euations and Boussinesq equation. Russ. Math. Surv. 54, 565-618 (1999).

[3] A. V. Fursikov, O. Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Russian Math. Surveys 54 (1999), n. 3, 565-618.

[4] C. Fabre, J-P. Puel, E. Zuazua, Approximate controllability of the semilinear heat equation. Poc. R. Soc. Edinb. Sect. 125A, 31-61(1995).

[5] Dany Nina Huaman, Juan L´ımaco, Miguel R. Nu˜nez Ch´avez. Local Null Controlla- bility of the N-Dimensional Ladyzhenskaya-Smagorinsky with N-1 Scalar Controls. SEMA SIMAI Springer Book Series. 1ed.: v. 17, p. 139-158. (2018)

[6] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1974.

[7] E. Fern´andez-Cara, D. Nina-Huaman, M. R. Nu˜nez-Ch´avez, F. B. Vieira, On the Theoretical and Numerical Control of a One- Dimensional Nonlinear Parabolic Par- tial Differential Equation, Journal of Optimization Theory and Applications,(2017), 175(3), 652-682.

[8] E. Fernandez-Cara, E. Zuazua, Null and approximate controllability for weakly blow- ing up semilinear heat equations. Ann. Inst. Henri Poincar´e Anal. Non Lin´eaire 17(5), 583-616(2000).

[9] E. Fern´andez-Cara, E. Zuazua, The cost of approximate controllability for heat equa- tions: The linear case, Adv. Differential Equations, 5 (2000), pp. 465-514.

[10] Enrique Fern´andez-Cara, J. L´ımaco, Dany Nina Huaman ; Miguel R. Nu˜nez Chavez. Exact Controllability to the Trajectories for Parabolic PDEs with Nonlocal Nonlin- earities. Mathematics of Control, SIgnal, and Systems. Springer Journals, (Artigo sometido)

[11] E. Fern´andez-Cara, J. L´ımaco, Dany Nina Huaman.On the approximate null con- trollability of the “true” Boussinesq system in dimension 3 (In preparation)

[12] E. Fern´andez-Cara, Q. Liu, E. Zuazua, Null controllability of linear heat and wave equations with nonlocal spatial terms, SIAM, J. Control Optim. 54(4), (2016) 2009– 2019.

[13] E. Fernandez Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact control- lability of the Navier Stokes System, J. Math. Pures Appl. 83 (2004), p. 1501-1542. [14] E. Fernandez Cara, Sergio Guerrero, O Yu. Imanuvilov, J-P. Puel, Some controlla- bility for the N-dimensional Navier-Stokes and Bussinesq Systems with N-1 scalar controls, SIAM J.Control Optim. v. 45, n.1, (2006), p. 146-173.

[15] E. Fernandez Cara, J. Limaco, S. B. de Menezes, Theoretical and numerical local null controllability of a Ladyzhenskaya-Smagorinsky model of turbulence ,Journal of Mathematical Fluid Mechanics (2015).

[16] Enrique Fern´andez-Cara, Ivaldo T. De Sousa, Franciane B. Viera.:Remark concern- ing the approximate controllability of the 3D Navier- Stokes and Boussinesq systems, SeMA (2017) 74: 237-253.

[17] E. Kreyszig, Introductory Functional Analysis with Applications , University of Windsor, (1978).

[18] F. D. Araruna, E. Fern´andez-Cara, S. Guerrero and M. C. Santos, New results on the Stackelberg-Nash exact control of linear parabolic equations. Systems Control Letters, (2017), 78-85

[19] F. D. Araruna, E. Fern´andez-Cara, M. C. Santos, Stackelberg-Nash Controllability for linear and semilinear parabolic equations, ESAIM: Control, Optimisation and Calculus of Variations, 21 (2015), 835-856.

[20] F. Guill´en-Gonz´alez, F. Marques-Lopes,M. Rojas-Medar, On the approximate con- trollability of Stackelberg-Nash strategies for Stokes equations, Proc. Amer. Math. Soc. 141, 5 (2013), 1759-1773.

[21] F. M. B. Fernandes, S. Denis, A. Simon,Mathematical model coupling phase trans- formation and temperature evolution during quenching os steels, Materials Science and Tecnology, 1, (1985), 838-844.

[22] G. Lebeau, L. Robbiano, Contrˆole exato del l’equation de la chaleur S´eminaire ´

Equations aux d´eriv´ees partielles (Polytechnique), 1994

[23] H. Brezis, Functional Analysis, Sobolev Spaces and partial Differential Equations, Rutgers University, March (2010).

[24] H. Brezis, An´alisis funcional, Teor´ıa y aplicaciones, Alianza Editorial (1980). [25] H. R. Clark, E. Fern´andez-Cara, J. Limaco, L. A. Medeiros, Theoretical and numer-

ical local null controllability for a parabolic system with local and nonlocal nonlin- earities. Appl. Math. Comput. 223, 483-505(2013).

[26] I. K. Argyros, Convergence and Applications of Newton-Type Iterations. Springers, New York (2008).

[27] J. D´ıaz, On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems, Rev. R. Acad. Cien. Serie A. Mat. 96, 3 (2002), 343-356.

[28] J. I. D´ıaz, J. L. Lions, On the approximate controllability of Stackelberg-Nash strate- gies. Ocean circulation and pollution control: a mathematical and numerical inves- tigation. Springer (2004), 17-27.

[29] J. L´ımaco, H. Clark, L. Medeiros, Remarks on hierarchic control. J. Math. Anal. Appl. 359, 1 (2009), 368-383.

[30] J-L. Lions, E. Magenes, Probl`emes aux limites non homog`enes et applications, Vol. 2, Paris, Dunod, 1968.

[31] J.L. Lions, Hierarchic control, Proceedings of the Indian Academy of Science (Math- ematical Sciences) 104, 1 (1994), 295-304.

[32] J-L. Lions, Quelques M´ethodes de R´esolutions des Probl`emes aux Limites non Lin´eaires, Dunod Gauthier-Villars, Paris, (1969).

[33] J-L. Lions, Optimal Control of Systems Governed by Partial Differentia Equations, Springer-Verlag Berlin Heidelberg, New York (1971).

[34] J. M. Coron, F. Marbach, F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions, to appear. [35] J-P Puel, Controllability of Navier-Stokes Equations, Laboratoire de Mathematiques

de Versailles, (2012)

[36] Jean-Michael Coron, Pierre Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Inventiones mathematicae, 2014, Volume 198, Number 3, Page 833

[37] J. M. Coron, A. V. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996), no. 4, 429-448.

[38] L. A. Medeiros, M. Milla Miranda, Introdu¸c˜ao `as Equa¸c˜oes Diferenciais Parciais N˜ao Lineares, Instituto de Matem´atica-UFRJ, (1997).

[39] L. A. Medeiros, M. Milla Miranda, Introdu¸c˜ao aos Espa¸cos de Sobolev e `as Equa¸c˜oes Diferenciais Parciais, Instituto de Matem´atica - UFRJ, Rio de Janeiro, (2011). [40] L. A. Medeiros, P. H. Rivera, Espa¸cos de Sobolev e Equa¸c˜oes Diferenciais Parciais,

Textos de M´etodos Matem´aticos, Instituto de Matem´atica-UFRJ, n´umero 9, (1975). [41] L. A. Medeiros, M. Milla Miranda, Espa¸cos de Sobolev (Inicia¸c˜ao aos Problemas El´ıticos n˜ao Homogˆeneos), Instituto de Matem´atica - UFRJ, Rio de Janeiro, (1999). [42] L. C. Evans, Partial Differential Equations, Berkeley Mathematics Lecture Notes,

(1993).

[43] Miroslav Bul´ıcek, Eduard Feireisl, Josef M´alek,A Navier-Stokes-Fourier system for incomprensible fluids with temperature dependent material coefficients, ELSEVIER, Nonlinear Analysis 10(2009) 992-1015.

[44] N. H. Chang, M. Chipot, Nonlinear Nonlocal Evolution Problems,RACSAM, Rev. R. Acad. Cien. Serie A. Mat, Vol 97 (3), (2003), p. 393 - 415.

[45] Nic´olas Carre˜no, Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain, Journal of Mathematical Fluid Mechanics (2012).

[46] Nic´olas Carre˜no, Local controllability of the N-dimensional Boussinesq system with N-1 scalar controls in an arbitrary control domain, Mathematical Control and Re- lated Fields (MCRF), 2012.

[47] N. H. Chang, M. Chipot, On some model diffusion problems with a nonlocal lower ordem, Chin. Ann. Math. 24 (B:2) (2003) 147-166.

[48] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Transl, Math. Monogr. 23, AMS, Providence, RI, 1968. [49] O. Yu. Imanuvilov, Controllability of parabolic equations, Mat. Sb. 186 (1995), pp.

879-900.

[50] O. Yu. Imanuvilov, J-P. Puel,Global Carleman estimates for weak elliptic non ho- mogeneous Dirichlet problem, Int. Math. Research Notices, 16 (2003), p.883-913. [51] O. Yu. Imanuvilov, Controllability of parabolic equations, Mat. Sb. 186 (1995), pp.

879-900.

[52] O Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 6 , 39-72(2001).

[53] O. Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 3 (1998), 97-131.

[54] O. Yu. Imanuvilov, M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci. 39 (2) (2003) 227–274.

[55] Pierre Saramito, Anthony Wachs. Progress in numerical simulation of yield stress fluid flows, Springer- Verlag Berlin Heidelberg, 2017.

[56] P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous

boundary conditions in Sobolev spaces with mixed Lp.norm. Electronic Res. Announc. Amer. Math. Soc. 8 (2002), 47–51.

[57] R. Teman, Navier-Stokes Equations, Theory and Numerical Analysis, North- Holland, Amsterdam, (1977).

[58] R. Glowinski, A. Ramos, J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl. 112, 3 (2002), 457-498. [59] S. Guerrero, O Yu. Imanuvilov, J-P. Puel, A result concerning the global approximate controllability of the Navier-Stokes system in dimension 3. J. Math. Pures Appl. 98, 689-709 (2012).

[60] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. I. H. Poincar´e, 23, 29-61, 2006.

[61] T. Chac´on, R. Lewadonski, Mathematical and numerical foundations of turbulence models and applications, Springer.

[62] T. Cazenave, An introduction to nonlinear Schrodinger equations, Textos de Metodos Matematicos numero 26, Instituto de Matem´atica - UFRJ, Rio de Janeiro, (1996). [63] V. Hern´andez, L. de Teresa, A. Poznyak, Hierarchic control for a coupled parabolic

system, Portugaliae Math., Fasc. 2, (2016), 115-137.

[64] V. M. Alekseev, V. M Tikhomirov, S. V. Fomin, Optimal Control, Translated from the Russiam by V. M. Volosov, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987.

[65] Xu Liu, Xu Zhang, Local controllability of multidimensional quasi-linear parabolic equations SIAM J. CONTROL OPTIM. Vol. 50, N 4, pp. 2046-2064.

Documentos relacionados